Chemistry 220b, Section 1 Name _____ Exam 3 (100 pts) Thursday, April 5, 2012 Chapters 13, 15-23 Write and sign the VU Honor Pledge: I pledge my honor that I have neither given n received aid on this examination I. M. Honest signature This exam is closed book and closed notes NOTE: It is difficult for me to give you partial credit if you do not show your work! Neatness counts Stereochemistry counts are indicated Good Luck !! 2 1 Н He Helium Hydrogen 1.00794 4.003 3 4 5 6 7 8 9 10С Ν Ne B 0 F Li Be Beryllium Boron Carbon Oxygen Lithium Nitrogen Fluorine Neon 15.9994 18.9984032 20.1797 6.941 9.012182 10.811 12.0107 14.00674 13 18 11 12 14 15 16 17 Si Р S Cl Na Al Mg Ar Chlorine Aluminum Silicon Phosphorus Sulfur Sodium Magnesium Argon

2.989770

24.3050

26.981538

28.0855

30.973761

32.066

35.4527

39.948

Na	am	ne
----	----	----

1-10. Multiple Choice. Choose the *best* answer for each of the following questions. (40 pts)

1. What is the final product of the following series of reactions?

- page 3 of 8
- 6. Which of the following substituted phenols is expected to have the highest pK_a value?

8. Which Haworth formula represents the β -D-pyranose form of D-idose?

9. Which of the following carbohydrates affords an optically active product upon reaction with NaBH₄?

a) 0 H H-OH HO-H HO-H HO-H H-OH CH₂OH

7.

b) o_{in}

H

H-

Н·

d) a, b, and c all afford optically an active product upon reaction with NaBH₄

Name

Name

- page 5 of 8
- 13. Provide the reagents(s) required to complete the following transformations. (12 pts)

14. Synthesize 3-(2-methylpropyl)-phenol from benzene. (10 pts)

15. Provide a complete, step-wise mechanism for the acid-catalyzed conversion of cyclopentanone to 2-bromocyclopentanone. (10 pts)

¹³C NMR: δ 142.1, 128.5, 127.3, 125.7, 54.2, 40.8, 35.4, 33.2

211	S
Problem	1-10: (40 pts)
	11: (6 pts)
	12: (12 pts)
	13: (12 pts)
	14: (10 pts)
	15: (10 pts)
	16: (10 pts)

Total out of 100: _____

Name_____

page 8 of 8