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Multichannel meta-imagers for accelerating 
machine vision

Hanyu Zheng    1, Quan Liu2, Ivan I. Kravchenko    3, Xiaomeng Zhang4, 
Yuankai Huo2 & Jason G. Valentine    4 

Rapid developments in machine vision technology have impacted a variety 
of applications, such as medical devices and autonomous driving systems. 
These achievements, however, typically necessitate digital neural networks 
with the downside of heavy computational requirements and consequent 
high energy consumption. As a result, real-time decision-making is hindered 
when computational resources are not readily accessible. Here we report 
a meta-imager designed to work together with a digital back end to offload 
computationally expensive convolution operations into high-speed, 
low-power optics. In this architecture, metasurfaces enable both angle and 
polarization multiplexing to create multiple information channels that 
perform positively and negatively valued convolution operations in a single 
shot. We use our meta-imager for object classification, achieving 98.6% 
accuracy in handwritten digits and 88.8% accuracy in fashion images. Owing 
to its compactness, high speed and low power consumption, our approach 
could find a wide range of applications in artificial intelligence and machine 
vision applications.

The rapid development of digital neural networks and the avail-
ability of large training datasets have enabled a wide range of 
machine-learning-based applications, including image analysis1,2, 
speech recognition3,4 and machine vision5. However, enhanced per-
formance is typically associated with a rise in model complexity, leading 
to larger computing requirements6. The escalating use and complexity 
of neural networks have resulted in increases in energy consumption 
and limiting real-time decision-making when large computational 
resources are not readily accessible. These issues are especially critical 
to the performance of machine vision7–9 in autonomous systems where 
the imager and processor must have a small size, weight and power 
consumption for onboard processing and still maintain low latency, 
high accuracy and highly robust operation. These opposing require-
ments necessitate the development of new hardware and software 
solutions as the demands on machine vision systems continue to grow.

Optics has long been studied as a way to speed up computational 
operations as well as increase energy efficiency10–16. In accelerating 
vision systems, there is the unique opportunity to offload computation 

into the front-end imaging optics by designing an imager that is opti-
mized for a particular computational task. A free-space optical compu-
tational, based on Fourier optics17–20, actually predates modern digital 
circuitry and allows for the highly parallel execution of convolution 
operations, which comprise a majority of floating-point operations 
in machine vision architectures21,22. The challenge with Fourier-based 
processors is that they are traditionally employed by reprojecting the 
imagery using spatial light modulators and coherent sources, enlarging 
the system size compared with chip-based approaches23–28. Although 
coherent illumination is not strictly required, it allows for more free-
dom in convolution operations including the ability to achieve the 
negatively valued kernels needed for spatial derivatives. Optical dif-
fractive neural networks29–31 offer an alternative approach even though 
they are also employed with coherent sources and thus are best suited 
as back-end processors with image data being reprojected.

Metasurfaces offer a unique platform for implementing front-end 
optical computation as they can reduce the size of the optical ele-
ments and allow for a wider range of optical properties including 
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metasurface corrector is also employed to widen the field of view (FOV) 
for imaging objects in the natural world and both metasurfaces are 
restricted to phase functions, yielding high transmission efficiency. As 
a proof of concept, the platform is used to experimentally demonstrate 
the classification of modified National Institute of Standards and Tech-
nology (MNIST) and Fashion MNIST datasets47 with measured accuracies 
of 98.6% and 88.8%, respectively. In both cases, 94% of the operations 
are offloaded from the digital platform into the front-end optics.

Angular and polarization multiplexing
The meta-optic described here is designed to optically implement 
the convolutional layers at the front end of a digital neural network. 
In a digital network, convolution comprises matrix multiplication 
of the object image and an N × N pixel kernel, with each pixel having 
an independent weight, as illustrated for N = 3 (Fig. 2a). The kernel 
is multiplied over an area of the image using a dot product and then 
rastered across the image, moving by a single pixel at each step until it 
is swept across the entire image, forming a single feature map. Under 
incoherent illumination, the optical convolutional is expressed as 
Image = Object ⊗ |PSF(x, y)|, where PSF(x, y) is the PSF of the optics. 
Typically, in implementing the optical version of digital convolution, 
PSF(x, y) is a continuous function that is discretized in forming the 
digital kernel. Here we take a different approach, creating a true optical 
analogue to the digital kernel. This is done by engineering the PSF(x, y) 
value (Fig. 2a) to possess N × N focal spots, each with a different weight, 
or image intensity, that matches the desired digital kernel weight. 
These focal spots will result in N × N images of the object being formed, 
which are spatially overlapped on the sensor and offset based on the 
separation in the focal-spot positions. In this case, we are rastering the 
weighted images with the summing operation in the dot product being 
achieved by overlapping the images on the camera.

In this architecture, positively and negatively valued kernel 
weights are achieved by encoding the focal spots with either right-hand 
circular polarization (RCP) or left-hand circular polarization (LCP), 
respectively. The circularly polarized signal is decoded by using a 
quarter-wave plate combined with a polarization-sensitive camera 
containing four directional gratings integrated onto each pixel. The 
RCP- and LCP-encoded feature maps (Fig. 2a) are then independently 
recorded using the polarization-sensitive camera, with summing being 
achieved by digitally subtracting the LCP feature map from the RCP fea-
ture map. The convolution generated by this method is identical to the 
digital process, which is evidenced by comparing the digital and optical 
feature maps (Fig. 2a). We have used this approach for several reasons. 
First, as explained later, the phase and amplitude profiles associated 
with our desired PSF(x, y) is analytical, substantially simplifying the 
design process and allowing us to achieve numerous independent fea-
ture maps, or channels, using one aperture. In addition, since we have 
a true optical analogue to a digital system, we can directly implement 
digital kernel designs with optics, removing the optic stage from the 
design loop, further speeding up the design process. To achieve the 
desired optical response, we employ a bilayer-metasurface architecture 
(Fig. 2b). In this architecture, the first metasurface splits the incident 
signal into angular channels of varying weights, whereas birefringence 
in this layer is used to encode the positive and negative kernel values 
in the RCP and LCP cases, respectively. The second metasurface is 
polarization insensitive and serves as the focusing optic to create an 
N × N focal-spot array for each channel.

Meta-optic design
Meta-optic design began by optimizing a two-metasurface lens, com-
prising a wavefront corrector and a focuser, to be coma free over a ±10° 
angular range using the commercial software Zemax (Methods). Sup-
plementary Note 1 provides the phase profiles and angular response 
of the metasurfaces, which shows a constant focal-spot shape within 
the designed angular range. A wider FOV can be achieved by further 

polarization32,33, wavelength34,35 and angle of incidence36,37 to be uti-
lized in computation. For instance, metasurfaces have been demon-
strated with angle-of-incidence-dependent transfer functions for 
realizing compact optical differentiation systems38–41 with no need 
to pass through the Fourier plane of a two-lens system. In addition, 
wavelength-multiplexed metasurfaces, combined with optoelectronic 
subtraction, have been used to achieve negatively valued kernels for 
executing single-shot differentiation with incoherent light42,43. Dif-
ferentiation, however, is a single convolution operation whereas most 
machine vision systems require multiple independent channels. There 
have been recent studies on multichannel convolutional front ends, but 
these have been limited in transmission efficiency and computational 
complexity, achieving only positively valued kernels with a stride that 
is equal to the kernel size, preventing the implementation of common 
digital designs44,45. Although these are important steps towards a com-
putational front end, an architecture is still needed for generating the 
multiple independent, and arbitrary, convolution channels that are 
used in machine vision systems.

Here we demonstrate a meta-imager that can serve as a multi-
channel convolutional accelerator for incoherent light. To achieve 
this, the point spread function (PSF) of the imaging meta-optic is engi-
neered to achieve parallel multichannel convolution using a single 
aperture implemented with angular multiplexing (Fig. 1). In addition, 
positively and negatively valued kernels are achieved for incoherent 
illumination by using polarization multiplexing46, combined with a 
polarization-sensitive camera and optoelectronic subtraction. A second 
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Fig. 1 | Schematic of the meta-imager. The meta-imager enables multichannel 
signal processing for replacing convolution operations in a digital neural 
network. A bilayer meta-optic system encoded by the predesigned kernels is 
utilized to achieve optical convolution with the incoherent light source to be 
used for object illumination. The positive and negative values are distinguished 
and recorded as feature maps by a polarization-sensitive photodetector, where 
an oriented grating sits on each photodetector pixel for polarized signal sorting.
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cascading metasurfaces (Supplementary Note 2). Once the coma-free 
meta-optic was designed, angular multiplexing was applied to the first 
metasurface to form focal-spot arrays as the convolution kernels. The 
focal-spot position is controlled using angular multiplexing, with each 
angle corresponding to a kernel pixel. By encoding a weight to each 
angular component, the system PSF, serving as the optical kernel, can be 
readily engineered. The analytical expression of the complex-amplitude 
profile multiplexing all the angular signals is given by

A (x, y) =
M
∑
m

N
∑
n
√wmn exp {i

2π
λ [x sin (θx|mn) + y sin (θy|mn)]} (1)

where A(x, y) is a complex-amplitude field. Also, M and N denote the 
row and column number of the elements in the kernel, respectively; wmn 
is the corresponding weight of each element, which is normalized to a 
range of [0, 1]; λ is the working wavelength; x and y are spatial coordi-
nates; and θx|mn and θy|mn are the designed angles with a small variation to 
form the kernel elements. The deflection angles are selected to realize 
the desired PSF for incoherent light illumination, which is given by

PSF (x, y) =
M
∑
m

N
∑
n
wmnΘ {x − f1c [

x0
f2
+ tan (θx|mn)]

y − f1c [
y0
f2
+ tan (θy|mn)]}

(2)

where x0 and y0 are the location of the object and Θ(x, y) is the focal spot 
excited by a plane wave. Also, f1 is the focal length of the meta-imager, 
whereas c is a constant fitted based on the imaging system; f2 is the 
distance from the object to the front aperture. Supplementary Note 
3 provides the detailed derivation. The separation distance of each 
focal spot, Δp, defines the imaged pixel size of the object. Based on 
the prescribed PSF, the required angles θmn can be derived from equa-
tion (2), which can be further extended into an off-axis imaging case 
(Supplementary Note 4) for the purpose of multichannel, single-shot 
convolutional applications.

In equation (1), we employ a spatially varying complex-valued 
amplitude function (Supplementary Note 5 shows the workflow of the 
design process) that would ultimately introduce a large reflection loss, 
leading to a low diffraction efficiency48. To overcome this limitation, 
an optimization platform was developed based on the angular spec-
trum propagation method and stochastic gradient descent solver, 
which converts the complex-amplitude profile into a phase-only meta-
surface. The algorithm encodes a phase term, exp(iϕmn), onto each 

weight wmn based on the loss function, namely, ℒ=∑(|A|2 − I)
2
/N. Here 

I is a matrix consisting of unity elements and N is the total pixel number. 
The intensity profile becomes more consistent and closer to a 
phase-only device by minimizing the loss function during optimization 
(Supplementary Note 6 shows the detailed algorithm). The phase-only 
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Fig. 2 | Meta-optic architecture. a, Comparison between the digital and optical 
convolution process. A random 3 × 3 kernel, normalized within [−1, 1], was 
defined to digitally convolve an image. The equivalent optical PSF was designed 
and simulated by the angular spectrum propagation method, with the optical 
output calculated based on the premise of a coma-free system. b, Architecture 
of the compound meta-optic forms three independent focal spots as the PSF. 

Angular multiplexing is used in the first layer of the metasurface, which can split 
light into multiple signal channels and correct the wavefront for wide-view-angle 
imaging. Meanwhile, polarization multiplexing is used to realize an independent 
response for orthogonal-polarization states. In our case, RCP and LCP signals are 
used for the positive and negative kernel values, respectively.
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approximation can effectively avoid loss in the complex-amplitude 
function, leading to a theoretical diffraction efficiency as high as 84.3% 
where 14.0% of the loss is introduced by Fresnel reflection, which can 
be removed by adding antireflection coatings.

Hybrid neural network for object classification
To validate the performance of this architecture, a shallow convolutional 
neural network was trained for the purpose of image classification. 
The neural network architecture (Fig. 3a) contains an optical convolu-
tion layer followed by digital max pooling, a rectified linear unit activa-
tion function and a fully connected layer. In the convolution process, 
12 independent kernels are used to extract the feature maps and the 
overall intensity of positive and negative channels was set to be equal 
due to energy conservation from the phase-only approximation in the 
meta-optic design. Since neural network training is a high-dimensional 
problem with infinite solutions, the above kernel restrictions do not 
notably affect the final performance (Supplementary Note 7). Each 
kernel comprised N = 7 pixels instead of a more typical N = 3 format, to 
correlate neurons within a broader FOV49, leading to better performance 
for large-scale object recognition. Methods describes the detailed train-
ing process. To finish the classification, the feature maps extracted by 
the compound meta-optic are fed into the digital component of the 
neural network. In this architecture, 94% of the total operations are 
offloaded from the digital platform into the meta-optic, leading to a 
substantial speed up for classification tasks (Supplementary Note 8).

Meta-optic implementation
To realize the first polarization-selective metasurface, elliptical nano-
pillars were chosen as the base meta-atoms (Fig. 3b). The width and 
length of the nanopillars were designed so that the nanopillars serve 

as half-wave plates. This choice introduces a spin-decoupled phase 
response by simultaneously introducing geometrical and a locally reso-
nant phase delay; hence, independent phase control over orthogonal 
circularly polarized states can be achieved. The analytical expression 
of the phase delay for the different polarization states is described as

[
ϕLCP

ϕRCP
] = [

ϕx + 2θ + π/4

ϕx − 2θ − π/4
] (3)

Here ϕx is the phase delay of the meta-atoms along the x axis 
at θ = 0. Hence, by tuning the length, width and rotation angle, the 
phase delay of LCP and RCP light can be independently controlled 
(Supplementary Note 9 shows the detailed derivation). The second 
metasurface was designed based on circular nanopillars arranged in a 
hexagonal lattice for realizing polarization-insensitive phase control. 
Supplementary Note 10 shows the phase delay of the circular nanopil-
lars as a function of diameter.

Fabrication and characterization of meta-optic
Two versions of the meta-optic classifier were fabricated based on 
networks trained for the MNIST and Fashion MNIST datasets (Supple-
mentary Note 11 shows one set of the phase profiles). The fabrication 
of the meta-optic began with a silicon device layer on a fused silica 
substrate patterned by standard electron-beam lithography followed 
by reactive ion etching. A thin polymethyl methacrylate layer was spin 
coated over the device as the protective and index-matching layer. 
Methods describes the detailed fabrication process. An optical image 
of the two metasurfaces comprising the meta-optic is exhibited in  
Fig. 4a,b, with the inset showing the meta-atoms. To align the compound 
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Fig. 3 | Design of the meta-imager. a, Design process of the hybrid neural 
network. A shallow convolutional neural network was trained at first. In this case, 
the input is convoluted by 12 independent channels, each comprising 7 × 7 pixel 
kernels. The convolution operations are implemented using the meta-imager, 
with the extracted feature maps, including multiplexed polarization channels, 
recorded by a polarization-sensitive camera (polarsens cam). The processed 

feature maps were then fed into the pretrained digital neural network to obtain 
the probability histogram for image classification. The percentage of relevant 
computing operations is indicated in the corner. ReLU, rectified linear unit; FC, 
fully connected. b, Schematic of the meta-atoms for the first (MS1) and second 
(MS2) metasurfaces. The height is fixed at 0.63 μm, whereas the lattice constant 
is chosen as 0.45 and 0.47 μm, respectively.
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meta-optic, the first metasurface was mounted in a rotational stage 
(CRM1PT, Thorlabs), whereas the second layer was fitted in a three-axis 
translational stage (CXYZ05A, Thorlabs). The metasurfaces are aligned 
in situ and characterized in a cage system (Supplementary Note 12 
shows the detailed alignment setup). A meta-hologram was fabricated 
on the first layer alongside the device to assist the alignment process by 
forming an alignment pattern at a prescribed distance along the optical 
axis corresponding to the designed separation distance. The alignment 
process was finished by overlapping the alignment pattern with the 
low-transmission register on the second layer. Due to the large size 
(millimetre scale) of each metasurface layer, the meta-optic exhibits a 
high alignment tolerance. The system performance remains constant 
under a horizontal misalignment of 65 μm and vertical displacement of 
±400 μm, indicating the robustness of the entire convolutional system. 
Supplementary Note 13 shows the alignment error analysis.

To characterize the optical properties of the fabricated meta-optic, 
a linearly polarized laser was used for illumination in obtaining the PSF 
(Supplementary Note 14 shows the detailed characterization setup). 
The linearly polarized light source includes the LCP and RCP compo-
nents with equal strength. The PSF at the focal plane of the compound 
meta-optic (Fig. 4c,d) indicates a good match between the ideal and 
measured results, where the red and blue colours represent positive 
and negative values, respectively.

Optical convolution of a grey-scale Vanderbilt logo was used to 
characterize the accuracy of the fabricated meta-optic (Fig. 4e).  
To accomplish this, an imaging system using a liquid-crystal-based 
spatial light modulator was built (Supplementary Note 15). An incoher-
ent tungsten lamp with a 10-nm-wide bandpass filter was used for 
spatial light modulator illumination. The feature maps extracted by 
the meta-optic were recorded by a polarization-sensitive camera (DZK 
33UX250, Imaging Source) where orthogonally polarized channels are 

simultaneously recorded using polarization filters on each camera 
pixel. A comparison between the digital and measured feature maps, 
recorded on the camera, is illustrated in Fig. 4e. The pixel intensity from 
the digital and measured convolutional results at the same position 
were extracted and compared to evaluate the convolution fidelity. The 
deviation between the ideal and measured results, defined by 
σ = ∑N

n=1 ||Di,n − Dm,n|| / (2N ), was calculated as 3.83%, where Di and Dm 
are the ideal and measured intensity, respectively, and N is the number 
of total pixels. The error originates from stray light, fabrication imper-
fections, local phase approximation and metasurface misalignment 
(Supplementary Note 16 shows the detailed system error analysis). 
These errors also result in a small amount of zeroth-order diffracted 
light being introduced from the first metasurface, leading to a spot at 
the centre of the imaging plane. However, the polarization state of the 
zeroth-order light remains unchanged, with the energy evenly distrib-
uted in the two circularly polarized channels. Hence, subtraction 
between the information channels allows the zeroth-order pattern to 
be cancelled, not affecting the classification performance. Supplemen-
tary Note 17 provides a detailed discussion.

Object classification for machine vision
As a proof of concept in demonstrating multichannel convolution, a 
full meta-optic classifier was first designed and fabricated based on the 
classification of the MNIST dataset, which includes 60,000 handwritten 
digit training images with a 28 × 28 pixel format. The feature maps of 
1,000 digits, not in the training set, were extracted using the meta-optic 
to characterize the system performance. An example input image is 
exhibited in Fig. 5a, with the corresponding feature maps shown in 
Fig. 5b. Supplementary Note 18 shows the kernels and feature maps 
for all the channels. The measured feature maps match well with the 
theoretical prediction (Fig. 5b), indicating good fidelity in the optical 
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convolution process. The theoretical and experimental confusion 
matrices for this testing dataset are shown in Fig. 5c, demonstrating 
99.3% accurate classification in theory and 98.6% accurate classifica-
tion in the measurement. The small drop in accuracy probably results 
from the small inaccuracy in the realized optical kernels. Although 
the system was designed at a single wavelength, simulations indicate 
a minimal accuracy drop up to an illumination bandwidth of 50 nm, 
indicating that the experimental bandwidth of 10 nm should have a 
minimal impact (Supplementary Note 19).

To explore the flexibility of the approach, a dataset with higher 
spatial frequency information, namely, the Fashion MNIST dataset, 
was used for training the model with an example input image provided 
in Fig. 5d. This dataset includes 60,000 training images of clothing 
articles that contain images with higher spatial frequencies than the 
MNIST handwritten digit dataset. The ideal and measured feature maps 
are compared in Fig. 5e, indicating good agreement. Supplementary 
Note 20 shows all of the designed kernel profiles and feature maps.  

The confusion matrices for Fashion MNIST are illustrated in Fig. 5f, with 
90.2% accurate classification in theory and 88.8% in measurement. To 
validate the role of the optical convolution layer, a reference model for 
the MNIST handwritten digit classification, without a convolutional 
layer, was trained, resulting in an accuracy of 80.3%, illustrating the 
importance of the convolution operations (Supplementary Note 21). 
Compared with the MNIST dataset, the Fashion MNIST model has a 
slightly lower accuracy, in theory, due to the higher resolution features 
in the dataset. Specifically, for class 7 in the Fashion MNIST dataset, 
the accuracy predicted by the optical front end dropped from 81.4% 
to 67.0%, with the model misidentifying the images as classes 1, 3, 
4 and 5. We expect these classes to share the same features during 
model training (Supplementary Note 22). These mixed features can 
be potentially distinguished by adaptively tuning the loss function 
during model training50 or utilizing novel neural network architecture 
such as a vision transformer51 with better performance at comparable 
floating-point operations.
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Fig. 5 | Classification of MNIST and Fashion MNIST objects. a, An input image 
from the MNIST dataset. b, Ideal and experimentally measured feature maps 
corresponding to the convolution of the data in a with channels 9 and 12.  
The top-left corner label indicates the channel number during convolution. 
c, Comparison between the theoretical and measured confusion matrices for 
MNIST classification. d, An input image from the Fashion MNIST dataset. The top-
left corner label indicates the object class number. e, Ideal and experimentally 

measured feature maps corresponding to the convolution of the data in d with 
channels 9 and 12. The top-left corner label indicates the channel number during 
convolution. f, Comparison between the theoretical and measured confusion 
matrices for Fashion MNIST classification. g, Predicted accuracy curve for the 
MNIST dataset and the areal density of the basic computing unit as a function  
of pixel size. The insets depict the kernel profiles and feature maps at different 
pixel sizes.

http://www.nature.com/naturenanotechnology


Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01557-2

To understand the scalability of the meta-imager, the accuracy 
of classification as a function of the areal density of the basic comput-
ing unit was calculated (Fig. 5g). The optical computing unit density 
is defined as the convolutional pixels per unit area, where we assume 
each convolutional pixel is matched to a physical pixel on a photodetec-
tor. The pixel size is dictated by the separation distance between the 
neighbouring focal spots in the PSF, which is ultimately dictated by the 
diffraction limit. The prediction accuracy is based on the MNIST dataset 
and the theoretical accuracy remains as high as ∼99% until the pixel 
size drops below 2 μm, at which point the neighbouring focal spots 
are below the diffraction limit, resulting in additional aberration in the 
output features (Fig. 5g, inset). Thus, although a pixel size of 12 μm is 
demonstrated in this work as a proof of concept, the system functional-
ity would remain unchanged, in theory, with up to six times higher areal 
computing unit density. For perspective, the meta-imager computing 
unit density can be compared with the multiply–accumulation unit 
density and size based on the current 7-nm-node architecture52, which 
results in multiply–accumulation units with a size of ∼7 µm × 7 µm.

Conclusions
Our meta-imager is a proof of concept for a convolutional front end that 
can be used to replace the traditional imaging optics in machine vision 
applications, encoding information in a more efficient basis for back-end 
processing. In this context, negatively valued kernels and multichan-
nel convolution, enabled by the meta-optic, allows one to increase the 
number of operations that can be offloaded into the front-end optics. 
Furthermore, the architecture allows for incoherent illumination and a 
reasonably wide FOV, both of which are needed for implementation in 
imaging natural scenes with ambient illumination. Although a tradeoff 
exists between the channel number and the viewing-angle range, a multia-
perture architecture could be designed without deteriorating the FOV in a 
single imaging channel53. In addition, we have not attempted to optimize 
the operation bandwidth, which could be addressed through disper-
sion engineering, over modest apertures, combination with broadband 
refractive optics or use of dispersion to perform wavelength-dependent 
functions. Further acceleration can be realized via the integration of 
a meta-imager front end directly with a chip-based photonics back 
end such that data readout and transport can be achieved without 
analogue-to-digital converters for ultrafast and low-latency processing.

Our meta-imager does put restrictions on the depth, or num-
ber of layers, in the optical front end, which means that it provides 
the most benefit in lightweight neural networks such as those found 
in power-limited or high-speed autonomous applications. Recent 
advances in machine learning, such as the use of larger kernels for 
network layer compression54 and reparameterization55, could further 
improve the effectiveness of single-layer, or few-layer, meta-imager 
front ends. In addition, the capability of the meta-optic for multifunc-
tional processing, including wavelength- and polarization-based dis-
crimination, can be used to further increase information collection44. 
As a result, this general architecture for meta-imagers can be highly 
parallel and bridge the gap between the natural world and digital sys-
tems, potentially finding use beyond machine vision56 in applications 
such as information security57,58 and quantum communications59.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41565-023-01557-2.

References
1.	 Simonyan, K. & Zisserman, A. Very deep convolutional networks 

for large-scale image recognition. In 3rd International Conference 
on Learning Representations 1–14 (ICLR, 2015).

2.	 Wang, G. et al. Interactive medical image segmentation using 
deep learning with image-specific fine tuning. IEEE Trans. Med. 
Imaging 37, 1562–1573 (2018).

3.	 Furui, S., Deng, L., Gales, M., Ney, H. & Tokuda, K. Fundamental 
technologies in modern speech recognition. IEEE Signal Process 
Mag. 29, 16–17 (2012).

4.	 Sak, H., Senior, A., Rao, K. & Beaufays, F. Fast and accurate 
recurrent neural network acoustic models for speech recognition. 
In Proc. Annual Conference of the International Speech 
Communication Association, INTERSPEECH 1468–1472  
(ISCA, 2015).

5.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for 
image recognition. In Proc. IEEE Computer Society  
Conference on Computer Vision and Pattern Recognition  
770–778 (IEEE, 2016).

6.	 Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 
436–444 (2015).

7.	 Mennel, L. et al. Ultrafast machine vision with 2D material neural 
network image sensors. Nature 579, 62–66 (2020).

8.	 Liu, L. et al. Computing systems for autonomous driving: state 
of the art and challenges. IEEE Internet Things J. 8, 6469–6486 
(2021).

9.	 Shi, W. et al. LOEN: lensless opto-electronic neural network 
empowered machine vision. Light Sci. Appl. 11, 121 (2022).

10.	 Hamerly, R., Bernstein, L., Sludds, A., Soljačić, M. & Englund, 
D. Large-scale optical neural networks based on photoelectric 
multiplication. Phys. Rev. X 9, 021032 (2019).

11.	 Wetzstein, G. et al. Inference in artificial intelligence with deep 
optics and photonics. Nature 588, 39–47 (2020).

12.	 Shastri, B. J. et al. Photonics for artificial intelligence and 
neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

13.	 Xue, W. & Miller, O. D. High-NA optical edge detection via 
optimized multilayer films. J. Optics 23, 125004 (2021).

14.	 Wang, T. et al. An optical neural network using less than 1 photon 
per multiplication. Nat. Commun. 13, 123 (2022).

15.	 Wang, T. et al. Image sensing with multilayer nonlinear optical 
neural networks. Nat. Photon. 17, 8–17 (2023).

16.	 Badloe, T., Lee, S. & Rho, J. Computation at the speed of light: 
metamaterials for all-optical calculations and neural networks. 
Adv. Photon. 4, 064002 (2022).

17.	 Vanderlugt, A. Optical Signal Processing (Wiley, 1993).
18.	 Chang, J., Sitzmann, V., Dun, X., Heidrich, W. & Wetzstein, G. 

Hybrid optical-electronic convolutional neural networks with 
optimized diffractive optics for image classification. Sci. Rep. 8, 
12324 (2018).

19.	 Colburn, S., Chu, Y., Shilzerman, E. & Majumdar, A. Optical 
frontend for a convolutional neural network. Appl. Opt. 58, 3179 
(2019).

20.	 Zhou, T. et al. Large-scale neuromorphic optoelectronic 
computing with a reconfigurable diffractive processing unit. Nat. 
Photon. 15, 367–373 (2021).

21.	 Chen, Y. H., Krishna, T., Emer, J. S. & Sze, V. Eyeriss: an 
energy-efficient reconfigurable accelerator for deep 
convolutional neural networks. IEEE J. Solid-State Circuits 52, 
127–138 (2017).

22.	 Neshatpour, K., Homayoun, H. & Sasan, A. ICNN: the iterative 
convolutional neural network. In ACM Transactions on Embedded 
Computing Systems 18, 119 (ACM, 2019).

23.	 Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical 
neural networks. Nature 589, 44–51 (2021).

24.	 Feldmann, J. et al. Parallel convolutional processing using an 
integrated photonic tensor core. Nature 589, 52–58 (2021).

25.	 Wu, C. et al. Programmable phase-change metasurfaces on 
waveguides for multimode photonic convolutional neural 
network. Nat. Commun. 12, 96 (2021).

http://www.nature.com/naturenanotechnology
https://doi.org/10.1038/s41565-023-01557-2


Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01557-2

26.	 Zhang, H. et al. An optical neural chip for implementing 
complex-valued neural network. Nat. Commun. 12, 457 (2021).

27.	 Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep 
neural network for image classification. Nature 606, 501–506 
(2022).

28.	 Fu, T. et al. Photonic machine learning with on-chip diffractive 
optics. Nat. Commun. 14, 70 (2023).

29.	 Lin, X. et al. All-optical machine learning using diffractive deep 
neural networks. Science 361, 1004–1008 (2018).

30.	 Qian, C. et al. Performing optical logic operations by a diffractive 
neural network. Light Sci. Appl. 9, 59 (2020).

31.	 Luo, X. et al. Metasurface-enabled on-chip multiplexed diffractive 
neural networks in the visible. Light Sci. Appl. 11, 158 (2022).

32.	 Kwon, H., Arbabi, E., Kamali, S. M., Faraji-Dana, M. S. & Faraon, A. 
Single-shot quantitative phase gradient microscopy using a system 
of multifunctional metasurfaces. Nat. Photon. 14, 109–114 (2020).

33.	 Xiong, B. et al. Breaking the limitation of polarization multiplexing 
in optical metasurfaces with engineered noise. Science 379, 
294–299 (2023).

34.	 Khorasaninejad, M. et al. Metalenses at visible wavelengths: 
diffraction-limited focusing and subwavelength resolution 
imaging. Science 352, 1190–1194 (2016).

35.	 Kim, J. et al. Scalable manufacturing of high-index atomic layer–
polymer hybrid metasurfaces for metaphotonics in the visible. 
Nat. Mater. 22, 474–481 (2023).

36.	 Levanon, N. et al. Angular transmission response of in-plane 
symmetry-breaking quasi-BIC all-dielectric metasurfaces. ACS 
Photonics 9, 3642–3648 (2022).

37.	 Nolen, J. R., Overvig, A. C., Cotrufo, M. & Alù, A. Arbitrarily 
polarized and unidirectional emission from thermal metasurfaces. 
Preprint at https://arxiv.org/abs/2301.12301 (2023).

38.	 Guo, C., Xiao, M., Minkov, M., Shi, Y. & Fan, S. Photonic crystal 
slab Laplace operator for image differentiation. Optica 5, 251–256 
(2018).

39.	 Cordaro, A. et al. High-index dielectric metasurfaces performing 
mathematical operations. Nano Lett. 19, 8418–8423 (2019).

40.	 Zhou, Y., Zheng, H., Kravchenko, I. I. & Valentine, J. Flat optics for 
image differentiation. Nat. Photon. 14, 316–323 (2020).

41.	 Fu, W. et al. Ultracompact meta-imagers for arbitrary all-optical 
convolution. Light Sci. Appl. 11, 62 (2022).

42.	 Wang, H., Guo, C., Zhao, Z. & Fan, S. Compact incoherent image 
differentiation with nanophotonic structures. ACS Photonics 7, 
338–343 (2020).

43.	 Zhang, X., Bai, B., Sun, H. B., Jin, G. & Valentine, J. Incoherent 
optoelectronic differentiation based on optimized multilayer 
films. Laser Photon Rev. 16, 2200038 (2022).

44.	 Zheng, H. et al. Meta-optic accelerators for object classifiers. Sci. 
Adv. 8, eabo6410 (2022).

45.	 Bernstein, L. et al. Single-shot optical neural network. Sci. Adv. 9, 
eadg7904 (2023).

46.	 Shen, Z. et al. Monocular metasurface camera for passive 
single-shot 4D imaging. Nat. Commun. 14, 1035 (2023).

47.	 LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based 
learning applied to document recognition. Proc. IEEE 86, 
2278–2323 (1998).

48.	 Zheng, H. et al. Compound meta-optics for complete and 
loss-less field control. ACS Nano 16, 15100–15107 (2022).

49.	 Liu, S. et al. More ConvNets in the 2020s: scaling up kernels 
beyond 51x51 using sparsity. In 11th International Conference on 
Learning Representations 1–23 (ICLR, 2023).

50.	 Barron, J. T. A general and adaptive robust loss function. In Proc. 
IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition 4326–4334 (IEEE, 2019).

51.	 Dosovitskiy, A. et al. An image is worth 16x16 words: transformers 
for image recognition at scale. In 9th International Conference on 
Learning Representations 1–22 (ICLR, 2021).

52.	 Stillmaker, A. & Baas, B. Scaling equations for the accurate 
prediction of CMOS device performance from 180 nm to 7 nm. 
Integration 58, 74–81 (2017).

53.	 McClung, A., Samudrala, S., Torfeh, M., Mansouree, M. & Arbabi, 
A. Snapshot spectral imaging with parallel metasystems. Sci. Adv. 
6, eabc7646 (2020).

54.	 Ding, X., Zhang, X., Han, J. & Ding, G. Scaling up your kernels 
to 31 × 31: revisiting large kernel design in CNNs. In Proc. IEEE 
Computer Society Conference on Computer Vision and Pattern 
Recognition 11953–11965 (IEEE, 2022).

55.	 Ding, X. et al. RepVgg: making VGG-style ConvNets great again. In 
Proc. IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition 13728–13737 (IEEE, 2021).

56.	 Li, L. et al. Intelligent metasurface imager and recognizer. Light 
Sci. Appl. 8, 97 (2019).

57.	 Zhao, R. et al. Multichannel vectorial holographic display and 
encryption. Light Sci. Appl. 7, 95 (2018).

58.	 Kim, I. et al. Pixelated bifunctional metasurface-driven dynamic 
vectorial holographic color prints for photonic security platform. 
Nat. Commun. 12, 3614 (2021).

59.	 Li, L. et al. Metalens-array-based high-dimensional and 
multiphoton quantum source. Science 368, 1487–1490 (2020).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 
2024

http://www.nature.com/naturenanotechnology
https://arxiv.org/abs/2301.12301


Nature Nanotechnology

Article https://doi.org/10.1038/s41565-023-01557-2

Methods
Optimization of coma-free meta-optic
The coma-free meta-optic contains two metasurfaces, whose phase 
profiles were optimized by the ray-tracing technique using a commer-
cial optical design software (Zemax OpticStudio). The phase profile 
of each layer was defined by even-order polynomials according to the 
radial coordinate ρ as follows:

ϕ ( ρ) =
5
∑
n=1

an(
ρ
R )

2n
(4)

where R is the radius of the metasurface and an is the optimized coeffi-
cient to minimize the focal-spot size of the bilayer metasurfaces system 
under an incidence angle of up to 13°. The diameter of the second layer 
of the metasurface was 1.5 times that of the first layer to capture all the 
light under high-incidence-angle illumination. The phase profiles were 
then wrapped within 0 to 2π to be fitted by meta-atoms.

Digital neural network training
The MNIST and Fashion MNIST databases, each containing 60,000 
training images with the 28 × 28 pixel format, were used to train the 
digital convolutional neural network. The channel number for convolu-
tion was set to 12, whereas the kernel size was fixed at 7 × 7, with the size 
of the convolutional result remaining the same. The details of the neural 
network architecture are shown in Fig. 3a. During forward propagation 
in the neural network, an additional loss function defined by ℒ=∑N

n=1wn 
was added to ensure an equal total intensity of positive and negative 
kernel values, where wn is the weight of each kernel. All the kernel values 
are normalized to [−1, 1], by dividing with a constant, to maximize the 
diffraction efficiency in the optics. An Adam optimizer was utilized for 
training the digital parameters with a learning rate of 0.001. The train-
ing process is sustained over 50 epochs, during which the performance 
is optimized by minimizing the negative log-likelihood loss from com-
paring prediction probabilities and ground-truth labels. The algorithm 
was programmed based on PyTorch 1.10.1 and CUDA 11.0 with a Quadro 
RTX 5000/PCIe/SSE2 as the graphics card.

Numerical simulation
The complex transmission coefficients of the silicon nanopillars were 
calculated using an open-source rigorous coupled-wave analysis solver 
called RETICOLO60. A square lattice with a period of 0.45 μm was used 
for the first metasurface with a working wavelength at 0.87 μm. The 
second metasurface was assigned a hexagonal lattice with a period 
of 0.47 μm. During full-wave simulation, the indices of silicon and 
fused silica characterized by ellipsometry were set at 3.74 and 1.45, 
respectively.

Metasurface fabrication
Electron-beam-lithography-based lithography was used to fabricate 
all the metasurface layers. First, low-pressure chemical vapour depo-
sition was utilized to deposit a 630-nm-thick silicon device layer on 
a fused silica substrate. A polymethyl methacrylate photoresist was 
then spin coated on the silicon layer, followed by thermal evaporation 
of a 10-nm-thick Cr conduction layer. The electron-beam lithography 

system then exposed the photoresist, and after removing the Cr 
layer, the pattern was developed by a methyl isobutyl ketone/iso-
propyl alcohol solution. A 30 nm Al2O3 hard mask was deposited via 
electron-beam evaporation, followed by a lift-off process with an 
N-methyl-2-pyrrolidone solution. The silicon was then patterned using 
reactive ion etching, and a 1-μm-thick layer of polymethyl methacrylate 
was spin coated to encase the nanopillar structures as a protective and 
index-matching layer.
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