Summary of Nucelophilic Substitution Reactions

	S _N 1	S _N 2
Mechanism	Two Steps Nu: R-L → R ⁺ → R Nu	One Step R L + Nu: → R Nu
Kinetics	1st order (unimolecular) rate= k [R-L] lonization = rate determining step (1st step), 2nd step does not affect the rate	2nd Order (bimolecular) rate= k [R-L] [Nu:]
Stereochemistry	Racemization	Inversion
Carbon (sp3) Electrophile	Favored by electrophiles which can best stabilize a carbocation. alkyl halide reactivity: 3°> 2°>> 1°	Steric hinderance controlled alkyl halide reactivity: CH ₃ > 1°> 2 no reaction for 3°
Nucleophile	Nature of the nucleophile has no affect on rate	Favored by more reactive nucleophiles RS ⁻ > NC ⁻ > I ⁻ > RO ⁻ > HO ⁻ > CI ⁻
Leaving Groups	Favored by better leaving groups	-OTos > -I > -Br > -Cl > -OH ₂
Solvent Effect	Favored by polar, ionizing solvents. Solvolysis: polar protic (H-bonding) solvents act as the nucleophile	Favored by polar, aprotic solvents. CH ₃ CN > DMF > DMSO Disfavored by polar protic (H-bonding) solvents
Competitive Reactions	Elimination (E1) Carbocation rearrangements	Elimination (E2) by strongly basic nucleophiles