
α - Amino Acid

20 common amino acids

19 are 1°-amines, 1 (proline) is a 2°-amine 19 amino acids are "chiral"

1 (glycine) is achiral ($\mathrm{R}=\mathrm{H}$)
The configuration of the "natural" amino acids is L

 D-glyceraldehyde	 L-glyceraldehyde	 L-alanine	
 D-arabinose	 L-arabinose	 L-theronine (2S,3R)	 L-isoleucine $(2 S, 3 S)$
			2

Amino acids exist as a zwitterion: a dipolar ion having both a formal positive and formal negative charge (overall charge neutral).

Amino acids are amphoteric: they can react as either an acid or a base. Ammonium ion acts as an acid, the carboxylate as a base.

Isoelectric point (pl): The pH at which the amino acid exists largely in a neutral, zwitterionic form (influenced by the nature of the sidechain)

Bronsted Acid: proton donor (H^{+}) weak acids (and bases) do not fully dissociate

$$
\begin{aligned}
& \mathrm{H}-\mathrm{A} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} \\
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{H}-\mathrm{A}]} \text { acid dissociation constant } \\
& \mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
\end{aligned}
$$

Henderson-Hasselbalch Equation: Relates $\mathrm{p} K_{\mathrm{a}}$ with pH

$$
\mathrm{pH}=\mathrm{pK} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{H}-\mathrm{A}]}
$$

when $\left[\mathrm{A}^{-}\right]=[\mathrm{H}-\mathrm{A}]$, the $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$

For a review see: http://themedicalbiochemistrypage.org/

Isoelectric point (pl): The pH at which the amino acid exists largely in a neutral, zwitterionic form

6

Amino acids are classified according to their sidechains

1. Hydrophobic:
(S)-(+)-Alanine (Ala, A)

 (S)-(+)-Valine (Val, V)
$(2 S, 3 S)-(+)$-Isoleucine (IIe, I)
(S)-(-)-Leucine (Leu, L)

2. Uncharged polar groups

3. Acidic

4. Basic

(S)-(+)-Lysine (Lys, K)
pKa~10.5

(S)-(-)-Histidine (His, H)
pKa~6.0

(S)-(+)-Arginine (Arg, R)
pKa~12.5

Amino Acid Synthesis:

New unnatural amino acids with altered properties new therapeutics (lead compounds) mechanistic probes

L-DOPA

Traditional Amino Acid Syntheses:

Strecker Synthesis

$$
\begin{aligned}
& \xrightarrow[\mathrm{R}-\mathrm{C}-\mathrm{H}]{\mathrm{O}} \xrightarrow{\Theta_{\mathrm{CN}}} \xrightarrow[\substack{\mathrm{O} \\
\text { cyanohydrin }}]{\mathrm{NC}}
\end{aligned}
$$

Amidomalonate Synthesis

Reductive Amination

These are racemic syntheses!!
Resolution: separation of enantiomers

13

Asymmetric Synthesis of Amino Acids

H_{2}, Pd / C - heterogeneous catalysis H_{2}, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}$ (Wilkinson' s catalys

- homogeneous catalysis

14

Peptide Coupling: need for protecting groups

Ala
Val

Ala - Val
(A - V)
selectively remove P_{n} $\xrightarrow{\mathrm{n}^{2}}$

Phe - Ala - Val
$(F-A-V)$

Ph
(F-A-V)
(A V)
$\xrightarrow{\text { Repeat }}$
peptide synthesis

C-protecting groups (Lloyd-Williams et al., p. 11)

(resin)

N-protecting groups (Lloyd-Williams et al., p. 10)

removed with mild acid

$\mathrm{Ph} \mathrm{CO}_{\mathrm{O}} \mathrm{O}_{\mathrm{Cl}}$
removed with mild acid or by
hydrogenolysis

removed with mild base (piperidine)

Solid-Phase Peptide Synthesis (SPPS)

(Lloyd-Williams et al., Chapter 2, pp. 19-82)

- peptides up to ~ 100 amino acids can be synthesized in a laboratory
- laboratory synthesis is from the C -terminus to the N -terminus
- nature synthesizes peptides from N to C .

Mechanism of Peptide Coupling (Lloyd-Williams et al., p. 48)

Mechanism of stereochemical scrambling

Additives can suppress the scrambling (Lloyd-Williams et al., pp. 120-121)

Peptide coupling reagent (one-pot):
N-protected carboxylic acid, C-protected amine DCC, HOBT

Why not N to C peptide synthesis?
(Lloyd-Williams et al. pp. 116-119)

Importance of maintaining stereochemical integrity during

the coupling step:

Number of possible stereoisomers $=2^{\mathrm{n}}$ where $\mathrm{n}=\#$ of chiral centers
A peptide w/ 10 AA residues has 2^{10} possible stereoisomers

Standard α-amino protecting group is FMOC removed (deprotected) with base (piperidine)

Orthogonal Protection Strategy: if the α-amino group has a baselabile protecting group, then the C -terminus and the side chains require base-stable protecting groups

Sidechain Protecting Groups: (Lloyd-Williams et al., pp. 23-39) for nitrogen sidechain functional groups

- NH_{2} of lysine (Lloyd-Williams et al., pp. 24-26)

BOC group removed with acid

cBz: removed w/ H+
cBz: removed $\mathrm{w} / \mathrm{H}+$
or $\mathrm{w} /$ hydrogenolysis

Alloc: selectively removed $\mathrm{w} / \mathrm{Pd}(0)$

- Imidazole of Histidine (Lloyd-Williams et al., pp. 28-31)

stable to mild base, removed with acid
- Indole nitrogen of tryptophan (often not protected)
(Lloyd-Williams et al., p. 31)

stable to mild base removed with acid
- Amides of asparagine and glutamine (Lloyd-Williams et al., pp. 32-33)
usually not protected- could dehydrate to $-\mathrm{C} \equiv \mathrm{N}$

- Guanidine group of arginine- often not protected

for oxygen sidechain functional groups

- carboxylate groups of aspartate and glutamate
(Lloyd-Williams et al. pp. 33-35)

- alcohols of serine, threonine and tyrosine (Lloyd-Williams et al. pp. 35-35)

Benzyl (Bn)
removed with acid or hydrogenolysis
removed with acid

removed with acid

Sulfur of Cysteine (Lloyd-Williams et al. pp. 39-40)

Disulfides of cysteine (cystine) redox active amino acid side chain
(Lloyd-Williams et al., Chapter 5, pp. 209-236)

Solid-Phase Peptide Synthesis: The solid support (resin, bead, etc.)
(Lloyd-Williams et al., pp. 19-21, 41-46)
Merrifield Resin: R. Bruce Merrifield, Rockefeller University, 1984 Nobel Prize in Chemistry:
for his development of methodology for chemical synthesis on a solid matrix.

Amide-linked resins

Ester-linked Resins

Rink (amide) resin

(Lloyd-Williams et al., pp. 45-46)

Tenta gel

но $\mathrm{NOfO}_{\mathrm{n}}^{\mathrm{NOH}}$
polyethylene glycol (PEG)

Solublizes the synthetic peptide
Particularly good for the synthesis of long peptides

Deprotection of the peptide
sidechain protecting groups
cleavage from the solid support
Acid hydrolysis: $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{HF}$ anisole or p-cresol is added as an alkylation scavenger

Purification

High performance liquid chromatography (HPLC) electrophoresis

Analysis
mass spectrometry

Ribonuclease A-124 amino acids
catalyzes the hydrolysis of RNA
Solid-phase synthesis of RNase A:
B. Gutte \& R. B. Merrifield, J. Am. Chem. Soc. 1969, 91, 501-2.

Synthetic RNase A: 78 \% activity 0.4 mg was synthesized
2.9 \% overall yield average yield $\sim 97 \%$ per coupling

Lys glu thr ala ala ala lys phe glu arg GLN HIS MET ASP SER SER THR SER ALA ALA SER SER SER ASN TYR CYS ASN GLN MET MET LYS SER ARG ASN LEU THR LYS ASP ARG CYS LYS PRO VAL ASN THR PHE VAL HIS GLU SER LeU ala asp val gln ala val cys ser gln LYS ASN VAL ALA CYS LYS ASN GLY GLN THR ASN Cys tyr gln Ser tyr Ser thr met ser ILE THR ASP CYS ARG GLU THR GLY SER SER LYS TYR PRO ASN CYS ALA TYR LYS THR THR gln ala asn lys his ile ile val ala cys GLU GLY ASN PRO TYR VAL PRO VAL HIS PHE ASP ALA SER VAL

pdb code: 1AFL

Linear vs. Convergent Synthesis

SPPS- linear synthesis of peptides, many steps, low overall yield, inefficient for long peptides and proteins

Convergent Synthesis (segmental coupling strategy)- make short peptides by SPPS then couple the short peptides, in solution, to give longer ones. Less linear steps and higher overall yield if the segmental coupling is efficient.
(Lloyd-Williams et al., Chapter 3, pp. 95-137, Chapter 4, pp.139-207)

Must activate the C-terminus of a peptide segment recall there are problems with the N to C peptide synthesis
(Lloyd-Williams et al., pp. 116-120)

couple at proline- unstable azlactone, little scrambling of stereochemistry

Staudinger reaction

Staudinger Ligation:

Cyclic Peptides

Cyclosporin A

Cyclic Peptide Synthesis

Problems with the solution-phase cyclization reaction

- stereochemical scrambling
- use acyl azide, acyl thioester, HATU or PyBop in the coupling reaction
- dimerization
- high dilution conditions favors cyclization

Intramolecular Native Peptide Ligation Strategy

Solves the stereochemical scrambling problem but not the dimer formation issue

Cyclization on the solid support will solve the dimerization problem
Attached the first amino acid through the side chain applicable for Asp, Glu and Lys
Requires a carboxylate protecting group that is removed under conditions other than acid or base \rightarrow Allyl

Attached the first amino acid to the solid support via the α-amino group

On-suppport cyclization

Peptide and Protein Analysis

Primary $\left(1^{\circ}\right)$ structure of a peptide or protein is the amino acid sequence
Amino acid analyzer- automated instrument to determine the amino acid content of a peptide or protein. Individual amino acids are separated by hplc, then detected by post-column derivatization

Different amino acids have different chromatographic mobilities (retention times)

