

18.4: Acidity of Carboxylic Acids. The pK_a of carboxylic acids typically ~ 5. They are significantly more acidic than water or alcohols.

Bronsted Acidity (Ch. 1.13): Carboxylic acids transfer a proton to water to give H_3O^+ and carboxylate anions, RCO_2^-

18.6: Ionization of Substituted Benzoic Acids. The charge of the carboxylate ion cannot be delocalize into the aromatic ring. Electron-donating groups decrease the acidity. Electron-withdrawing groups increase the acidity. (Table 18.3, p. 745)

18.10: Sources of Carboxylic Acids. Summary of reaction from previous chapters that yield carboxylic acids (Table 18.4, p. 791)

- a. Side-chain oxidation of alkylbenzene to give benzoic acid derivatives (Ch. 11.12): reagent: K₂Cr₂O₇, H₃O⁺-or- KMnO₄
- Dxidation of primary alcohols (Ch. 15.9) reagent: K₂Cr₂O₇, H₃O⁺
- c. Oxidation of aldehydes (Ch. 17.14) reagent: $K_2Cr_2O_7$, H_3O^+

152

18.11: Synthesis of Carboxylic Acids by the Carboxylation of Grignard Reagents. Grignard reagents react with CO₂ to afford carboxylic acids. An additional carbon (the CO₂H group, which is derived from CO₂) is added to the Grignard reagent. R-Br $\xrightarrow{Mg(0)}$ R-MgBr $\xrightarrow{CO_2}$ \xrightarrow{O} $\xrightarrow{H_3O^+}$ $\xrightarrow{H_3O^+}$ \xrightarrow{O} $\xrightarrow{R-C-OH}$

Grignard reagents are strong bases and strong nucleophiles. As such, they are incompatible with acidic (alcohols, thiols, amines, carboxylic acid, amides,) or electrophilic (aldehydes, ketones, esters, nitrile, halides) groups. ¹⁵³

18.15: Intramolecular Ester Formation: Lactones. Lactones are cyclic esters derived from the intramolecular esterification of hydroxy-carboxylic acids. 4-Hydroxy and 5-hydroxy acids cyclize readily to form 5- and 6-membered ring (γ and δ) lactones.

¹*H* NMR: The $-CO_2H$ proton is a broad singlet near $\delta \sim 12$. When D_2O is added to the sample the $-CO_2H$ proton is replaced by D causing the resonance to disappear (same for alcohols). The $-CO_2H$ proton is often not observed.

¹³C NMR: The chemical shift of the carbonyl carbon in the ¹³C spectrum is in the range of ~165 – 185. This range is distinct from the aldehyde and ketone range (~190 – 220)

