

<text>

Table 8.4: Nucleophilicity of common nucleophiles				
<u>nucleophile</u>		relative rate		
I ⁻ , HS ⁻ , RS ⁻		>10 ⁵		
Br ⁻ , HO ⁻ , RO ⁻ , CN ⁻ , N ₃ ⁻		10 ⁴		
NH ₃ , Cl ⁻ , F ⁻ , RCO ₂ ⁻		10 ³		
H ₂ O, ROH		1		
RCO ₂ H		10-2		
Factors that control nucleophilicity: 1. Basicity - Nucleophilicity roughly parallels basicity when comparing nucleophiles that have the same attacking atom				
Nu: relative reactivity: pKa of the conj. acid:	CH ₃ O ⁻ 25,000 15.5	HO ⁻ 16,000 15.7	CH ₃ CO ₂ ⁻ 500 4.7	H ₂ O 1 -1.7
				191

Nucleophilicity usually increases going down a column of the periodic chart. Thus, sulfur nucleophiles are more reactive than oxygen nucleophiles. Halides: $|-\rangle Br-\rangle C|-\rangle F^-$.

Negatively charged nucleophiles are usually more reactive than neutral nucleophiles.

Note that elimination is a competing reaction with nucleophilic substitution; more basic nucleophile can promote elimination

Factors that control nucleophilicity:

2. Solvation: small negative ions are highly solvated in protic solvents; large negative ions are less solvated and are more reactive.

8.6: The S_N1 Mechanism of Nucleophilic Substitution kinetics: first order reaction (unimolecular)

rate = k [R-X] [R-X]= alkyl halide conc.

The overall rate of a reaction is dependent upon the slowest step: rate-limiting step

The nucleophile does not appear in the rate expression- changing the nucleophile concentration does not affect the rate of the reaction.

Must be a two-step reaction.

Unimolecular kinetic for nucleophilic substitution is observed for tertiary alkyl halides

In general, the S_N^1 reactions is not stereospecific - nucleophilic substitution of a chiral tertiary alkyl halide leads to a racemic product.

193

