Draft Genome Sequences of Four *Aspergillus* Section *Fumigati* Clinical Strains

Renato Augusto Corrêa dos Santos,a,b Olga Rivero-Menendez,c Jacob L. Steenwyk,b Matthew E. Mead,b Gustavo Henrique Goldman,a Ana Alastruey-Izquierdo,c Antonis Rokasb

aDepartmento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil

bDepartment of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA

cMedical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain

ABSTRACT *Aspergillus* fungi in section *Fumigati* include important human pathogens. Here, we sequenced the genomes of two strains of *Aspergillus hiratsukae* and two strains of *Aspergillus felis*. The average genome sizes are 29.5 Mb for *A. hiratsukae* and 31.8 Mb for *A. felis*.

Aspergillus is a highly diverse genus of industrially and medically important fungi (1, 2). The genus is taxonomically divided into 27 sections (3). Section *Fumigati* contains the major human pathogen *Aspergillus fumigatus* (4) and several so-called cryptic species, such as *Aspergillus hiratsukae* and *Aspergillus felis* (5–7), which are morphologically similar but genetically distinct from *A. fumigatus*. Cryptic species account for over 10% of cases of *Aspergillus* infection (8). Here, we sequenced the genomes of two clinical strains of *A. hiratsukae*, CNM-CM5793 and CNM-CM6106, from nail and ear infections, respectively, both from Spain. We also sequenced two clinical strains of *A. felis*, strain CNM-CM7691 from an ear infection in Spain and strain CNM-CM5623 from Portugal. All four isolates were recovered from clinical samples following standard procedures and sent to the Medical Mycology Reference Laboratory (at the National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain) for identification and susceptibility testing. Except for infection type, no clinical data were recorded. Therefore, the fungal isolates were judged to be exempt from informed consent of the patients and institutional review board approval.

Species assignment was based on a maximum-likelihood phylogenetic analysis (Fig. 1). For genome sequencing, we grew all strains in glucose-yeast extract-peptone (GYEP) liquid medium (0.3% yeast extract and 1% peptone; Difco, Soria Melguizo) with 2% glucose (Sigma-Aldrich, Spain) for 24 to 48 h at 30°C. The mycelium was mechanically disrupted by vortex mixing with glass beads and used to extract genomic DNA using the phenol-chloroform method (9). DNA was quantified using the QuantiFluor double-stranded DNA (dsDNA) system and the QuantiFluor ST fluorometer (Promega, Madison, WI, USA). DNA quality was checked with the Agilent 2100 bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA, USA). DNA libraries were prepared using the Nextera DNA library prep kit (Illumina, Inc., San Diego, CA, USA) according to the manufacturer’s guidelines. Paired-end sequencing (2 × 150 bp) was performed using the NextSeq 500 platform following the manufacturer’s protocols (Illumina, Inc.).

For all software, default parameters were used except where otherwise noted. The numbers of sequencing read pairs generated for strains CNM-CM5793, CNM-CM6106, CNM-CM7691, and CNM-CM5623 were 7,733,508, 5,237,901, 9,555,248, and 6,768,577, respectively. Quality control of the sequence reads was performed with FastQC v0.11.7 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Raw reads were cleaned with Trimmomatic v0.38 (10) with the following parameters: NexteraPE-PE.fa:2:30:10:2:
keepBothReads, SLIDINGWINDOW:4:15, LEADING:3, TRAILING:3, and MINLEN:90. The genome sequences were assembled with SPAdes v3.14.0 (11) employing multiple k-mers (31, 41, 51, 61, 71, 81, and 91) and the --careful parameter. The genomic reads were mapped to the assembly with Bowtie v2.3.4.1 (12), followed by a single iteration.

FIG 1 Maximum-likelihood phylogenetic tree of the four strains sequenced in this announcement (in bold) and related species in section Fumigati, based on the analysis of the four markers beta-tubulin gene (benA), calmodulin gene (CaM), actin gene (act), and RNA polymerase II second-largest subunit gene (RPB2), commonly used in Aspergillus taxonomy (18); sequences were obtained from reference 18 except for the sequences of the four newly sequenced strains, which were obtained by searching for markers of each strain in orthogroups generated by OrthoFinder v2.3.3 (19) using A. fumigatus Af293 (17) as the reference. Each marker was aligned with MAFFT v7.397 (20), and a supermatrix was generated with FASconCAT v1.11 (21). Tree inference was carried out on IQ-TREE v2.0.3 (22) with partitions with the option "MFP+MERGE," which employs ModelFinder to find the best partition scheme. The final tree was edited in FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/). Support values are based on 1,000 bootstrap replicates. A. clavatus (section Clavati) was used to root the tree. Note that the species A. parafelis, A. pseudofelis, and A. felis were merged (synonymized) into a single species, A. felis (18); thus, we infer that the two sequenced strains belong to A. felis.
of Pilon v1.22 (13) used in base correction to fix misassemblies and for gap filling. Overall statistics of the final assemblies were assessed with QUAST v4.6.3 (14). Genome assembly completeness was assessed by examining for the presence of 3,546 universal single-copy orthologs in Eurotiomycetes (eurotiomycetes_odb10) with BUSCO v4.0.4 (15). We used AUGUSTUS v3.3.1 (16) for prediction of protein-coding genes using the single-copy orthologs in Eurotiomycetes (eurotiomycetes_odb10) with BUSCO v4.0.4 (15).

Data availability. The draft genome sequences of A. felis strains CNM-CM5623 and CNM-CM7691 and A. hiratsuke strains CNM-CM5793 and CNM-CM6106 are deposited in GenBank under the accession numbers JACBAE000000000, JACBAG000000000, JACBD000000000, and JACBAF000000000, respectively. The raw reads of A. felis strains CNM-CM5623 and CNM-CM7691 and A. hiratsuke strains CNM-CM5793 and CNM-CM6106 are deposited in the NCBI Sequence Read Archive (SRA) under accession numbers SRR11804853, SRR11804830, SRR11802685, and SRR11802449, respectively. Genome assemblies and raw data are associated with BioProject number PRJNA633131.

ACKNOWLEDGMENTS

This research was funded by Brazilian São Paulo Research Foundation (FAPESP) grant 2016/07870-9 (to G.H.G.) and scholarships 2017/21983-3 and 2019/07526-4 (to R.A.C.D.S.) and by research projects from the Fondo de Investigación Sanitaria (PI13/02145 and PI16/1100035) of the Instituto de Salud Carlos III. J.L.S. and A.R. were funded by the Howard Hughes Medical Institute through the James H. Gilliam Fellowships for Advanced Study program. A.R. also received funding from the National Institutes of Health/National Institute of Allergy and Infectious Diseases (1R56AI146096-01A1). This research was funded by Brazilian São Paulo Research Foundation (FAPESP) grant 2016/07870-9 (to G.H.G.) and scholarships 2017/21983-3 and 2019/07526-4 (to R.A.C.D.S.) and by research projects from the Fondo de Investigación Sanitaria (PI13/02145 and PI16/1100035) of the Instituto de Salud Carlos III. J.L.S. and A.R. were funded by the Howard Hughes Medical Institute through the James H. Gilliam Fellowships for Advanced Study program. A.R. also received funding from the National Institutes of Health/National Institute of Allergy and Infectious Diseases (1R56AI146096-01A1). Computational infrastructure was provided by the Advanced Computing Center for Research and Education (ACCRE) at Vanderbilt University.

REFERENCES

<table>
<thead>
<tr>
<th>Strain</th>
<th>Assembly size (bp)</th>
<th>No. of contigs > 1000 bp</th>
<th>Avg genome coverage (x)</th>
<th>GC content (%)</th>
<th>N50 (bp)</th>
<th>No. of genes</th>
<th>No. (%) of complete and single-copy BUSCOs</th>
<th>No. (%) of fragmented BUSCOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. hiratsuke CNM-CM5793</td>
<td>29,562,918</td>
<td>745</td>
<td>63</td>
<td>50.38</td>
<td>100,935</td>
<td>9,685</td>
<td>3,487 (98.33)</td>
<td>31 (0.87)</td>
</tr>
<tr>
<td>A. hiratsuke CNM-CM6106</td>
<td>29,374,270</td>
<td>922</td>
<td>39</td>
<td>50.37</td>
<td>71,695</td>
<td>9,663</td>
<td>3,466 (97.74)</td>
<td>38 (1.07)</td>
</tr>
<tr>
<td>A. felis CNM-CM5623</td>
<td>31,643,783</td>
<td>663</td>
<td>47</td>
<td>49.93</td>
<td>112,776</td>
<td>10,161</td>
<td>3,494 (98.53)</td>
<td>26 (0.73)</td>
</tr>
<tr>
<td>A. felis CNM-CM7691</td>
<td>31,957,614</td>
<td>559</td>
<td>70</td>
<td>49.93</td>
<td>138,232</td>
<td>10,243</td>
<td>3,503 (98.78)</td>
<td>18 (0.51)</td>
</tr>
</tbody>
</table>

Based on contigs with more than 1,000 bp.