Chemistry 220b, Section 1 Exam 1 (100 pts) Tuesday, February 3, 2015 Chapters 13, 15, 16

Name	

Write and sign the VU Honor Pledge:

I pledge my honor that I have neither given nor received aid on this examination

I. M. Honest

signature

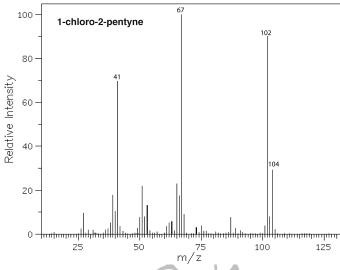
This exam is closed book and closed notes

NOTE: It is difficult for me to give you partial credit if you do not show your work!

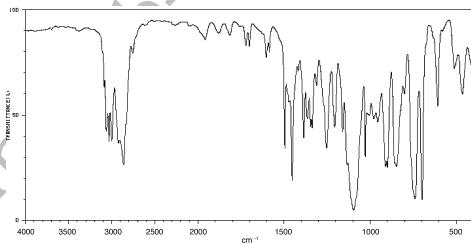
Neatness counts

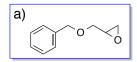
Stereochemistry counts are indicated

Good Luck !!

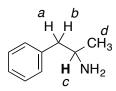

1								2
H								He
Hydrogen 1.00794								Helium 4.003
3	4		5	6	7	8	9	10
Li	Be		В	C	N	O	F	Ne
Lithium 6.941	Beryllium 9.012182		Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
11	12		13	14	15	16	17	18
Na	Mg		Al	Si	P	S	Cl	Ar
Sodium 22.989770	Magnesium 24.3050	į.	Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948

1 – 15. Multiple Choice. Choose the <u>best</u> answer for each of the following questions (60 pts).

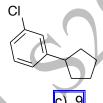

- 1. Calculate the degrees of unsaturation for the molecular formula C₉H₁₃BrN₂O₂.
 - a) 2


b) 3

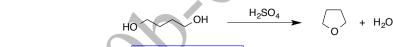
- c) 4
- d) 5
- 2. Which of the following statements is true about the mass spectrum of 1-chloro-2-pentyne (MW = 102)?



- a) The ion at m/z = 102 is the parent ion.
- b) The ion at m/z = 104 is due to the 37 Cl isotope.
- c) The ion at m/z = 67 is the molecular ion.
- d) All of the above; i.e., a, b, and c are all true.
- 3. Which structure is most consistent with the following IR spectrum?



- 4. Which of the following is true about ultraviolet-visible (UV-vis) spectroscopy?
 - a) There is a linear relationship between the analyte concentration and the intensity of its UV-vis absorbance(s).
 - b) Increasing conjugation will result in absorption of higher energy UV-vis radiation.
 - c) A wide range of functional groups have characteristic UV-vis absorbances.
 - d) None of the above; i.e., a, b, and c are all not true.
- 5. What is the multiplicity of proton c in the ¹H NMR spectrum if the coupling constants are $J_{ac} = 7.8$, $J_{\rm bc}$ = 6.7, and $J_{\rm cd}$ = 6.0 Hz? Proton c does not couple with the NH₂ protons because of exchange.


- a) triplet of quartets
- b) quartet
- c) doublet of doublet of quartets
- d) sextet
- 6. How many ¹³C NMR resonances are expected for the compound below?

a) 6

b) 7

- d) 11
- 7. Tetrahydrofuran can be formed from 1,4-butandiol and a strong acid catalyst. Which of the following is not an intermediate in the reaction mechanism?

- none of the above; i.e., a, b, and c are all intermediates in the reaction
- 8. Which reagent will react with (R)-2-ethyloxirane to give an optically inactive product?

- a) H₃C–MgBr, THF, then H₃O[⁺]
- b) H₂SO₄, H₃COH
- c) LiAlH₄, THF, then H₃O⁺
- d) none of the above; i.e., a, b, and c will all give an optically active product

9. Choose the best reagent for the following reaction.

- a) O_3 , then $(H_3C)_2S$ b) $\left(\begin{array}{c} \\ \\ + \\ \\ \end{array} \right) Cr_2O_5^{-2}$, CH_2CI_2 c) $K_2Cr_2O_7$, H_3O^+ d) LiAlH₄, THF; then H_3O^+

10. Which of the following is a feasible synthesis of butanal?

a)
$$O_{OH}$$
 LiAlH₄, THF O_{H} then H_3O^+

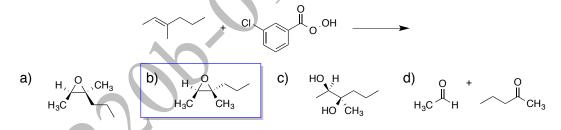
d)
$$\stackrel{OH}{\longrightarrow}$$
 $\stackrel{NalO_4}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{H}{\longrightarrow}$

11. Which of the following is a feasible synthesis of phenyl phenylmethyl ether?

c)
$$\stackrel{O}{\stackrel{C}{\stackrel{}}}$$
 OH $\stackrel{H_3O^+}{\stackrel{}}$ OH $\stackrel{a) LiAlH_4, THF}{\stackrel{}}$ O

d)
$$\stackrel{O}{\stackrel{C}{\stackrel{}{\stackrel{}}{\stackrel{}}}}_{H}} \stackrel{a)}{\stackrel{b)}{\stackrel{}{\stackrel{}}{\stackrel{}}}}_{H_3O^+}} \stackrel{MgBr}{\longrightarrow} \stackrel{PDC, CH_2Cl_2}{\longrightarrow} O$$

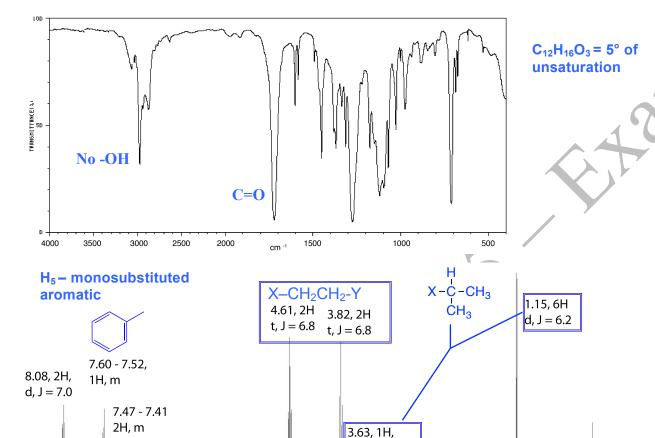
12. Which is expected to be the major product(s) from the reaction of ethylene oxide and HI?


- a) _{HO}
- b) H₃C–OH + H₃C–I
- c) _{H3}C-O-CH₂-1
- d) No reaction

13. Which is expected to be the major product from the following reaction?

14. Choose the best reagent for the following reaction.

a)
$$H_3$$
C-MgBr, THF, then H_3 O⁺ b) H_2 SO₄, H_2 O
c) OsO₄ d) LiAl H_4 , THF, then H_3 O⁺


15. Which is the expected product from the reaction of *m*-chloroperoxybenzoic acid with (*E*)-3-methyl-2-hexene? Note that the products are racemic.

16. The following transformations cannot be done in a single step. Complete the following by providing the correct reagents and the structure of the intermediate. (18 pts):

17. Provide either the reagent, starting substrate, or product for the following reactions. (12 pts)

18. The IR, ¹H and ¹³C NMR spectroscopic data for a molecule with a formula **C**₁₂**H**₁₆**O**₃ is given below. Provide a structure that is consistent with the data. *Please circle your final answer.* (10 pts)

 $^{13}\text{C NMR: }\delta$ 165.6 C=O, ester, acid, amide (ester since there is no OH in IR and no N in the formula 132.9 130.5 129.7

 δ (ppm)

septet, J = 6.2

128.3 72.0 66.0 64.6 22.1

Name			
		2222	~£ 0

page 8 of 8

Problem

1-15:_____ (60 pts)

16:_____ (18 pts)

17:_____ (12 pts)

18:_____ (10 pts)

Total out of 100: