Chapter 8: Nucleophilic Substitution
8.1: Functional Group Transformation By Nucleophilic
Substitution

/
Nu: /\%C_/X‘ — Nu—Ci\ + X

X=Cl, Br, |
Nucleophiles are Lewis bases (electron-pair donor)

Nucleophiles are often negatively charged (more reactive) and
used as their Li*, Na*, or K* salt

Nucelophiles react with alkyl halide (electrophile) to give
substitution products.

The carbon bearing the halogen (C—X) must be sp® hybridized -
alkenyl (vinyl) and aryl halides do not undergo nucleophilc
substitution reactions
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.. . with cyanide anion affords nitriles
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. . . with azide anion affords alkyl azides
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8.2: Relative Reactivity of Halide Leaving Groups
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The leaving group is usually displaced with a negative charge

The best leaving groups are those with atoms or groups that can
best stabilize a negative charge.

Good leaving groups are the conjugate bases of strong acids
H-X —— H* + X

the lower the pK, of H-X, the stronger the acid.

Increasing reactivity in the nucleophilic substitution reactions

LG: HO-, H,N-, RO- F Cl- Br I

Relative <<1 1 200 10,000 30,000
Reactivity:
pKa: >15 3.1 -3.0 -5.8 -10.4

Charged Leaving Groups: conversion of a poor leaving group to
a good one
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8.3: The Sy2 Mechanism of Nucleophilic Substitution
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If [OH] is doubled, then the reaction rate may be doubled
If [CH;-Br] is doubled, then the reaction rate may be doubled

The rate is linearly dependent on the concentration of two
reactants is called a second-order reaction (bimolecular)

For the disappearance of reactants:
rate = k [CH;Br] [OH]

[CH,Br] = CH;Br concentration
[OH-] = OH- concentration
k= constant (rate constant)

The displacement of a leaving group in an Sy 2 reaction has a
defined stereochemistry (Walden Inversion)
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The rate of the S 2 reaction is dependent upon the

concentration of reactants; thus, the transition state for product

formation must involve both reactants and explain the
stereospecificity .




Potential energy

The mechanism of the S\ 2 reaction takes place in a single step
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L 2. The transition state of the S 2 reaction
CH,CHy has a trigonal bipyramidal geometry; the
Transition state Nu and leavng group are 180° from

one another. The Nu-C bond is ~ half
formed, while the C-X bond is ~half
broken. The remaining three group are
coplanar.

OFL 3. The stereochemistry of
nbe= B £ the carbon is inverted in
e the product as the Nu-C
CH,CH, H,C bond forms fully and the
(S)-2-Bromobutane Il()—C//H + Br~ IeaVing group fU”y departs
CH,CH, with its electron pair.
(R)-2-Butanol
1. The nucleophile (HO~) approaches
the alkyl halide carbon at an angle
of 180° from the C—X bond. This
is referred to as backside attack 188

8.4: Steric Effects and S, 2 Reaction Rates - The rate of

the Sy 2 reaction is governed by steric effects of the alkyl halide.
Steric crowding at the carbon that bears the leaving group slows
the rate of the Sy 2 substitution.
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Steric crowding at the carbon adjacent to the one that bears
the leaving group can also slows the rate of the Sy2 reaction

| Increasing reactivity in the Sy2 reaction >

CHs H H
HiC—C—CH,Br < HiC—C—CHyBr < HSC%‘;?CHZ,Br < HgC—CHy—Br
CHg CHs H
neopentyl isobutyl
ky= 2x10° 0.4 0.8 1
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8.5: Nucleophiles and Nucleophilicity - Nucleophilicity is the
Used to describe the reactivity of a nucleophile. The measure of
nucleophilicity is imprecise.

anionic nucleophiles  Nu: = + RX —> Nu-R + X~
. +
neutral nucleophiles Nu: + RX —— Nu-R + X~

Solvolysis: a nucleophilic substitution in which the nucleophile
is the solvent.

Table 8.4: Nucleophilicity of common nucleophiles

nucleophile relative rate
I, HS-, RS- >10°
Br, HO-, RO, CN-, N5 104
NH;, CI, F-, RCO," 103
H,O, ROH 1
RCO,H 102

Factors that control nucleophilicity:
1. Basicity - Nucleophilicity roughly parallels basicity when
comparing nucleophiles that have the same attacking atom

Nu: CH,O~ HO- CH;CO,~ H,O
relative reactivity: 25,000 16,000 500 1
pKa of the conj. acid: 15.5 15.7 4.7 -1.7




Nucleophilicity usually increases going down a column of the
periodic chart. Thus, sulfur nucleophiles are more reactive
than oxygen nucleophiles. Halides: I- > Br- > CI- > F~.

Negatively charged nucleophiles are usually more reactive than
neutral nucleophiles.

Note that elimination is a competing reaction with nucleophilic
substitution; more basic nucleophile can promote elimination

Factors that control nucleophilicity:

2. Solvation: small negative ions are highly solvated in protic
solvents; large negative ions are less solvated and are more
reactive.

8.6: The Sy1 Mechanism of Nucleophilic Substitution
kinetics: first order reaction (unimolecular)

rate = k [R-X] [R-X]= alkyl halide conc.

The overall rate of a reaction is dependent upon the slowest step:
rate-limiting step

The nucleophile does not appear in the rate expression- changing
the nucleophile concentration does not affect the rate of the
reaction.

Must be a two-step reaction.

Unimolecular kinetic for nucleophilic substitution is observed
for tertiary alkyl halides

In general, the Sy 1 reactions is not stereospecific - nucleophilic
substitution of a chiral tertiary alkyl halide leads to a racemic
product.




The Mechanism of the S 1 Reaction

1. Spontaneous dissociation
of the 3° alkyl halide generates
a carbocation intermediate.
This is the rate-limiting step.
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2. The carbocation reacts with
the nucleophile, in this case

the water solvent. This step is
fast. The product is a protonated

alcohol.

(CH3);COH,,
Br, H,O

o 3
(CH;3);CO ---H --- OH,, Br

Br, H;O

3. Loss of a proton from
the protonated alcohol
affords the 3° alcohol,
which is the overall
product of the reaction.

(CH3);COH,

Reaction coordinate ——>

8.7: Carbocation Stability and Sy1 Reaction Rates
Formation of the carbocation intermediate is rate-limiting. Thus,
carbocation stability greatly influences the reactivity.

The order of reactivity of the alkyl halide in the Sy1 reaction
exactly parallels the carbocation stability
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Tertiary (3°) > Secondary (2°) >

2.5x108
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8.8: Stereochemistry of Sy1 Reactions - is actually a
complicated issue. For the purpose of Chem 220a, sect. 1 the
stereochemistry of the Sy 1 reaction results in racemization. A
single enantiomer of a 3° alkyl halide will undergo Sy1 substitution
to give a racemic product (both possible sterecisomers at the
carbon that bore the halide of the reactant).
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Carbocation Both stereoisomeric
is achiral outcomes result
(3S,75)-3-bromo-3,7-dimethyldecane (358,79)-3,7-dimethyldecan-3-ol (3R,75)-3,7-dimethyldecan-3-ol

8.9: Carbocation Rearrangements in Sy1 Reactions - Since
carbocations are intermediates in Sy1 reactions, products
resulting from carbocation rearrangements are possible

CHg Br CHg
H,0, A
Hsc—c|:—<|:—CHs R HSC_T_CH2CH3
H H OH

8.10: Effect of Solvent on the Rate of Nucleophilic
Substitution - In general, polar solvents increase the rate of
the Sy 1 reaction. Solvent polarity is measured by dielectric
constant (¢) .

O~ o - o) §—

8- Q i T 5o 3" 5- 5- Q
BN _Co . 8" S ~sN7TTe HeC—C=N PloN C. . d*
8*H”  HO*  H” O OH HeC + CHy H N HyC™ “HO*  HiC” “OH
CHs
water formic acid DMSO DMF acetonitrile methanol acetic acid
€= 80 58 47 38 37 33 6

non-polar solvent: hexanes
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In general, polar aprotic solvents increase the rate of the
S\2 reaction. Aprotic solvents do not have an acidic proton.

CH,CH,CH,CH,CH,Br + N,——» CH,CH,CH,CH,CH,Br + Br-

Solvent: CH,OH H,O0 DMSO DMF CH,CN
relative reativity: 1 7 1,300 2,800 5,000

8.11: Substitution and Elimination as Competing Reactions
Nucleophiles are Lewis bases. They can also promote
elimination reactions of alkyl halides rather than substitution

/_\R Sy2
_ " e _
HCO k\x, HsCO—CH,R
1° alkyl
halide
- H R elimination H R
H,CO M - :[ + HsCOH
Ry (\x R H
2° or 3° alkyl

halide




Elimination is a competitive reaction with nucleophilic substitution.

Sy2 vs E2
For primary alkyl halides S\2 is favored with most nucleophiles

E2 is favored with “bulky” bases (t-butoxide)

CHjz

| _ . .
H,C—C—0 t-butoxide is too bulky to undergo S2
CHs
CH’§H\ / Sn2 CHy  CcH
3 H/ \ _ A _A— H
HoC o LC—X —X—> HC C-0-C,
| CHj
CHs
ch H~ E2 Hic CHs
3 H > Il + H3C—C—OH
HeC—C—0 "~ O X w O ’ CH,

Secondary halides:
E2 is competitive with Sy2 and often gives a mixture of

substitution and elimination products
S\2 is favored with nucleophiles that are weak bases -
cyanide ion, azide ion, thiolate ion, halide ion

Tertiary Halides:
E2 elimination occurs with strong bases such as

HO-, RO-, H,N- (strongly basic conditions)

E1 elimination occurs with heat and weak bases such as
H,O or ROH. (neutral conditions)

The E1 elimination product is often a minor product with the
major product arising from Sy1 reaction.

S\2 reactions does not occur with 3° halides
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8.12: Nucleophilic Substitution of Alkyl Sulfonates
Good leaving groups are the conjugate bases of strong acids

Leaving group  conjugate acid PK,

F- HF 3.5
H,O H,O* -1.7
Cl- HCI -7
Br- HBr -9
I- HI -10

f 2
HacOﬁ—O - HacO—ﬁ—OH -2.8
) 0

Sulfonates are excellent leaving groups.

p-toluenesulfonate ester (tosylate): converts an alcohol into
a leaving group; abbreviated as Ts or Tos

9
Cl—S=0
-~/ 0
C—OH + E— —-0— H
7] -77° (o
(o]
CHj tosylate
o O
\ I . I
Nu /\>C_/C)*_ﬁ CH, Nu—C.__ + HsC ﬁ:O
/ o o
(0]
Tos-Cl HBC)J\O' 0\\
& R & —_— ) H + TosO~
H O0—H pyridine H '0—Tos O/\CH
3
[G]D= +33.0 [Ct]D= +31.1 [a]Dz -7.06

N H C)kO' R Tos-Cl 5
- H ©o 3 ) B S
TosO " + ) - O H oH
! pyridine [

[odp=-7.0 [o]p=-31.0 [o]p=-33.2
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8.13: Looking Back: Reactions of Alcohols with Hydrogen
Halides

3° alcohols proceed by an Sy1 mechanism- racemization occurs
through an achiral 3° carbocation

HyG, OH CHs HsC_Br
achiral
2° alcohols proceed by both an Sy1 and Sy 2 mechanism-
partial scrambling of stereochemistry

chiral but racemic

\/V\ES?H = \/\/\B/r(; + W\iSB\r
(S R (S,
(87 %) (13 %)
Sn2 Br H
Syt ~74% Wv(’%\
~26 % of the time (74 %)
of the time
H Br Br H H Br
a G s
achiral (13 %) (13 %)

We will assume that 2° centers proceed by an S 2 mechanism
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