Chapter 2. Alkanes and Cycloalkanes: Introduction to Hydrocarbons

2.1: Classes of Hydrocarbons

molecules that are made up of carbon and hydrogen

1. Aliphatic
a. alkanes - contain C-C single bonds $-\mathrm{C}_{\mathrm{n}} \mathrm{H}_{(2 n+2)}$ saturated hydrocarbons
b. alkenes - contain $\mathrm{C}=\mathrm{C}$ double bonds $-\mathrm{C}_{\mathrm{n}} \mathrm{H}_{(2 \mathrm{n})}$
c. alkynes - contain $\mathrm{C} \equiv \mathrm{C}$ triple bonds $-\mathrm{C}_{\mathrm{n}} \mathrm{H}_{(2 n-2)}$
2. Arenes (aromatics) - cyclic hydrocarbons with alternating C-C single and double bonds

2.2: Electron Waves and Chemical Bonds (please read)

2.3: Bonding in H_{2} : The Valence Bond Model electrons in atomic orbitals combine to form electron pairs in molecular orbitals

(Figure 2.1, p. 60)

Principle of maximum overlap (L. Pauling) - the strength of a bond is directly proportional to the amount of orbital overlap
2.4: Bonding in H_{2} : The Molecular Orbital Model - Molecular orbitals (MOs) are linear combinations of atomic orbitals (AOs)

LCAO: \# of MOs = \# of AOs

2.5: Introduction to Alkanes: Methane, Ethane, and Propane Alkanes have the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$

Methane $\left(\mathrm{CH}_{4}\right)$ CH_{4}
bp $=-160^{\circ} \mathrm{C}$

Ethane
$\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$
$\mathrm{CH}_{3} \mathrm{CH}_{3}$
$\mathrm{bp}=-89^{\circ} \mathrm{C}$

Propane
$\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ bp $=-42^{\circ} \mathrm{C}$

C-C bond length $=153 \mathrm{pm}$
C-H bond length $=111 \mathrm{pm}$
Bond angles between 109-112 ${ }^{\circ}$ (tetrahedral geometry)
(Figure 2.7, p. 64)

2.6: $s p^{3}$ Hybridization and Bonding in Methane

All four $\mathrm{C}-\mathrm{H}$ bond of methane are identical

All four $s p^{3}$ hybrid orbital are equivalent

sp^{3} hybridized orbital are more directional allowing for greater orbital overlap and strong bonds compared to unhybridized orbitals

2.7: Bonding in Ethane

(Figure 2.11, p. 68)

$\boldsymbol{s p}^{3}$ carbon
$\boldsymbol{s p}^{\mathbf{3}}$ carbon

$s p^{3}-s p^{3} \sigma$ bond

$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{C}-\mathrm{C}}=376 \mathrm{KJ} / \mathrm{mol}$

2.8: Isomeric Alkanes: The butanes

2.9: Higher n-Alkanes (please read) 2.10: The $\mathrm{C}_{5} \mathrm{H}_{12}$ Isomers

Isomers: compounds with the same chemical formula, but different arrangement of atoms

Constitutional isomer: have different connectivities (not limited to alkanes)

$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

butanol
straight-chain or normal hydrocarbons

n-butane

n-pentane
branched hydrocarbons C

2.11-2.15: Systematic Nomenclature (IUPAC System)

Prefix-Parent-Suffix
Parent- number of carbons
Prefix- substituents
Suffix- functional groups
Naming Alkanes General Formula: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{(2 n+2)}$
suffix: -ane
Parent Names: (Table 2.2, p. 71)

1	CH_{4}	Methane	CH_{4}	
2	$\mathrm{CH}_{3} \mathrm{CH}_{3}$	Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	
3	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	
4	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$	Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	
5	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	Pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	
6	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	Hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	
7	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$	Heptane	$\mathrm{C}_{7} \mathrm{H}_{16}$	
8	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$	Octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	
9	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	Nonane	$\mathrm{C}_{6} \mathrm{H}_{20}$	30
10	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}$	Decane	$\mathrm{C}_{10} \mathrm{H}_{22}$	

Alkyl substituents (group): carbon chains which are a substructure of a molecule

$\mathrm{R}=$ Rest of the molecule (mainchain)

1	$\mathrm{CH}_{3}-\mathrm{R}$	Methyl
2	$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{R}$	Ethyl
3	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{R}$	Propyl
4	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}-\mathrm{R}$	Butyl
5	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}-\mathrm{R}$	Pentyl
6	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2}-\mathrm{R}$	Hexyl
7	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{2}-\mathrm{R}$	Heptyl
8	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2}-\mathrm{R}$	Octyl
9	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{2}-\mathrm{R}$	Nonyl
10	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{2}-\mathrm{R}$	Decyl

Rules for Systematic Nomenclature of Alkanes

1. Find the parent chain
a. Identify the longest continuous carbon chain as the parent chain.

7 carbons $=$ hept -
b. If more than one different chains are of equal length (number of carbons), choose the one with the greater number of branch points (substituents) as the parent.

2 branch pts.

1 branch pt.

2. Numbering the carbons of the parent chain

a. Number the carbon atoms of the parent chain so that any branch points have the lowest possible number

branch pts. at carbons 3 and 4

branch pts. at carbons 4 and 5
b. If there is branching equidistant from both ends of the parent chain, number so the second branch point has the lowest number.

branch pts. at carbons 3, 6, 7

branch pts. at carbons 3,4,7 33
3. Substituents
a. Identify and number the substituents and list them in alphabetical order.

b. If there are two substituents on the same carbon, assign them the same number.
4. Write out the name
a. Write out the name as a single word:
hyphens (-) separate prefixes
commas (,) separate numbers
b. Substituents are listed in alphabetical order
c. If two or more identical substituents are present use the prefixes: di- for two
tri- for three tetra- for four
note: these prefixes (di-, tri-, tetra-, etc.) are not used for alphabetizing purposes

3- ethyl-4,7-dimethylnonane
5. Complex Substituents (substituents with branching)
a. Named by applying the four previous rules with some modification
b. Number the complex substituent separately from the parent. Begin numbering at the point of attachment to the parent chain
c. Complex substituents are set off by parenthesis.

Naming Cycloalkanes
 General Formula: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{(2 \mathrm{n})}$

1. Parent Chain
a. Use the cycloalkane as the parent chain if it has a greater number of carbons than any alkyl substituent.
b. If an alkyl chain off the cycloalkane has a greater number of carbons, then use the alkyl chain as the parent and the cycloalkane as a cycloalkyl- substituent.

Methylcyclopentane

2-Cyclopropylbutane
2. Numbering the Cycloalkane
a. When numbering the carbons of a cycloalkane, start with a substituted carbon so that the substituted carbons have the lowest numbers (sum).

1,3-Dimethylcyclohexane

辟
-not

-not-
1,3,4-Trimethylcyclohexane 38 $(1+3+4=8)$
2. b. When two or more different substituents are present, number according to alphabetical order.

1-Ethyl-2-methylcyclohexane

-not-
2-Ethyl-1-methylcyclohexane

3. Halogen Substituents

Halogen substituents are treated exactly like alkyl groups:

-F	fluoro-
-Cl	chloro-
-Br	bromo-
-I	iodo-

Degrees of Substitution

Primary $\left(1^{\circ}\right)$ Carbon: carbon that is bonded to only one other carbon Secondary (2°) Carbon: carbon that is bonded to two other carbons Tertiary (3°) Carbon: carbon that is bonded to three other carbons Quarternary (4°) Carbon: carbon that is bonded to four other carbons

1° Hydrogens- hydrogens on a primary carbon. $-\mathrm{CH}_{3}$ (methyl group)
2° Hydrogens- hydrogens on a secondary carbon. $-\mathrm{CH}_{2}$ - (methylene group) 3° Hydrogens- hydrogens on a tertiary carbon. CH (methine group)

2.16: Sources of Alkanes and Cycloalkanes (please read)
2.17: Physical Properties of Alkanes and Cycloalkanes

Non-nonbonding intermolecular attractive forces (van der Waals forces)

1. Dipole-Dipole
2. Dipole - Induced-dipole
3. Induced-dipole - Induced-dipole : small instantaneous dipoles that result from a distortion of the electron clouds. There is an attraction between molecules as result of these temporary dipoles

A
B

Alkanes show: regular increase in bp and mp as the molecular weight increase. Branching lowers the bp or alkanes n-pentane $b p=36.1^{\circ} \mathrm{C}$ iso-pentane $\mathrm{bp}=27.9^{\circ} \mathrm{C}$ neo-pentane $b p=9.5^{\circ} \mathrm{C}$

2-methylbutane 2,2-dimethylpropane

Alkanes have low polarity and are hydrophobic (low water solubility). Solubility deceases are the number of carbons increase

2.18: Chemical Properties: Combustion of Alkanes

Hydrocarbons (C-H bonds) are weak to extremely weak acids
Combustion of hydrocarbons (Oxidation)

$$
\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}+\mathrm{O}_{2} \longrightarrow \mathrm{nCO}_{2}+(\mathrm{n}+1) \mathrm{H}_{2} \mathrm{O}+\text { heat }
$$

Heat $\left(\Delta \mathrm{H}^{\circ}\right)$ of combustion $=\mathrm{H}^{\circ}{ }_{\text {(products) }}-\mathrm{H}^{\circ}{ }_{\text {(reactants) }}$
Measure of relative stability
2.19: Oxidation-Reduction in Organic Chemistry

Oxidation [O]: the loss of electrons.
Increase in the number of $C-X$ bonds, where X is an atom more electronegative than carbon. Decrease in H content.

Reduction [H]: the gain of electrons.
Increase in number of $\mathrm{C}-\mathrm{Y}$ bonds, where Y is an atom less electronegative than carbon. Increase on H content.

2.20: sp ${ }^{2}$ Hybridization and Bonding in Ethylene

2.21: sp Hybridization and Bonding in Acetylene

(Figure 2.22, p. 91)

hybridize one s-orbital and one p-orbitals

leave two p-orbital unhybridized

