Chapter 22: Phenols. Alcohols contain an OH group bonded to an sp³-hybridized carbon. Phenols contain an OH group bonded to an sp²-hybridized carbon of a benzene ring

22.1: Nomenclature (please read)

22.2: Structure and Bonding (please read)

22.3: Physical Properties (please read). Like other alcohols the OH group of phenols can participate in hydrogen bonding with other phenol molecules and to water.

22.4: Acidity of Phenols. Phenols are more acidic than aliphatic alcohols

a. Halogenation. Phenols are so highly activated that they often react with Br₂ and Cl₂ without a catalyst.

b. Nitration.

c. Sulfonation.

22.15: Spectroscopic Analysis of Phenols. Largely the same as for alcohols (Ch 15.14).

IR: broad O-H stretch ~3600 cm⁻¹. C-O single bond stretch is ~1200-1250 cm⁻¹, which is shifted from that of aliphatic alcohols (1000-1200 cm⁻¹).

¹*H NMR*: Like aliphatic alcohols, the O-H proton resonance is observed over a large chemical shift range as a broad singlet.

 ^{13}C NMR: The *sp*²-carbon directly attached to the OH has a chemical shift of ~150-160 ppm.

