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Abstract

The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating
the development of programs for fast, yet accurate, inference. For example, several different fast programs have been
developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree.
Although these programs are widely used, a systematic evaluation and comparison of their performance using empirical
genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19
empirical phylogenomic data sets with hundreds to thousands of genes and up to 200 taxa with respect to likelihood
maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive
and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using
RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable
coalescent-based species tree estimations. For concatenation-based species tree inference, IQ-TREE consistently achieved
the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to
complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and
more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and
the strength of phylogenetic signal, sometimes substantially influenced the programs’ relative performance. Our results
provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-
scale phylogenomic data analyses.
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Introduction

Phylogenetic analysis—that is, the identification of the tree
best representing the evolutionary history of the underlying
data—is of fundamental importance to many biological dis-
ciplines, including but not limited to systematics, molecular
evolution, and comparative genomics (Felsenstein 2003; Xia
2013; Hamilton 2014; Yang 2014). However, finding the best
tree is an exceptionally difficult task because evaluation of
each tree requires a considerable amount of calculations
(Bryant et al. 2005) as well as because the number of candi-
date strictly bifurcating trees grows very rapidly with the
number of sequences (Felsenstein 1978)—for example, there
are �8� 1021 possible rooted topologies for a set of 20 taxa.
Therefore, fast programs that employ heuristic algorithms
that can efficiently infer the best tree (or nearly as good
alternatives) are of pivotal importance to phylogenetic anal-
ysis. This is evident by the success of the Neighbor-Joining (NJ)
method, a distance-based clustering (instead of tree search-
ing) algorithm (Saitou and Nei 1987) that is the most highly

cited phylogenetic method (Van Noorden et al. 2014). NJ and
its variants (e.g., BIONJ that takes the variance of distance
estimation into consideration) (Gascuel 1997; Bruno et al.
2000) were among the few available options for analyzing
large data sets until the 2000s, and are still widely used today
to quickly produce good starting points for more sophisti-
cated methods (e.g., Guindon et al. 2010; Nguyen et al. 2015).

It is now generally accepted that statistical methods, such
as maximum likelihood (ML) (Felsenstein 1981), produce
more reliable results than distance and parsimony methods
(Yang and Rannala 2012; Whelan and Morrison 2017).
However, ML-based methods are also computationally
more expensive, necessitating the use of heuristic search algo-
rithms for searching the enormity of tree space (Chor and
Tuller 2005). Heuristic search algorithms typically adopt iter-
ative, “hill-climbing” optimization techniques that involve
three steps: 1) generate a quick starting tree (e.g., BIONJ
tree, stepwise-addition parsimony tree, etc.); 2) modify the
tree using certain topological rearrangement rules and eval-
uate the resultant trees under the ML criterion; and 3) replace
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the starting tree and repeat step 2 if the rearrangements
identify a better tree, or otherwise terminate the search.
The most common rearrangement algorithms for step 2
are Nearest-Neighbor-Interchange (NNI), where the four sub-
trees connected by a given internal branch are re-arranged to
form two new, alternative topologies (Robinson 1971), and
Subtree-Pruning-and-Regrafting (SPR), in which a given sub-
tree is detached from the full tree and re-inserted onto each
of the remaining branches (Swofford et al. 1996). SPR is more
expansive in searching tree space than NNI since it can eval-
uate many more trees from one initial topology, but it is also
much slower because of the extra tree evaluations.

Four of the most popular fast ML-based phylogenetic pro-
grams that differ in their choices or implementations of rear-
rangement algorithms are PhyML (Guindon et al. 2003, 2010),
RAxML/ExaML (Stamatakis 2014; Kozlov et al. 2015), FastTree
(Price et al. 2010), and IQ-TREE (Nguyen et al. 2015). First
introduced in the early 2000s, PhyML has been one of the
most widely used programs for ML-based phylogenetic infer-
ence (Guindon et al. 2003). The original algorithm was based
solely on NNI and achieved comparable performance as other
contemporary ML methods but with much lower computa-
tional costs. The latest version of PhyML (version 20160530)
performs hill-climbing tree searches using SPR rearrange-
ments in early stages and NNI rearrangements in later stages
of the tree search (Guindon et al. 2010). Specifically, during
the SPR-based search, candidate re-grafting positions are first
filtered based on parsimony scores; the most parsimonious
ones are then subject to approximate ML evaluation where
branch-lengths are only re-optimized at the branches adja-
cent to the pruning and re-grafting positions. To accelerate
the tree search, the best “up-hill” SPR move for each subtree is
accepted immediately, potentially leading to the simulta-
neous application of multiple SPRs in one round. Once the
search has converged to a single topology, the resultant tree is
further optimized by NNI-based hill-climbing. Similar to the
SPR stage, PhyML evaluates candidate NNIs only approxi-
mately by re-optimizing the five relevant branches, and
may apply multiple NNI moves simultaneously at each round.
The addition of the SPR algorithm in PhyML has significantly
improved its accuracy, although at the cost of longer run-
times (Guindon et al. 2010).

RAxML is another widely used program for fast estimation
of ML trees (Stamatakis 2006, 2014). The latest version
(8.2.11) implements the standard SPR-based hill-climbing al-
gorithm and employs important heuristics to reduce the
amount of unpromising SPR candidates, including: 1) candi-
date re-grafting positions are limited to only those within a
certain distance from the pruning position (known as the
“lazy subtree rearrangement”) (Stamatakis et al. 2005); and
2) if the re-grafting to a candidate position results in a sub-
stantially worse likelihood value, all branches further away
from that point will be ignored (Stamatakis et al. 2007). As
in PhyML, the approaches of approximate prescoring of SPR
candidates and simultaneous SPRs are also used by RAxML to
speed up the analysis (Stamatakis et al. 2005). In addition to
RAxML, its sister program ExaML is specifically engineered for
large concatenated data sets (Kozlov et al. 2015); it achieves

greatly enhanced parallel efficiency through a novel balance
load algorithm and parallel I/O optimization. As RAxML has
exhibited excellent performance in both accuracy and speed
(Stamatakis 2006), it is considered by many to be the state-of-
the-art ML fast phylogenetic program.

Although both PhyML and RAxML represent great advan-
ces in developing fast and accurate phylogenetic programs,
efforts aimed at improving the speed of ML tree estimation
continue. For example, the recently developed FastTree pro-
gram can be orders of magnitude faster than either PhyML or
RAxML/ExaML (Price et al. 2010). FastTree (latest version
2.1.10) first constructs an approximate NJ starting tree which
is then improved under the minimum evolution criterion
using both NNI and SPR rearrangements, followed by ML-
based NNI rearrangements to search for the final tree. With
computational efficiency at the very heart of its design,
FastTree makes heavy use of heuristics at all stages to limit
the numbers of tree searches and likelihood optimizations. As
a tradeoff, FastTree generates less accurate tree estimates
than SPR-based ML methods (Price et al. 2010). The substan-
tial edge of the FastTree program in speed has made it very
popular, particularly in analyses of very large phylogenomic
data matrices.

An important weakness of pure hill-climbing methods is
that they can be easily trapped in local optima. The IQ-TREE
program, the most recent of the four fast ML-based phylo-
genetic programs, was developed aiming to overcome this
local optimum problem through the use of stochastic tech-
niques (Nguyen et al. 2015). Specifically, IQ-TREE (latest ver-
sion 1.5.5) generates multiple starting trees instead of one and
subsequently maintains a pool of candidate trees during the
entire analysis. The tree inference proceeds in an iterative
manner; at every iteration, IQ-TREE selects a candidate tree
randomly from the pool, applies stochastic perturbations
(e.g., random NNI moves) onto the tree, and then uses the
modified tree to initiate an NNI-based hill-climbing tree
search. If a better tree is found, the worst tree in the current
pool is replaced and the analysis continues; otherwise, the
iteration is considered unsuccessful and the analysis termi-
nates after a certain number of unsuccessful iterations. IQ-
TREE takes advantage of successful preexisting heuristics (e.g.,
simultaneous NNIs [Guindon et al. 2003]) and a highly opti-
mized implementation of likelihood functions (Flouri et al.
2015) for better computational efficiency.

These four programs offer different tradeoffs between the
extent of tree space searched and speed in fast phylogenetic
inference, and they may exhibit different behaviors toward
diverse phylogenomic data sets whose properties (e.g., taxon
number and gene number) and evolutionary characteristics
(e.g., age of lineage, taxonomic range, and evolutionary rate)
vary. Therefore, a good understanding of their relative perfor-
mance across diverse empirical phylogenomic data matrices
is critical to the success of phylogenetic inference when com-
putational resources are limited. This is particularly relevant
for large-scale studies using data matrices of ever-increasing
data volumes and complexities. So far, these four programs
have only been evaluated using simulated data (Guindon
et al. 2010; Price et al. 2010; Liu et al. 2011), and empirical
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data sets with wide ranges of taxon numbers (e.g., up to
237,882 taxa in Price et al. [2010]) but relatively small num-
bers of genes (from �10 [Price et al. 2010; Liu et al. 2011;
Chernomor et al. 2016] to�200 [Guindon et al. 2010; Money
and Whelan 2012; Nguyen et al. 2015]), which might not well
approximate today’s state-of-the art phylogenomic data ma-
trices. In these studies, RAxML and PhyML showed largely
similar performance in identifying trees of higher likelihood
scores (Guindon et al. 2010; Money and Whelan 2012),
whereas IQ-TREE exhibited improved efficiency compared
with both RAxML and PhyML (Nguyen et al. 2015;
Chernomor et al. 2016). On the other hand, FastTree was
found to be much faster than RAxML and PhyML but
reported lower likelihood scores for data sets with both small
and large numbers of sequences (Guindon et al. 2010; Price

et al. 2010; Liu et al. 2011). However, it remains unclear if these
patterns would hold for empirical data sets with large num-
bers of loci and for species tree estimation based on genome-
scale data.

To comprehensively evaluate the four fast ML-based phy-
logenetic programs (table 1), we used a large collection of 19
empirical phylogenomic data sets representing a wide range
of properties, including data types (both DNA and protein
data), numbers of taxa (up to 200) and genes (up to 14,446),
and taxonomic range for diverse animal, plant, and fungal
lineages (table 2; for details on the source of each data set,
see supplementary table S1, Supplementary Material online).
For each of these data sets, we compared the performance of
all programs for single-gene tree inference and, for coalescent-
based and concatenation-based species tree inference, the

Table 1. Overview of the Four Fast ML-Based Phylogenetic Programs Evaluated in This Study.

Programs Optimality
Criterion

Starting Tree Topological Moves Supported Models Partitioned
Analysis

AA DNA

RAxML v8.2.0
(ExaML v3.0.17)

ML Parsimony/random/custom SPR Common and
custom models

JC69, K80,
HKY85, GTR

Y

PhyML v20160530 ML Parsimony/random/custom Interleaved NNI and SPR Common and
custom models

Common and
custom models

Y

IQ-TREE v1.4.2 ML BIONJ and multiple
parsimony/random/custom

NNI and stochastic
perturbation

Common and
custom models

Common and
custom models

Y

FastTree v2.1.9 ML Heuristic NJ NNI and SPR (ME)
followed by NNI (ML)

JTT, WAG, LG JC69, GTR N

NOTE.—ML, maximum likelihood; ME, minimum evolution; NJ, neighbor joining; NNI, nearest neighbor interchange; SPR, subtree pruning and re-grafting.

Table 2. Overview of the 19 Phylogenomic Data Sets Included in This Study.

Study Data Seta Genes Taxa Taxonomic Group Data Type

AA DNA

Nagy et al. (2014) NagyA1 594 60 Fungi Genome
Misof et al. (2014) MisoA2 1,478 144 Insects Transcriptome

MisoD2ab,c

MisoD2bc

Wickett et al. (2014) WickA3 844 103 Land plants Transcriptome
WickD3ac

WickD3bd

Chen et al. (2015) ChenA4 4,682 58 Vertebrates Transcriptome
Struck et al. (2015) StruA5 679 100 Worms Transcriptome
Borowiec et al. (2015) BoroA6 1,080 36 Metazoans Genome
Whelan et al. (2015) WhelA7 210 70 Metazoans Transcriptome
Yang et al. (2015) YangA8 1,122 95 Caryophyllales Transcriptome
Shen et al. (2016b) ShenA9 1,233 96 Yeasts Genome
Song et al. (2012) SongD1 424 37 Mammals Genome
Xi et al. (2014) XiD4 310 46 Flowering plants Transcriptome
Jarvis et al. (2014) JarvD5ae 14,446 48 Birds Genome

JarvD5be 2,022 48
Prum et al. (2015) PrumD6 259 200 Birds Target enrichment
Tarver et al. (2016) TarvD7 11,178 36 Mammals Genome

aData sets are named using the first four letters of the first author’s last name from the study the data set was generated, followed by the letter A (for amino acid) or D (for DNA),
followed by a unique numeric or alphanumeric identifier.
bData set MisoD2a does not have a corresponding supermatrix from the original study.
cDNA data sets MisoD2a and WickD3a include the codon-based alignments corresponding to the amino acid alignments in data sets MisoA2 and WickA3, respectively.
dDNA data sets MisoD2b and WickD3b include the full codon-based alignments corresponding to the amino acid alignments in data sets Miso2 and Wick3, respectively, with
the third codon positions removed.
eData set JarvD5b were derived from data set JarvD5a through statistical binning (Mirarab et al. 2014), and the two data sets correspond to the same supermatrix.
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two major current approaches to inferring species phyloge-
nies from phylogenomic data (Liu et al. 2015). In the
coalescent-based approach, the species tree is estimated by
considering all individually inferred single-gene trees using
coalescent methods that take into account that the histories
of genes may differ from those of species due to incomplete
lineage sorting (fig. 1A), whereas in the concatenation-based
approach, the species tree is estimated from the supermatrix
derived by concatenating all single-gene alignments (fig. 1B).

In single-gene tree estimation, we found that, although the
more comprehensive analysis strategy (ten searches per align-
ment using RAxML, PhyML, or IQ-TREE) performed consid-
erably better than fast strategies (one tree search per
alignment using the same programs), all produced results
of comparable quality when the inferred gene trees were

used for coalescent-based species tree inference. The impact
of tree search numbers and starting tree types on the effi-
ciency of single-gene alignment analysis was also investigated.
For the concatenation-based species tree inference, we found
that, in some cases, IQ-TREE recovered trees with higher like-
lihood scores than RAxML/ExaML, although both showed the
best performance for most data sets. Importantly, IQ-TREE
exhibited comparable or better speed in both coalescent-
based and concatenation-based species tree inference com-
pared with RAxML/ExaML. In contrast, FastTree produced
significantly worse single-gene and species trees than the
other three programs even when allowed to run multiple
times, whereas PhyML did not scale well to supermatrices
because the concatenation-based species tree inferences
failed to complete for multiple data sets. Overall, our

RAxML-10
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starting trees)

RAxML
(1 MP starting tree)
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FIG. 1. Schematics of the (A) single-gene tree inference test as well as the coalescent-based and (B) concatenation-based species tree inference tests
used to evaluate the performance of fast phylogenetic programs in phylogenomic analysis.
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benchmarking of the 4 fast ML-based phylogenetic programs
against 19 state-of-the-art data matrices is highly informative
for the design of efficient data analysis strategies in phyloge-
nomic studies with 10s to 200 taxa.

Results and Discussion

A Comprehensive Collection of Empirical Data
For a comprehensive evaluation of the four fast ML-based
phylogenetic programs, we retrieved 19 data sets from 14
recently published phylogenomic studies (table 2; see supple-
mentary table S1, Supplementary Material online for detailed
sources of each data set), representing a wide range of char-
acteristics: 1) they include both amino acid and nucleotide
data sets (nine and ten, respectively); 2) they contain either
moderate numbers of taxa (e.g., PrumD6, 200 taxa, and 259
genes [Prum et al. 2015]), large numbers of genes (e.g.,
JarvD5a, 48 taxa, and 14,448 genes [Jarvis et al. 2014]), or
both (e.g., MisoA2, 144 taxa, and 1,478 genes [Misof et al.
2014]); 3) they cover 3 major taxonomic groups (i.e., animals,
plants, and fungi) and various depths within each group (e.g.,
data sets SongD1 [Song et al. 2012], ChenA4 [Chen et al.
2015], and WhelA6 [Whelan et al. 2015] cover mammals,
vertebrates, and metazoans, respectively); and 4) they consist
of sequence data derived from different technologies (e.g.,
some data sets were built entirely on whole genome sequen-
ces [Song et al. 2012; Jarvis et al. 2014; Shen et al. 2016b; Tarver
et al. 2016], whereas some others contained mostly transcrip-
tome sequencing data [Misof et al. 2014; Wickett et al. 2014;
Yang et al. 2015]). In addition, these data sets were assembled
and curated in state-of-the-art phylogenomic studies and
thus are of high quality. Therefore, these data sets are well
suited for benchmarking the performance of fast phyloge-
netic programs in the context of phylogenomics. At the
same time, since here we only examined data sets with up
to 200 taxa, the patterns revealed in our study might not
necessarily hold for larger data matrices with thousands or
more taxa.

Performance Test I: Single-Gene Tree Inference
In the first test, we examined the performance of four fast
ML-based phylogenetic programs (i.e., RAxML, PhyML, IQ-
TREE, and FastTree) in inferring single-gene trees (fig. 1A).
We designed seven strategies, including four basic strategies
in which each program was used to infer each gene tree from
a single starting tree (these were named RAxML, PhyML, IQ-
TREE, and FastTree), as well as three more comprehensive
strategies in which each of RAxML, PhyML, and IQ-TREE
was used to infer each gene tree from ten replicates (these
were named RAxML-10, PhyML-10, and IQ-TREE-10). In both
RAxML-10 and PhyML-10, five of the starting trees were
obtained via parsimony (including the ones used in the
RAxML and PhyML strategies, respectively) and the other
five were random starting trees. On the other hand, IQ-
TREE-10 consists of ten independent IQ-TREE searches, in-
cluding the one performed in IQ-TREE.

The seven strategies were compared for the likelihood
scores and topologies of their single-gene tree inferences, as

well as for their computational speeds. Since the true evolu-
tionary histories are unknown for the empirical data used
here, we identified the tree with the highest likelihood score
for each alignment (hereafter referred to as the “best-observ-
ed” tree) among trees inferred by the seven strategies and the
trees reported in previous studies, if available. These “best-
observed” trees were used as the reference in the comparisons
of likelihood score and topology.

Likelihood Score Maximization
We first examined the performance of the seven strategies in
likelihood score maximization on single-gene alignments
(supplementary table S2, Supplementary Material online)
by calculating the frequencies with which each of the seven
strategies had the highest score (fig. 2). Overall, IQ-TREE-10
and RAxML-10 had the highest frequencies of finding the
highest likelihood scores (80.17% and 75.99%, respectively)
and reported the highest likelihood scores more frequently
than the other strategies in all data sets except for JarvD5b, for
which IQ-TREE-10 performed the best but IQ-TREE slightly
outperformed RAxML-10, highlighting the benefit of using
multiple starting trees. Importantly, the performances of IQ-
TREE-10 and RAxML-10 varied substantially among data sets;
whereas the two strategies performed very similarly on several
data sets (e.g., NagyA1 and SongD1), in others RAxML-10
outperformed IQ-TREE-10 by large margins (e.g., MisoA2,
MisoD2a, and MisoD2b), or vice versa (e.g., JarvD5b).

Notably, the basic strategy IQ-TREE was the third best
strategy with an overall frequency of 54.03%, slightly higher
than that of the more comprehensive strategy PhyML-10
(52.35%). In fact, IQ-TREE not only outperformed PhyML-10
in 11/19 data sets, but also showed higher frequency than
RAxML-10 in the data set JarvD5b, as noted earlier. On the
other hand, PhyML-10 performed consistently better than
RAxML and PhyML, two basic strategies whose overall fre-
quencies were fifth and sixth, respectively, and considerably
lower (35.98% and 24.17%) than the first to the fourth best
(IQTREE-10, RAxML-10, IQTREE, and PhyML-10). Among basic
strategies, RAxML performed better than IQ-TREE on only
four (MisoA2, StruA5, MisoD2a, and MisoD2b) data sets,
yet neither of them performed well on these data sets.
Both IQ-TREE and RAxML found higher likelihood scores
more often than PhyML in all data sets except for JarvD5b
in which RAxML had slightly lower frequency.

In comparison, the likelihood scores obtained by FastTree
were much lower than those of the other six strategies; the
program produced the highest likelihood scores in only 1.67%
of all alignments. However, FastTree also had substantial
advantages in computational speed compared with the
others (see below). Since FastTree can initiate tree searches
using distinct starting trees, we performed additional FastTree
analyses for selected data sets, consisting of 100 tree searches
for each alignment starting from 50 parsimony trees and 50
random trees. The results show that in the vast majority of
cases FastTree still generated worse likelihood scores than the
other strategies even after compensating for the differences in
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runtime by repeating the search 100 times (supplementary
table S3, Supplementary Material online).

To further investigate the relative performance of the strat-
egies using RAxML, PhyML, and IQ-TREE, we carried out
pairwise comparisons between the three comprehensive
strategies (i.e., RAxML-10, PhyML-10, and IQ-TREE-10) and
also between their corresponding basic strategies (i.e.,
RAxML, PhyML, and IQ-TREE) (supplementary fig. S1,
Supplementary Material online). The overall trend is the
same as that observed in figure 2; on most data sets, IQ-
TREE-10 found better likelihood scores more frequently
than RAxML-10 which, in turn, outperformed PhyML-10;
the same is true for the basic strategies. Interestingly, the three
programs showed much closer performance when multiple
trees searches were conducted. For instance, compared with
RAxML, IQ-TREE found trees with equally good likelihood
scores on 32.67% of all alignments and better scores on
43.96% of all alignments; the frequencies changed to 60.44%
and 21.38%, respectively, in the comparison between IQ-
TREE-10 and RAxML-10. Nonetheless, IQ-TREE-10 and
RAxML-10 still showed considerable advantages over
PhyML-10; cumulatively, they found higher likelihood scores
on 40.27% and 41.77%, respectively, of all alignments than
PhyML-10, whereas PhyML-10 found better scores on only
�12% of all alignment in both comparisons.

Tree Topology
Trees with similar likelihood scores may differ substantially in
their topologies, or vice versa. Hence, it is important to also
examine the topological similarities between trees inferred by
different methods in addition to their likelihood scores. Our
evaluation is based on empirical data sets for which the true
evolutionary histories are unknown, thus preventing a direct
measurement of topological accuracy. Instead, we compared
the trees inferred by various methods against the best-
observed tree (i.e., the tree with the highest likelihood score)
for each alignment. The rationale for using the best-observed
ML trees as the references in our comparison is that, under
the ML optimality criterion (which underlies all the methods
examined here), the topologies of the trees with the highest
likelihood scores are considered the best (currently known)
answer.

We measured the normalized Robinson–Foulds, or nRF,
distances (Robinson and Foulds 1981) between trees inferred
by the seven strategies on each alignment against the corre-
sponding best-observed tree. Overall, there was a strong pos-
itive correlation between the differences in likelihood scores
and the topological distances when comparing inferred trees
to the best-observed trees (Spearman’s correlations of 0.87
for all alignments and above 0.90 for most data sets,
P-values <2.2� 10�16 in all cases). In other words, strategies
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that yielded likelihood scores closest or equal to the best-
observed likelihood scores tended to be those whose topol-
ogies were also closest or identical to the best-observed to-
pologies (supplementary table S4, Supplementary Material
online; see fig. 3 for data set YangA8 as an example).

Among the seven strategies, IQ-TREE-10, RAxML-10, and
IQ-TREE showed the best performance in tree topology with
median nRF distances of 0 for more than half of the data sets

(supplemental table S5, Supplementary Material online); this
was unsurprising since these strategies contributed most of
the best-observed trees. PhyML-10, RAxML, and PhyML also
performed relatively well, with median nRF distances less than
0.03, 0.06, and 0.13, respectively, for ten or more data sets.
Here again, FastTree was behind the other strategies as it
led to median nRF distances greater than 0.33 for most
data sets.

FIG. 3. The performances of fast phylogenetic programs with respect to likelihood maximization and tree topology are positively correlated. Dots in
the scatter plot correspond to trees inferred by various analysis strategies from single-gene alignments in data set YangA8. Log-likelihood score
differences between inferred trees and the “best-observed” trees are plotted against the corresponding topological distances. The log-likelihood
score differences are shown in logarithmic scale (with the addition of a small value of 0.01). The violin plots on the top and right show the
distributions of log-likelihood differences (top) and topological distances (right), respectively, for trees inferred by each strategy.
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Computational Speed
To compare the computational speed of the seven strategies,
we first measured the runtimes of RAxML (using a parsimony
starting tree), PhyML (using a parsimony starting tree), IQ-
TREE, and FastTree, as well as of RAxML and PhyML analyses
using one random starting tree (referred to as RAxML(RT)
and PhyML(RT), respectively). We then plotted the runtimes
of all these strategies against that of RAxML (fig. 4; supple-
mentary table S6, Supplementary Material online), and found
strong positive correlations between the speeds of strategies
over a wide range of runtimes (Spearman’s correlation�0.91
for all combinations of data types and strategies,
P-values <2.2� 10�16 in all cases). The runtimes of
RAxML(RT) and PhyML(RT) were highly similar to those of
RAxML and PhyML, suggesting that RAxML-10 and PhyML-10
would take about ten times longer than RAxML and PhyML,
respectively (supplementary table S7, Supplementary
Material online). Interestingly, PhyML was �1.5 times faster
than RAxML on protein alignments, but�3.1 times slower on
DNA alignments. On the contrary, IQ-TREE was faster than
RAxML for both protein and DNA data (�1.6 and�1.1 times
faster, respectively), and the runtime of IQ-TREE-10 would
simply be ten times longer since it consists of ten indepen-
dent IQ-TREE analyses. Lastly, FastTree was substantially more
time-efficient than RAxML on both DNA alignments

(�47.9 times faster) and protein alignments (�95.4 times
faster). In addition, the time advantage of FastTree was greater
for alignments requiring longer runtimes; for instance, our
linear regression analysis suggests that FastTree might run
�162.0 times faster than RAxML on the largest single protein
alignments but only �9.6 times faster on the smallest ones.

Overall, our results at the level of single-gene tree inference
are consistent with previous, smaller-scale studies on the bet-
ter efficiency of IQ-TREE relative to RAxML and PhyML (all
using one search per alignment) (Nguyen et al. 2015), and the
inferior performance of FastTree in likelihood score maximi-
zation when compared with other programs (Guindon et al.
2010; Liu et al. 2011). However, in contrast to previous obser-
vations (Guindon et al. 2010), we found that RAxML consis-
tently outperformed PhyML in all data sets. This difference
might be due to the small number of alignments examined in
the previous study (Guindon et al. 2010) and the numerous
updates of both programs since then. Another study (Liu
et al. 2011) compared the performance of RAxML and
FastTree on ten ribosomal RNA data sets and found that
FastTree can sometimes generate more accurate trees than
RAxML, typically on alignments with lower quality and fewer
sequences. Importantly, Liu et al. (2011) examined data sets
with highly reliable curated phylogenies as references, which
are not available in most empirical studies, and also much
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FIG. 4. Runtime comparisons of fast phylogenetic programs in single-gene tree inferences. The runtimes required by each strategy to analyze a
randomly selected subset of all protein (top row) and DNA (bottom row) alignments are plotted against the corresponding runtimes of RAxML. All
runtimes (in seconds) are shown in logarithmic scale.
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greater numbers of taxa (between 263 and 27,643 in most
cases) than the ones examined in our study (up to 200).

Implications for Efficient Tree Search on Single-Gene

Alignments
The inclusion of RAxML-10, PhyML-10, and IQ-TREE-10 in our
evaluation provided an opportunity to examine the effect of
running multiple independent tree searches. For each of the
three strategies, we first determined the highest likelihood
score for each alignment, and then calculated the percentages
of alignments for which the highest scores were found by
given numbers of tree searches (supplementary fig. S2,
Supplementary Material online). In IQ-TREE-10, the highest
likelihood scores were found in the first tree search for more
than 70% of the alignments in 11/19 data sets (which explains
the excellent performance of IQ-TREE in fig. 2), and the fre-
quencies quickly approached 100% with additional tree
searches. In contrast, the first tree search in PhyML-10 found
the highest likelihood scores for much fewer alignments (less
than 30% in 10/19 data sets), and the frequencies increased
more evenly with increasing numbers of tree searches. The
plots of RAxML-10 lie in between those of IQ-TREE-10 and
PhyML-10 in most data sets. Interestingly however, in some
data sets (e.g., MisoA2, StruA5, MisoD2a, MisoD2b), all three
strategies showed almost the same linear increases in their
frequencies of finding the highest scores with the number of
tree searches (about 10% of the highest likelihood scores were
found in each tree search). These results suggest that efficient
tree search strategies are likely to vary between data sets and
fast phylogenetic programs. To avoid unnecessary (or insuf-
ficient) tree search efforts, it is important to monitor the
likelihood improvements over rounds of independent
searches.

Additionally, the use of both parsimony and random start-
ing trees in RAxML-10 and PhyML-10 allowed us to investigate
the relative performance of the two types of starting tree. In
our comparisons, parsimony and random starting trees
showed comparable overall performance (supplementary
fig. S3, Supplementary Material online). For RAxML (supple-
mentary fig. S3A, Supplementary Material online), five (or
one) searches per alignment using random starting trees
found better likelihood scores than using parsimony starting
trees for only additional 3.47% (or 1.86%) of all alignments. In
addition, equally good likelihood scores were obtained using
both types of starting trees on 50.12% (or 31.73%) of all align-
ments when five (or one) RAxML searches were conducted.
However, at the level of individual data sets, random starting
trees outperformed parsimony starting trees on 16 data sets
regardless of the number of tree searches. A similar pattern
was also observed for PhyML (supplementary fig. S3B,
Supplementary Material online). Together with their similar
run-time performances (fig. 4), these results suggest that the
two types of starting trees are similarly efficient in the analysis
of single-gene alignments with moderate sequence numbers,
although random starting trees might be slightly more
advantageous.

Performance Test II: Coalescent-Based Species Tree
Inference
In the second test, we assessed the fast ML-based phyloge-
netic programs in the context of the “two-step” coalescent-
based species tree inference, in which single-gene trees were
first estimated from individual alignments by each examined
strategy and then used collectively to infer the species tree by
the coalescent-based method (fig. 1A) (Liu et al. 2015). Here,
we used the single-gene trees produced in the Performance
Test I as input for the ASTRAL program (Mirarab and
Warnow 2015), which was used to infer coalescent-based
species trees. The species tree inferences by the seven strat-
egies were then compared with the species tree estimated
from the best-observed gene trees (referred to as best-
observed species trees hereafter) to measure the topological
distances (i.e., nRF distances).

We first determined for each data set the topological dis-
tances between the species tree inferred from the best-
observed single-gene trees and those inferred from the gene
trees inferred by each of the seven strategies. In that regard,
the species tree estimations of all six strategies using RAxML,
PhyML, or IQ-TREE displayed comparably small topological
distances to the best-observed species trees (median nRF
distances ranged between 0 and 0.03 across data sets),
whereas the species trees inferred by FastTree were consider-
ably more dissimilar (median nRF distances of 0.121) (table 3).
When we only considered the bipartitions or splits that were
strongly supported (i.e., had quartet-based posterior proba-
bility, or PP, support greater or equal to 0.9 [Sayyari and
Mirarab 2016]), the species tree inferred by these strategies
became even more similar to the best-observed species trees,
although FastTree-generated species trees still showed the
greatest topological distances (supplementary table S8,
Supplementary Material online). Nonetheless, for most strat-
egies and data sets, the species tree estimates were much
more similar to the best-observed trees than the correspond-
ing single-gene tree inferences (table 3; supplementary tables
S5 and S8, Supplementary Material online).

We further assessed the confidence levels (i.e., PP supports)
of the incongruent bipartitions or splits identified in the above-
mentioned species tree comparison. Worryingly, the incongru-
ent splits between the species tree inferred using FastTree-
generated gene trees as input and the best-observed species
tree received significantly higher PP supports (fig. 5; see sup-
plementary table S9, Supplementary Material online, for the
results of Wilcoxon rank-sum tests); the median PP values of
which were 0.81 for protein data sets and close to 1 for DNA
data sets. Both of these values were much higher than those of
the other six strategies, which were all below 0.60 and 0.71 for
protein and DNA data sets, respectively.

Performance Test III: Concatenation-Based Species
Tree Inference
In the third test, we examined the relative performance of the
four programs in concatenation analysis of 17 taxon- and
gene-rich supermatrices (we conducted concatenation anal-
yses on 17, rather than 19, data matrices because: 1) JarvD5a
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and JarvD5b correspond to different partitioning strategies
from the same supermatrix [Jarvis et al. 2014], and 2)
MisoD2a does not have a corresponding supermatrix

available from the original study [Misof et al. 2014]) (fig. 1B;
table 2). Here, we again focused on the programs’ perfor-
mance on likelihood score maximization, tree topology, and

Table 3. Normalized Robinson-Foulds Distances between the Coalescent-Based Species Trees Estimated from Gene Trees Inferred by Various
Strategies and the “Best-Observed” Gene Trees.

Data Set Analysis Strategies

RAxML_10 PhyML_10 IQ-TREE_10 RAxML PhyML IQ-TREE FastTree

Amino acid NagyA1 0.035 0.035 0.018 0.07 0.035 0.035 0.123
MisoA2 0.007 0.014 0.028 0.028 0.021 0.035 0.099
WickA3 0.01 0.01 0 0.01 0.03 0.01 0.09
ChenA4 0 0 0 0 0 0 0
StruA5 0.103 0.124 0.155 0.124 0.186 0.124 0.289
BoroA6 0 0.03 0 0 0.03 0 0.121
WhelA7 0.03 0 0 0.06 0.015 0.015 0.06
YangA8 0.022 0 0 0.011 0.011 0 0.054
ShenA9 0.011 0.022 0 0.032 0.022 0.032 0.054

Nucleotide SongD1 0 0 0 0 0 0 0
MisoD2a 0.007 0.05 0.043 0.043 0.071 0.05 0.206
MisoD2b 0.007 0.035 0.035 0.05 0.043 0.064 0.156
WickD3a 0.03 0.01 0.02 0.03 0.02 0.04 0.15
WickD3b 0.01 0.01 0 0.02 0.03 0.01 0.09

XiD4 0 0.023 0.023 0.023 0.023 0.023 0.186
JarvD5a 0.022 0.022 0 0 0 0 0.4
JarvD5b 0 0.022 0 0.067 0.044 0.022 0.289
PrumD6 0.03 0.041 0.025 0.051 0.091 0.066 0.137
TarvD7 0 0 0 0 0 0 0
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FIG. 5. Incongruent splits in coalescent-based species trees estimated by the strategies using RAxML, PhyML, and IQ-TREE are weakly supported.
The violin plots show the distribution of local posterior probabilities for incongruent splits in coalescent-based species trees estimated by various
analysis strategies. Here, incongruent splits are defined as the splits that are not present in species trees estimated from best-observed single-gene
trees. The areas of violin plots are proportional to the total numbers of incongruent splits. The gray dots and bars in each violin plot indicate the
median and the first/third quartiles of the local posterior probabilities, respectively.
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computational speed. However, as PhyML required exceed-
ingly high runtime, memory, or crashed on multiple data sets,
its results are not included in the evaluation. In addition to
our analyses, all the supermatrices have also been previously
extensively analyzed using either RAxML or ExaML (e.g., Jarvis
et al. 2014; Misof et al. 2014; Wickett et al. 2014). Therefore, we
included the reported likelihood scores and topologies—we
refer to them as “RAxML/ExaML-published” trees—in our
examination of relative performance.

Likelihood Score Maximization
Consistent with the pattern observed in single-gene tree anal-
yses, RAxML and IQ-TREE achieved substantially higher like-
lihood scores than FastTree on supermatrix analyses (fig. 6;
supplementary table S10, Supplementary Material online).
Interestingly, IQ-TREE found the highest likelihood scores in
all 17 data sets and outperformed both our RAxML and pre-
vious RAxML/ExaML-published results on 7 and 8 data sets,
respectively. Remarkably, IQ-TREE consistently yielded the
highest likelihood scores in all independent replicates (except
for the analyses of data set MisoD2a), whereas RAxML repli-
cates were often trapped at suboptimal solutions (supple-
mentary table S11, Supplementary Material online).
Moreover, the highest likelihood scores were usually found
quite early in the IQ-TREE analyses (supplementary table S11,
Supplementary Material online), further suggesting its high
efficiency in concatenation analysis.

In comparison, RAxML/ExaML did not yield the highest
likelihood scores for several data sets (fig. 6; supplementary
table S10, Supplementary Material online). One possible ex-
planation is that, due to its “lazy SPR” heuristic, RAxML might
report trees that are not optimal in terms of strict NNI or

SPR rearrangement (Stamatakis 2015). Indeed, the best ML
trees can be recovered by simply re-optimizing the RAxML-
generated (or RAxML/ExaML published) results using a
function built in RAxML itself for four (or six) data sets
(fig. 6; supplementary table S10, Supplementary Material
online). In addition, many of the differences in likelihood
scores between trees inferred by RAxML/ExaML and IQ-
TREE (the best ML trees) were small; three and five of the
RAxML and previously published trees, respectively, were
found to be equally good as the corresponding IQ-TREE
trees as determined by approximately unbiased tests (fig.
6; supplementary table S10, Supplementary Material online)
(Shimodaira 2002). After taking these two factors into ac-
count, the likelihood scores of only one of our RAxML-
generated trees and of two RAxML/ExaML-published trees
that were significantly worse than their corresponding IQ-
TREE results. In contrast, FastTree yielded significantly, and
sometimes substantially, worse likelihood scores for most
data sets. Furthermore, FastTree obtained lower likelihood
scores than ExaML and IQ-TREE, even when it was allowed
to run multiple times from distinct starting trees (supple-
mentary table S12, Supplementary Material online).

Tree Topology
For all data sets, we calculated the nRF distances between the
best ML trees and trees inferred by the three programs as well
as previously published trees estimated by RAxML/ExaML. As
shown in figure 6, the topological distances of the examined
programs are in agreement with their performance in likeli-
hood score maximization (see also supplementary table S10,
Supplementary Material online). RAxML-generated or
RAxML/ExaML-published trees were identical or highly similar

FIG. 6. Likelihood score differences and normalized Robinson-Foulds distances between concatenation-based species trees inferred by various fast
phylogenetic programs and the best-observed trees. The log-likelihood score differences are shown in logarithmic scale (with the addition of a
small value of 0.01), and the likelihood scores that are not significantly different from the best-observed scores are shown in gray. The nRF distances
of ExaML/RAxML-published and RAxML-generated trees that can be further improved by NNI rearrangements are shown in gray. In the plots, “P”
stands for ExaML/RAxML-published tree, whereas “R,” “I,” and “F” stand for trees inferred by RAxML, IQ-TREE, and FastTree, respectively.
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to the best ML trees, with the largest nRF distance being 0.064.
Importantly, some of the differences between the results of
RAxML/ExaML and IQ-TREE correspond to contentious rela-
tionships in phylogenomic studies (e.g., in data set ChenA4:
The relative positions of pigeon, falcon, and other Neoaves;
and in data set WickD3a: The relationships between
Chloranthales, Eudicots, and Magnoliids) (Shen et al. 2017).
Furthermore, some of these differences disappeared (and
nRF distances became smaller) after the NNI-based
reoptimization of RAxML/ExaML results. FastTree trees, on
the other hand, showed much greater nRF distances from
the best trees. We also evaluated the confidence levels (meas-
ures by Shimodaira–Hasegawa approximate likelihood ratio
test, or SH-aLRT support [Guindon et al. 2010]) of trees that
were significantly worse than the best ML trees. Figure 7 shows
that large proportions of the incongruent splits in FastTree
trees were highly supported.

Computational Speed
We compared the runtimes of ExaML, IQ-TREE, and FastTree
on ten selected supermatrix data sets; each program was used

to analyze each data set three independent times. The results
are summarized in figure 8 (see also supplementary table S13,
Supplementary Material online). Overall, FastTree was signif-
icantly and substantially faster than ExaML and IQ-TREE
(Wilcoxon signed-rank test, P-values<0.01 for all pairwise
comparisons), whereas the last two programs were on par
with each other with respect to speed (Wilcoxon signed-rank
test, P-value¼ 0.56). Interestingly, IQ-TREE was faster on five
of the six protein data sets, whereas ExaML was faster on all
four DNA supermatrices. We also compared ExaML, which is
specially designed for phylogenomic analyses, and RAxML,
which is for phylogenetic analyses in general, and found
that the former is substantially more time-efficient (�40%–
80%) than the latter (supplementary table S13,
Supplementary Material online). At the same time, when
the same starting trees were used, the two programs were
able to find the same best trees for all data sets analyzed here.

These results suggest that IQ-TREE is a very appealing al-
ternative to RAxML/ExaML, which is currently the default
choice in most concatenation-based phylogenomic studies.
This finding might not be entirely surprising because IQ-TREE
represents the latest development in fast phylogenetic
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FIG. 7. Many incongruent splits in concatenation-based species trees estimated by FastTree receive strong support. The jitter plots show the
distribution of SH-aLRT supports for incongruent splits in concatenation-based species trees estimated by various fast phylogenetic programs.
Here, incongruent splits are defined as the splits that are not present in the species trees with the best likelihoods. The species trees inferred by
IQ-TREE contain no incongruent splits and therefore the data for IQ-TREE is not shown. The SH-aLRT support is a measure of the reliability of splits
in a phylogeny; its value ranges from 0 (lack of support) to 100 (maximal support).
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programs and has implemented a novel data structure to
facilitate concatenation analysis (Chernomor et al. 2016).
For RAxML and ExaML, our findings indicate that their results,
even after multiple independent searches, should not be di-
rectly taken as the best answers and instead should be
checked for potential improvements. On the other hand,
together with the results of the coalescent-based test, our
benchmarking suggests that FastTree is more suitable for
preliminary phylogenomic analyses. The exceptional runtime
of FastTree might make it an attractive option for exploratory
investigations, yet the results should still be interpreted with
care.

Impact of Data Properties on the Relative
Performance of Fast Phylogenetic Programs
In this benchmarking, we noticed several data properties that
appear to have an influence on the relative performance of
the examined programs. The first one is the number of
sequences in the data set; in single-gene analyses, whereas
IQ-TREE outperformed RAxML and PhyML in most instances,
it did not do so on some of the data sets that had the largest
numbers of taxa (MisoA2 and MisoD2a/b, 144 taxa; StruA5,

100 taxa; PrumD6, 200 taxa, when single tree search was
performed; supplementary fig. S1, Supplementary Material
online). A potential explanation could be that IQ-TREE uses
NNI as its topological rearrangement mechanism (Nguyen
et al. 2015), whereas RAxML and PhyML are both based on
SPR (Stamatakis 2006; Guindon et al. 2010). It is well recog-
nized that SPR explores a greater proportion of tree space
than NNI (Whelan and Morrison 2017) and that it does so in
a manner proportional to the sequence number (SPR exam-
ines O n2ð Þ neighbors for each tree instead of O nð Þ neighbors
by NNI). Therefore, whereas IQ-TREE exhibited better perfor-
mance on data sets with fewer taxa through a combination of
NNI rearrangement and stochastic algorithm, NNI might be-
come a limiting factor on its performance on larger data sets.

Interestingly, in concatenation analyses, IQ-TREE found
equally good or better trees than RAxML/ExaML for all
data sets (fig. 6; supplementary table S10, Supplementary
Material online), including for the ones on which RAxML
performed better in single-gene tree inference. The only dif-
ference between concatenation and single-gene tree analyses
was the number of sites analyzed, a property that is strongly
correlated with phylogenetic signal (Rokas et al. 2003; Shen
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FIG. 8. Runtime comparisons of fast phylogenetic programs in concatenation-based species tree inferences. The bar-plots show the runtimes
(averaged over three replicates) required by RAxML, IQ-TREE, and FastTree to analyze ten selected supermatrices.
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et al. 2016a). Similarly, in single-gene tree inference, IQ-TREE
showed much better performance over RAxML on data set
JarvD5b than on JarvD5a (supplementary fig. S1,
Supplementary Material online); JarvD5b was derived from
concatenating single-gene alignments in JarvD5a into a smaller
number of longer partitions (Mirarab et al. 2014), resulting in
enhanced phylogenetic signal (measured by average bootstrap
support, or ABS, of gene tree) (supplementary fig. S4,
Supplementary Material online). Compared with the single-
gene data sets, these concatenated data matrices probably
correspond to much simpler tree spaces in which the NNI
algorithm might be sufficient. Consistent with this explana-
tion, we found that the relative performance of SPR-based
(RAxML and PhyML) and NNI-based (IQ-TREE) programs
was indeed associated with the phylogenetic signal of align-
ment data. For instance, we compared the ABS values of the
best-observed single-gene trees recovered by RAxML-10 only,
by IQ-TREE-10 only, or by both programs, and found that they
exhibited lower, intermediate, and higher ABS values, respec-
tively (P-values<2.2� 10�16 for all Wilcoxon rank-sum tests;
fig. 9). This trend held across most data sets (supplementary fig.
S4B, Supplementary Material online). We also observed the
same pattern in the comparison between PhyML-10 and
IQ-TREE-10 (supplementary fig. S4C, Supplementary Material
online), but not between RAxML-10 and PhyML-10 (supple-
mentary fig. S4A, Supplementary Material online).
Investigating the relationship between the performance of
fast phylogenetic programs and the strength of phylogenetic
signal, which is in turn correlated with many other factors
(Shen et al. 2016a), is an interesting area of future research.

A hypothesis that stems from these results is that the
performance of the SPR-based RAxML/ExaML programs will

become more favorable (relative to that of the NNI-based
programs) as the numbers of taxa included in phylogenomic
data sets continue to increase beyond the numbers in the
data sets examined in this study (i.e., 200 taxa in PrumD6). To
that end, we further compared the performance of RAxML/
ExaML and IQ-TREE on two supermatrices with much greater
numbers of taxa, namely KatzA10 (800 taxa, 150 genes [Katz
and Grant 2015]) and HugA11 (3,083 taxa, 16 genes [Hug
et al. 2016]) (supplementary table S1, Supplementary Material
online). Notably, all independent RAxML/ExaML searches
were able to find better likelihood scores than IQ-TREE on
both data sets (supplementary table S12, Supplementary
Material online; for both data sets, RAxML and ExaML found
the same best trees when the same starting trees were used),
which is completely opposite to the results on data sets with
200 or less taxa. This result suggests that, in their current
implementations, the SPR-based RAxML/ExaML is likely to
be considerably more powerful than the NNI-based IQ-TREE
in analyzing phylogenomic data sets that contain several
hundreds or thousands of taxa. Not surprisingly, FastTree
found substantially worse likelihood scores on HugA11
even with multiple tree searches (supplementary table S12,
Supplementary Material online; KatzA10 contains both DNA
and amino acid data and thus cannot be analyzed by
FastTree).

Lastly, in agreement with previous studies (Guindon et al.
2010; Nguyen et al. 2015), we found that some programs
displayed different time efficiency on protein and DNA
data sets. For example, in single-gene analyses, PhyML was
�1.5 times faster on protein alignments but �3.1 times
slower on DNA alignments in comparison with RAxML (fig.
4; supplementary table S7, Supplementary Material online).
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FIG. 9. The strength of phylogenetic signal in the data has an impact on the relative performance of RAxML-10 and IQ-TREE-10. The violin plots
show the distributions of average bootstrap values of alignments for which the best likelihood scores were found by either RAxML-10 or IQ-TREE-
10, or both strategies at the same time. The average bootstrap values are taken from previously reported phylogenies for the alignments are used
here as a measure of the strength of phylogenetic signal.
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Similarly, in concatenation analyses, IQ-TREE required shorter
runtimes (�40%–70%) than RAxML on most protein data
sets, whereas the runtimes were relatively longer (�60%–
110%) for DNA data sets (supplementary table S7). Such
differential behavior may be attributed to the distinct algo-
rithmic designs and/or software implementations of the pro-
grams on protein and DNA data (Guindon et al. 2010).

Conclusion
In this study, we systematically examined and compared the
performance of four popular, ML-based fast phylogenetic
programs. As our evaluation covered standard phylogenetic
and phylogenomic approaches (gene tree inference, as well as
coalescent-based and concatenation-based species tree infer-
ence), assessed key parameters of inference (likelihood score,
topology, and computational speed), and examined a com-
prehensive collection of empirical state-of-the-art phyloge-
nomic data sets with hundreds to thousands of genes and
up to 200 taxa, our findings are directly relevant for the ex-
perimental design and execution of real-world phylogenetic
and, particularly, phylogenomic studies.

Materials and Methods

Empirical Phylogenomic Data Sets
The data sets were retrieved from their respective sources as
listed in supplementary table S1, Supplementary Material on-
line. They were used in this study without any filtering on
their contents, with two operations performed when neces-
sary: 1) file split – some data sets (e.g., MisoD2) have only the
concatenated alignments available, hence they needed to be
split up to obtain single gene alignments; and 2) format con-
version – alignments in the data sets are provided in either
the “FASTA” or the “Phylip” formats, and had to be converted
into the other format to be compatible with all examined
phylogenetic programs (e.g., FastTree requires the “FASTA”
format and PhyML requires the “Phylip” format). Similarly, all
partition model files were transformed into the desired for-
mat for each phylogenetic program. Both the original and the
actual files used for this study, as well as all the inferred trees
are available from the figshare repository (https://figshare.
com/projects/Evaluating_fast_maximum_likelihood-based_
phylogenetic_programs_using_empirical_phylogenomic_
data_sets/22040; last accessed November 26, 2017).

Single-Gene Tree Inference
For single-gene tree inference, model selection analysis was
first performed for each amino acid alignment to determine
the best-fit model using the “TESTONLY” option of IQ-TREE
v1.4.2 (Nguyen et al. 2015). The set of candidate models in-
cluded all amino acid substitution models supported by
RAxML, with and without empirical amino acid frequencies,
and with the GAMMA correction for among site heteroge-
neity of evolutionary rates (Yang 1994) always enforced. For
nucleotide alignments, the GTR model with empirical base
frequencies and GAMMA distribution was used since it is the
choice of almost all phylogenomic studies. Further details on
the commands used for the model selection and all the

analyses described below are available in supplementary ma-
terial S1, Supplementary Material online.

Then each alignment was analyzed by single-threaded ver-
sions of the four fast phylogenetic programs. For the purpose
of benchmarking, one tree search was conducted using each
program under the same model settings (see below for
FastTree as the only exception). We also performed additional
RAxML searches with multiple parsimony and random start-
ing trees, which represents a common strategy used in phy-
logenomic studies. In total, seven strategies of phylogenetic
analysis were assessed:

(1) RAxML-10: Two analyses were carried out for each
alignment using RAxML v8.2.0 (Stamatakis 2014);
one included five independent searches starting from
parsimony trees and the other five starting from ran-
dom trees. A random number seed was generated in-
dependently and fed into each analysis. The BFGS
optimization method was turned off in the analyses
of nucleotide alignments since it has been reported
previously to produce unstable results (Church et al.
2015). The likelihood scores of the trees inferred by the
two analyses were compared with determine the final
result of RAxML-10 and the tree with the highest like-
lihood was selected; in cases where two trees had
equally high likelihood scores but different topologies,
a random selection was made from the two trees (see
the “Assessment of tree inferences” section for detailed
procedure on likelihood score and topological distance
calculations).

(2) RAxML: One search was carried out for each alignment
using RAxML v8.2.0 (Stamatakis 2014) with a parsi-
mony starting tree. The analysis was initiated using
the same random seed number as the analysis based
on parsimony starting tree in RAxML-10, and thus can
be considered as a subset of the tree inferences con-
ducted in RAxML-10. Therefore, RAxML-10 will always
produce equal or better results than RAxML. All other
settings were the same as RAxML-10.

(3) PhyML-10: Five independent analyses were carried out
for each alignment using PhyML v20160530 (Guindon
et al. 2010); each included one search starting from a
parsimony tree and one other search starting from a
random tree. The “SPR” algorithm was selected for tree
topology search. Certain amino acid substitution mod-
els (e.g., JTTDCMut and mtZOA) were specified as
custom models since they were not supported by
PhyML natively. Unlike in RAxML analyses, random
number seeds were generated automatically by
PhyML. The tree with the highest likelihood was se-
lected in the same way as in RAxML-10.

(4) PhyML: One single search on each alignment using
PhyML v20160530 (Guindon et al. 2010) with a parsi-
mony starting tree, corresponding to the first parsi-
mony starting tree-based search in PhyML-10.

(5) IQ-TREE-10: Ten independent searches were carried
out for each alignment using IQ-TREE v1.4.2 with de-
fault settings except for the model. Similar to PhyML,
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IQ-TREE generates random seed numbers automati-
cally. The tree with the highest likelihood was selected
in the same way as in RAxML-10.

(6) IQ-TREE: One search on each alignment using
IQ-TREE v1.4.2, corresponding to the first tree search
in IQ-TREE-10.

(7) FastTree: One search was carried out for each align-
ment using FastTree v2.1.9 (Price et al. 2010) with the
default heuristic NJ starting tree. The “-spr 4,” “-mlacc
2,” and “-slownni” options were specified to enable
more thorough heuristic tree search. Unlike the other
programs, FastTree only supports three amino acid
substitution models (i.e., JTT, WAG, and LG).
Therefore, the best-fit model among the three was
selected for each FastTree analysis of amino acid align-
ment. Moreover, the algorithm of FastTree is determin-
istic, thus independent analyses of the same alignment
will always lead to the same result.

Once all single-gene tree estimations were completed,
each alignment was associated with at least seven gene trees,
which included the trees inferred by the seven above-
mentioned strategies and, for most data sets, previously
reported single-gene trees from respective publications. The
gene trees of each alignment were then compared with iden-
tify the one with the best likelihood score, which is referred to
as the “best-observed” tree; the tree with the highest likelihood
score was selected to be the best-observed tree, or, if multiple
trees had the same likelihood score, a random selection was
made among them (see the “Assessment of tree inferences”
section for detailed procedure on likelihood score and topo-
logical distance calculations).

Coalescent-Based Species Tree Inference
Each of the 19 data sets was analyzed following the “two-step”
procedure of coalescent-based species tree inference (Liu et al.
2015); single-gene trees were first estimated using fast ML-
based phylogenetic programs (see above) and were then used
to infer the species tree with the coalescent-based approach
implemented in the ASTRAL program, v4.10.12 (Mirarab and
Warnow 2015). In total, eight coalescent-based species trees
were estimated for each data set, seven of which were based
on single-gene trees produced by the seven strategies, and the
eighth one was based on the “best-observed” trees.

Concatenation-Based Species Tree Inference
Supermatrices consisting of all single-gene alignments and
corresponding model files indicating partition scheme as
well as model assignments are available for all data sets except
for MisoD2a and JarvD5b. Concatenation-based species tree
inferences were performed on these supermatrices using par-
allelized versions of all phylogenetic tools whenever possible
due to the heavy computation being required. Edge-linked
partitioned analyses (i.e., branch-lengths shared across parti-
tions) were performed on each supermatrix using both
RAxML and IQ-TREE. The RAxML analyses were conducted
using RAxML-MPI v8.2.3 (available through the CIPRES
Scientific Gateway), each consisting of six to eight tree

searches with parsimony starting trees, whereas five indepen-
dent IQ-TREE searches were carried out for each supermatrix
using IQ-TREE-OMP v1.4.2. FastTreeMP v2.1.9 was run once
per supermatrix with the thorough search parameters (see
above); partition schemes were not used since FastTree does
not support partitioned analysis. PhyML v20160530 was also
used to analyze the supermatrices but failed on multiple data
sets (the analyses either collapsed or did not finish after more
than one week of computation).

Assessment of Tree Inferences
In order to evaluate the performance of different fast phylo-
genetic programs, their inferred trees were compared from
the following three aspects:

(1) Likelihood: With respect to likelihood score maximiza-
tion, a program was considered to perform better than
another if it yielded a log-likelihood score that was
more than 0.01 higher than the other. To ensure the
fairness of the comparison, the likelihood scores of all
trees were re-calculated using RAxML v8.2.0 with mod-
els set to the best-fit models and “GTRþG” for amino
acid and nucleotide single-gene alignments, respec-
tively, or the respective partition schemes for super-
matrices. Trees of the same topology are presumed to
have the same likelihood score. The BFGS optimization
method was turned off in the analyses of nucleotide
alignments. Independent likelihood score re-
calculations were conducted for all trees using IQ-
TREE v.1.4.2 and the R package “phangorn” v2.2.0 to
control for potential biases since RAxML itself is one of
the programs to be assessed. The results were essen-
tially the same (Spearman’s correlations �0.99 and
P-values <2.2� 10�16 for all pairwise comparisons;
supplementary fig. S5, Supplementary Material online;
supplementary tables S14 and S15, Supplementary
Material online);

(2) Topology: Our benchmarking is based on empirical
data sets whose true underlying histories were un-
known, thus preventing a direct measurement of the
topological accuracy of programs. Thus, we compared
the trees inferred by various strategies/programs
against the tree with the best likelihood score observed
for each alignment by calculating the pairwise RF dis-
tances (Robinson and Foulds 1981) between them. To
allow for comparison across alignments, the RF distan-
ces were normalized by the total number of internodes
in respective pairs of trees. The reliabilities of coales-
cent- and concatenation-based species tree estima-
tions were evaluated using the local PP measure
(Sayyari and Mirarab 2016) implemented in ASTRAL
v4.10.12 and the SH-aLRT test (Guindon et al. 2010)
implemented in IQ-TREE v1.4.2, respectively.

(3) Speed: Computational efficiency is another critical fac-
tor affecting the choice of phylogenetic programs, es-
pecially when the availability of computational
resource is a concern. The aforementioned phyloge-
netic analyses were conducted on multiple different
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computational platforms, each equipped with differ-
ent types of CPUs, thus preventing a direct comparison
of the runtimes. To address this issue, we selected 10%
of single-gene alignments randomly from each data set
and redid all relevant phylogenetic analyses on
Vanderbilt University’s ACCRE cluster (http://www.
accre.vanderbilt.edu/) using the same type of comput-
ing nodes. Similarly, a subset of supermatrices were
selected and re-analyzed by ExaML v3.0.17, RAxML-
PTHREADS v8.2.0, IQ-TREE-OMP v1.4.2, and
FastTreeMP v2.1.9 (each with three replicates) on the
same type of ACCRE nodes.

Computational Resources
In this study, we conducted more than 670,000 tree infer-
ences on about 45,000 single-gene alignments and superma-
trices, which costed more than 300,000 CPU hours of
computational time in total. This huge amount of phyloge-
netic analyses was made possible by using three supercom-
puting resources, including the Advanced Computing Center
for Research and Education (ACCRE) at the Vanderbilt
University, the University of Wisconsin-Madison Center for
High Throughput Computing (CHTC), and the CIPRES
Scientific Gateway at the San Diego Supercomputer Center
(Miller et al. 2010). Single-gene analyses were distributed be-
tween ACCRE and CHTC. For supermatrices, RAxML analyses
were performed using the “RAxML-HPC v.8 on XSEDE” inter-
face on CIPRES, whereas the other analyses were carried out
on ACCRE.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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