MODERN ALGEBRA -January, 2016

1. Let p be a prime number. Prove that every group G of order p^3 has an Abelian normal subgroup N such that the factor group G/N is cyclic.

2. (a) Are the groups $\mathbf{Z}_{72} \oplus \mathbf{Z}_{54}$ and $\mathbf{Z}_{18} \oplus \mathbf{Z}_{216}$ isomorphic?

(b) Let A and B be free Abelian groups with bases (a_1, a_2) and (b_1, b_2, b_3) , respectively. Is A isomorphic to the group B/C, where C is the cyclic group generated by $10b_1 - 5b_2 + 15b_3$?

3. Prove that arbitrary group of order 2015 is solvable.

4. Prove that the ring of Gaussian integers $\mathbf{Z}[i] = \{a + bi \mid a, b \in \mathbf{Z}\}$ has no homomorphic images of order 7.

5. Let *E* be the splitting field of a polynomial $f(x) \in \mathbf{Q}[x]$ with $degree(f(x)) \leq 4$. Prove that the Galois group $Gal(E/\mathbf{Q})$ is not a cyclic group of order 6.

6. Suppose the extension E of the field \mathbf{Q} is obtained by adjoining to \mathbf{Q} of finitely many square roots of integers from \mathbf{Z} . Prove that for arbitrary subfield F of E, the extension F/\mathbf{Q} is normal.

7. How many non-isomorphic semisimple complex alebras of dimension 10 do exist ? Explain, please.

8. Let $\Phi : S_3 \to GL(X)$ be an *n*-dimensional complex representation of the symmetric group S_3 , where *n* is an odd integer. Prove that there exists a non-zero vector $x \in X$ which is an eigenvector for every representation operator $\Phi(g), g \in S_3$.