ANALYSIS PRELIMINARY EXAM, AUGUST 2016

VANDERBILT UNIVERSITY

Name:

Directions. Please read carefully the following directions:

- This exam contains eight questions. Choose five, and only five, problems to be graded. Indicate clearly in the table below which problems you have chosen.
- Only the problems you have chosen will be graded.
- If you do not indicate clearly which problems have been chosen, it will be up to the graduate committee to choose them.
- If the statement of a problem is not clear (for instance, you think that the question is ambiguous, the notation is confusing, etc), state clearly how you interpret it, and then solve it accordingly.
- If you invoke a theorem without providing its proof, write its statement clearly.
- While there is not an absolute standard to decide which results you should establish in order to answer the questions versus those that you can quote without providing a proof, you are expected to demonstrate mathematical knowledge of the subject, and provide proofs for the questions that you are being specifically asked.
- By a **measure** it is meant a positive real measure unless stated otherwise.

Question	Points	Grade?
1		
2		
3		
4		
5		
6		
7		
8		
Total:		

Question 1. All measure related statements in this problem refer to the Lebesgue measure, which will be denoted by μ . Let $\{f_j\}_{n=1}^{\infty} \subset L^1(\mathbb{R})$ be a sequence such that $\{f_j\}_{n=1}^{\infty}$ converges almost everywhere to a function f. Assume that for every $\varepsilon > 0$, there exist a measurable set $A \subseteq \mathbb{R}$, a non-negative function $h \in L^1(\mathbb{R})$, and an integer $J \geq 1$ such that

$$\int_{A^c} |f_j| \, d\mu \le \varepsilon$$

for every $j \geq J$, and $|f_j(x)| \leq h(x)$ for every $x \in A$ and every $j \geq J$ (A^c is the complement of A). Prove that $f \in L^1(\mathbb{R})$ and that f_j converges to f in $L^1(\mathbb{R})$.

Question 2. All measure related statements in this problem refer to the Lebesgue measure.

(a) Let $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$, and $g \in L^1(\mathbb{R}^n)$. Prove that the convolution f * g of f and g is well-defined, $f * g \in L^p(\mathbb{R}^n)$, and

$$|| f * g ||_p \le || f ||_p || g ||_1$$
.

(b) Prove that smooth (i.e., infinitely differentiable) functions are dense in $L^p(\mathbb{R}^n)$, $1 \leq p < \infty$. For this you can assume, without proof, that the continuous functions with compact support are dense in $L^p(\mathbb{R}^n)$, $1 \leq p < \infty$. Question 3. All measure related statements in this problem refer to the Lebesgue measure, which will be denoted by μ .

(a) Prove that if $f \in L^1(\mathbb{R}^n)$ and $K \subset \mathbb{R}^n$ is a compact set, then

$$\lim_{|x|\to\infty}\int_{x+K}|f|\,d\mu=0,$$

where

$$x + K = \{x + y \mid y \in K\}.$$

(b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a uniformly continuous function and assume that $f \in L^p(\mathbb{R}^n)$ for some $p \in [1, \infty)$. Prove that

$$\lim_{|x|\to\infty} f(x) = 0.$$

Question 4. All measure related statements in this problem refer to measures on \mathbb{R}^n .

- (a) State the definition of a Borel measure.
- (b) State the definition of the s-dimensional Hausdorff measure on \mathbb{R}^n , $0 \le s \le n$.
- (c) Prove that the s-dimensional Hausdorff measure is a Borel measure. To do this you can state and use, without proof, a well-known criterion to determine when a given measure is Borel.

Question 5. Let X be a locally compact Hausdorff topological space. Denote by $\mathscr{K}(X;\mathbb{C})$ the space of complex valued compactly supported continuous functions on X. Denote by $\mathscr{K}(X,A;\mathbb{C})$ the space of all $f \in \mathscr{K}(X;\mathbb{C})$ such that $\operatorname{supp}(f) \subseteq A$, where $\operatorname{supp}(f)$ denotes the support of f. For each compact set $K \subseteq X$, endow $\mathscr{K}(X,K;\mathbb{C})$ with the topology of uniform convergence. Endow $\mathscr{K}(X;\mathbb{C})$ with the inductive limit of locally convex topologies given by $\mathscr{K}(X,K;\mathbb{C})$ as K ranges over all compact sets of X.

(a) Prove that a linear form μ on $\mathcal{K}(X;\mathbb{C})$ defines a complex Radon measure on X if and only if for each $K \subseteq X$, there exists a constant M_K such that for every $f \in \mathcal{K}(X;\mathbb{C})$ with $\operatorname{supp}(f) \subseteq K$, we have

$$|\mu(f)| \le M_K \sup_{x \in X} |f(x)|,$$

where $|\cdot|$ is the absolute value in \mathbb{C} .

- (b) State the definition of a positive Radon measure.
- (c) Let $\mathcal{K}(X;\mathbb{R})$ be defined as in (a), but with \mathbb{C} replaced by \mathbb{R} . Prove that any positive linear form on $\mathcal{K}(X;\mathbb{R})$ defines a Radon measure on X.

Question 6. Let X be a locally compact σ -compact Hausdorff topological space. Let μ and ν be Radon measures on X. Assume that that ν has a density relative to μ , i.e., that there exists a locally μ -integrable function g on X such that $\nu = g\mu$. Prove that the following holds. For any $f: X \to \mathbb{R}, f \geq 0$, which is μ -integrable and ν -integrable, and for every $\varepsilon > 0$, there exists a $\delta > 0$ such that if h is a function satisfying $0 \leq h \leq f$ and $\int^* h \, d\mu \leq \delta$, then $\int^* h \, d\nu \leq \varepsilon$, where $\int^* d$ enotes the upper integral.

Question 7. Let X be a locally compact metric space. Let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence of Radon measures on X, and μ be a given Radon measure on X. Recall that we say that the sequence $\{\mu_n\}_{n=1}^{\infty}$ converges to μ in the vague topology if

$$\lim_{n\to\infty}\int f\,d\mu_n=\int f\,d\mu$$

for any function f on X that is continuous with compact support. Assume that $\{\mu_n\}_{n=1}^{\infty}$ converges to μ in the vague topology. Prove that for all Borel sets $A \subseteq X$ that are contained in a compact set and that satisfy $\mu(\partial A) = 0$, it holds that $\mu_n(A) \to \mu(A)$ as $n \to \infty$.

Question 8. Let X be a normed vector space and $\{x_n\}_{n=1}^{\infty} \subset X$ a sequence. Recall that the formal series $\sum_{n=1}^{\infty} x_n$ is called convergent if the sequence of the partial sums $\sum_{n=1}^{N} x_n$ converges in X as $N \to \infty$, and absolutely convergent if the sequence of the partial sums $\sum_{n=1}^{N} \|x_n\|$ converges in \mathbb{R} as $N \to \infty$. Prove that X is a Banach space if and only if every absolutely convergent series is convergent.