Chemistry 220b, Section 1 Exam 2 (100 pts) Thursday, February 26, 2015 Chapters 13, 15-19

Name	
------	--

Write and sign the VU Honor Pledge:

I pledge on my honor that I have neither given nor received unauthorized aid on this examination

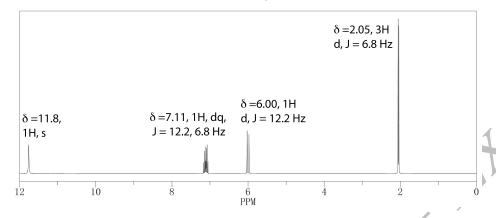
I. M. Honest

signature

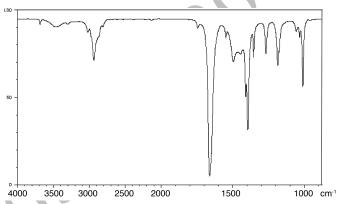
This exam is closed book and closed notes

NOTE: It is difficult for me to give you partial credit if you do not show your work!

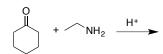
Neatness counts


Stereochemistry counts are indicated

Good Luck !!


1							2
H							He
Hydrogen 1.00794							Helium 4.003
3	4	5	6	7	8	9	10
Li	Be	В	C	N	O	F	Ne
Lithium 6.941	Beryllium 9.012182	Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15,9994	Fluorine 18.9984032	Neon 20.1797
11	12	13	14	15	16	17	18
Na	Mg	Al	Si	P	S	Cl	Ar
Sodium 22.989770	Magnesium 24.3050	Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948

- 1-15. Multiple Choice. Choose the <u>best</u> answer for each of the following questions. (60 pts)
- 1. Which structure is most consistent with the following ¹H NMR spectrum?



- a) OH
- b) OH
- c) OH
- d) o
- 2. Which structure is most consistent with the following IR spectrum?

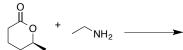
- a) o
- c) o OCH3
- d) O

3. What is the product of the following reaction?

a)

b)

b)

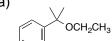


c)

d) N

4. What is the product of the following reaction?

a)

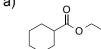


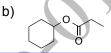
b)

5. What is the product of the following reaction?

$$\begin{array}{c} O \\ O \\ O \\ C \\ H_2 \\ C \\ H_3 \\ \hline \\ (excess) \\ \hline \\ then \\ H_3 \\ O^+ \\ \end{array}$$

a)




c)

6. What is the product from the following reaction?

a)

b)

c)

d)

7. What is the product from the following reaction?

a)

b)

8. What is the best reagent for the following reaction?

- a) H₂NNH₂, KOH, H₂O
- c) H₂, Pd/C
- b) LiAlH₄, THF, then H_3O^+
- d) $_{HO}$ OH , H^+

9. Which combination of reactants will give (E)-3-methyl-3-hexene as the product?

- d) all of the above; i.e., **a**, **b**, and **c** will all afford (*E*)-3-methyl-3-hexene
- 10. What is the best reagent for the conversion of a primary amide to a nitrile?

$$\bigvee_{NH_2}^{O}$$
 \longrightarrow $\bigvee_{C \in N}^{C \setminus N}$

- a) P₄O₁₀, heat
- b) H₃O⁺, heat
- c) H₂, Pd/C
- d) NaCN, then H₃O⁺
- 11. Which reaction or reaction sequence does not affords phenylacetic acid?

- d) none of the above; i.e., a, b, and c are all afford phenylacetic acid
- 12. What is the order of reactivity, from most reactive to least reactive, for the following reaction?

a)
$$H_{3}C \stackrel{O}{\downarrow}_{OH} > H_{3}C \stackrel{O}{\downarrow}_{Cl} > H_{3}C \stackrel{O}{\downarrow}_{OH_{3}} > H_{3}C \stackrel{O}{\downarrow}_{OCH_{3}}$$

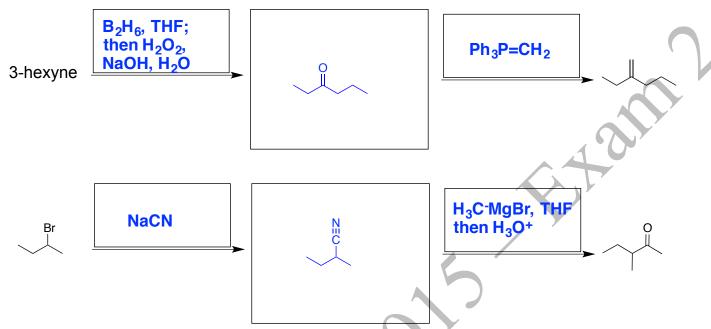
b)
$$H_{3}C \stackrel{\circ}{\downarrow}_{Cl} > H_{3}C \stackrel{\circ}{\downarrow}_{OCH_{3}} > H_{3}C \stackrel{\circ}{\downarrow}_{O} \stackrel{\circ}{\downarrow}_{CH_{3}} > H_{3}C \stackrel{\circ}{\downarrow}_{OH}$$

d)
$$\bigcup_{H_3C}$$
 \bigcup_{O} \bigcup_{CH_3} \bigcup_{H_3C} \bigcup_{CI} \bigcup_{H_3C} \bigcup_{OCH_3} \bigcup_{H_3C} \bigcup_{OCH_3} \bigcup_{OCH_3} \bigcup_{OCH_3} \bigcup_{CI} \bigcup_{OCH_3} \bigcup_{O

13. Arrange the following carboxylic acids from the highest pK_a value to lowest pK_a value.

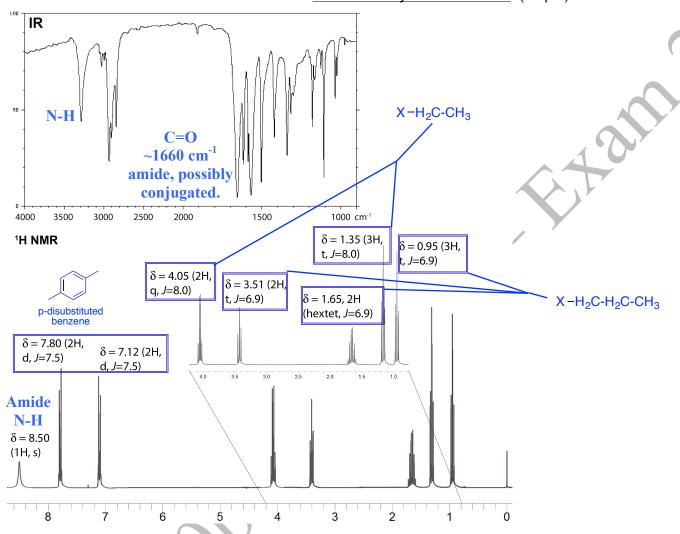
a)
$$\bigcirc$$
 OH > \bigcirc OH > \bigcirc OH > \bigcirc OH

c)
$$\downarrow$$
 OH \rightarrow FOH \rightarrow OH \rightarrow OH OH


d)
$$\downarrow$$
 OH \downarrow OH \downarrow OH \downarrow OH

14. Which structure is an intermediate in the saponification of an ester?

- a) HO⁺
- b) HO OCH₃
- c) OCH3
- d) -0 H OCH3
- 15. Which structure is not an intermediate in the formation of a ketal?


-) † , F
- с) но о он
- d) H-000

16. The following transformations cannot be done in a single step. Complete the following by providing the correct reagents and the structure of the intermediate. (18 pts)

17. Give a complete, stepwise mechanism for the acid-catalyzed reaction of propionic acid and methanol to afford methyl propionate. (12 pts)

18. A molecule with the formula $C_{12}H_{17}NO_2$ has the IR, ¹H and ¹³C NMR spectra shown below. Provide a structure that is consistent with the data. *Please circle your final answer*. (10 pts)

 ^{13}C NMR: δ 168.1, 154.2, 132.5, 125.8, 114.5, 64.6, 41.5, 23.1, 14.8, 11.2

¹³C NMR: § 168.1 : C=O, ester, acid, amide (acid is eliminated since there is no OH in IR)

Problem 1-15:______ (60 pts)

16:______ (18 pts)

17:______ (12 pts)

18:______ (10 pts)

Total out of 100: