23.24: Glycosides: Synthesis of Oligosaccharides

Mechanism 23.3: p. 980

23.25: Glycobiology (please read)

Glycoproteins: glycosides of proteins

Chapter 24: Lipids. Hydrophobic (non-polar, soluble in organic solvent), typically of low molecular weight compounds of organic origin.

- fatty acids and waxes
- essential oils
- many vitamins
- hormones (non-peptide)
- components of cell membranes (non-peptide)

Share a common biosynthesis that ultimately derives their carbon source from glucose (glycolysis)

$$
\text { Glucose } \rightarrow \text { pyruvate } \rightarrow \text { lactate }
$$

24.1: Acetyl Coenzyme A. AcSCoA is a thioester.

$$
\begin{aligned}
& \text { R=H, HSCoA } \\
& \text { R= acetyl, AcSCoA }
\end{aligned}
$$

Fig 24.1, p. 993

Pyruvate dehydrogenase: Multi-enzyme complex that converts pyruvate to AcSCoA.

Acetyl CoA is a thioester. Thioesters are more reactive toward nucleophilic acyl substitution than esters, but considerably less reactive than acid chlorides and anhydrides.

Thioester enolize more readily than esters. The enol can react with electrophile to afford α-substitution products

24.2: Fats, Oils, and Fatty Acids. Fatty acids: refers to long, straight-chain saturated and unsaturated carboxylic acids, typically between $\mathrm{C}_{12}-\mathrm{C}_{20}$ (Table 24.1, p. 995).
saturated fatty acids:

$$
\begin{array}{ll}
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CO}_{2} \mathrm{H} & \mathrm{n}=10 \text {, lauric acid }\left(\mathrm{C}_{12}\right) \\
& \mathrm{n}=12, \text { myristic acid }\left(\mathrm{C}_{14}\right) \\
& \mathrm{n}=14, \text { palmitic acid }\left(\mathrm{C}_{16}\right) \\
& \mathrm{n}=16, \text { steric acid }\left(\mathrm{C}_{18}\right)
\end{array}
$$

unsaturated fatty acid
Coleic acid
polyunsaturated fatty acids (PUFA)

C_{18}, linolenic acid (18:3)
\sim_{\sim}^{6}
C_{18}, linoleic acid (18:2)
(20:4)

Fats and Oils: Triglycerides (triaceylglycerols) are tri-esters of glycerol (1,2,3-trihydroxypropane) and fatty acids.

Soaps: sodium \& potassium salts of fatty acid produced from the saponification (base hydrolysis) of animal fats (glycerides)

Soaps have a hydrophilic, polar "head group" (carboxylate salt) and a hydrophobic, non-polar "tail" (Ch. 18.7).

Fatty acid amides (FAA):

Anandamide an ethanolamine amide of arachidonic Acid (C_{20})

tetrahydrocannabinol
24.3: Fatty Acid Biosynthesis. Fatty acid biosynthesis is performed by a cluster of discrete enzymes in bacteria, and a very large multi-protein assembly in animals (fatty acid synthase, FAS). The fatty acid is attached to an acyl carrier protein (ACP), while other proteins perform an iterative two-carbon chain extension reaction that will yield the fatty acid.

Fatty acid synthase chain extension reaction:
Ketosynthase (KS)

CoA-SH +

Ketoreductase (KR): NADPH (nicotinamide adenine diphosphate phosphate) is a nucleophilic hydride $\left(\mathrm{H}^{-}\right)$donor (reducing agent)

Dehydratase (DH):

Enoyl Reductase (ER)

Iterative two-carbon chain extension

C_{6}

Thioesterase (TE)

24.4 Phospholipids.

Glycerophospholipids are important components of cell

 membranes. Nonpolar tails aggregate in the center of a bilayer ionic head is exposed to solvent.

Phosphatidylcholine (lechtins)
24.5: Waxes. esters of long chain fatty acids $\left(\mathrm{C}_{16}-\mathrm{C}_{36}\right)$ with long chain alcohols ($\mathrm{C}_{24}-\mathrm{C}_{36}$)

$$
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CO}_{2}-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CH}_{3}
$$

24.6: Prostaglandins. (eicosanoids) C_{20} compounds derived from arachidonic acid and related fatty acids
hormone: (Greek, horman, to set in motion) chemical messengers from one cell to another, that acts as a signal for a biochemical event.

COX-1 is a constitutive enzyme that is expressed in virtually all mammalian cells
COX-2 is an inducible enzyme that is expressed as a results of a biochemical response; expressed in phagocytes (macrophages) as part of an inflammation response.

NSAIDs: non-steroidal anti-inflammatory drugs
Aspirin, ibuprofren, and naproxen are non-selective inhibitors of COX

Celebrex, vioxx, and brextra are selective inhibitors of COX-2 (coxibs)

Thromboxanes: named for their role in thrombosis, the formation of a clot inside a blood vessel

Leukotrienes

24.7: Terpenes: The Isoprene Rule. Isoprenoids - C_{10} (terpenes), C_{15} (sesquiterpenes) and C_{20} (diterpenes) compounds from plants; essential oils (Table 24.2; p. 1006)

Ruzicka isoprene rule: terpenoids are derived from "isoprene units" $\left(\mathrm{C}_{5}\right)$

isoprene (2-methyl-1,3-butadiene)

(+)-Carvone (caraway seeds)
(-)-Carvone (spearmint)
(+)-limonene (oranges) (-)-limonene (lemons)

Camphour

β-pinene

α-pinene

Grandisol

The precursor to C_{10} terpenoids (monoterpenes) is geranyl diphosphate, which consists of two C_{5} "isoprene units" that are joined "head-to-tail"

C_{15} sesquiterpenoids are derived from farnesyl diphosphate, which consists of three C_{5} "isoprene units" that are joined "head-to-tail"

C_{20} diterpenoids are derived from geranylgeranyl diphosphate, which consists of four C_{5} "isoprene units" that are joined "head-to-tail"

C_{25} sesterpenoids are derived from geranylfarnesyl

diphosphate, which consists of five C_{5} "isoprene units" that are joined "head-to-tail"

C_{30} triterpenoids and steroids are derived from squalene, which consists of two C_{15} farnesyl units" that are joined "tail-to-tail"

C_{40} tetraterpenoids are derived from phytocene, which consists of two C_{20} geranylgeranyl units" that are joined "tail-to-tail"

cedrane

Lanosterol

β-carotene

24.8: Isopentyl Diphosphate: The Biological Isoprene Unit. Mevalonic acid is the biosynthetic precursor to the actual C_{5} "isoprene units," which are isopentyl diphosphate (IPP, tail) and dimethylallyl diphosphate (DMAPP, head)
24.10: The Pathway from Acetate to Isopentenyl Diphosphate. Mevalonate Pathway

Conversion of mevalonic acid to IPP and DMAPP

24.9: Carbon-Carbon Bond Formation in Terpene Biosynthesis.

Conversion of IPP and DMAPP to geranyl-PP and farnesyl-PP

24.11: Steroids: Cholesterol

Cholesterol biosynthesis (mechanism24.1: p. 1015)
part a: the cyclization

Cholesterol biosynthesis, part b: the 1,2-shifts

24.12: Vitamin D. (please read)

24.13: Bile Acids. (please read)

24.14: Corticosteroids. (please read)

24.15: Sex hormones - (please read)

Androgens: male (slugs and snails, and puppy-dogs' tails)

Estrogens: female (sugar and spice and everything nice)

Estrone

Estradiol

Progesterone

Ethynylestradiol
24.16: Carotenoids - (please read) derived from phytocene (C_{40}) (please read)

