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Abstract

Background: Associations between traits are prevalent in nature, occurring across a diverse range of taxa and traits.
Individual traits may co-evolve with one other, and these correlations can be driven by factors intrinsic or extrinsic to an
organism. However, few studies, especially in microbes, have simultaneously investigated both across a broad taxonomic
range. Here we quantify pairwise associations among 48 traits across 784 diverse yeast species of the ancient budding
yeast subphylum Saccharomycotina, assessing the effects of phylogenetic history, genetics, and ecology.

Results: We find extensive negative (traits that tend to not occur together) and positive (traits that tend to co-occur)
pairwise associations among traits, as well as between traits and environments. These associations can largely be
explained by the biological properties of the traits, such as overlapping biochemical pathways. The isolation environments
of the yeasts explain a minor but significant component of the variance, while phylogeny (the retention of ancestral traits
in descendant species) plays an even more limited role. Positive correlations are pervasive among carbon utilization traits
and track with chemical structures (e.g., glucosides and sugar alcohols) and metabolic pathways, suggesting a molecular
basis for the presence of suites of traits. In several cases, characterized genes from model organisms suggest that enzyme
promiscuity and overlapping biochemical pathways are likely mechanisms to explain these macroevolutionary trends.
Interestingly, fermentation traits are negatively correlated with the utilization of pentose sugars, which are major
components of the plant biomass degraded by fungi and present major bottlenecks to the production of cellulosic
biofuels. Finally, we show that mammalian pathogenic and commensal yeasts have a suite of traits that includes growth
at high temperature and, surprisingly, the utilization of a narrowed panel of carbon sources.

Conclusions: These results demonstrate how both intrinsic physiological factors and extrinsic ecological factors drive the
distribution of traits present in diverse organisms across macroevolutionary timescales.

Background
Trait correlations are widespread across life. These correla-
tions can be intrinsic to an organism’s biology or the result
of extrinsic factors. Intrinsic biological factors that can lead
to associations between traits include overlapping biochem-
ical or genetic pathways [1, 2], promiscuous enzymes [3, 4],
and other forms of pleiotropy [5, 6]. Such factors can
facilitate the evolution of novel traits from preexisting traits
[7–9]. The environment or niche of an organism is a

composite of many factors (e.g., temperature, carbon
availability, and salinity), which select for suites of traits or
trait syndromes that are compatible with that specific
habitat or niche [10].
Trait syndromes can include a set of traits that collect-

ively provide a fitness advantage, either additively or non-
additively, in the environment and have been described for
distinct groups of species that are associated with certain
environments [11–14]. For example, stress-resistant syn-
drome is a common suite of traits that enables plants to
survive in stressful environments, such as low-resource en-
vironments [15]. Stress-resistant plants tend to have lower
rates of growth and photosynthesis, high root-to-shoot ra-
tios, and additional adaptations to low-nutrient conditions.
A second example is domestication syndrome, a collection
of traits associated with the genetic change of an organism
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from a wild progenitor to a domesticated form, which is
prevalent among domesticated animals [16, 17] and plants
[18]. In animals, the characteristics of this syndrome can in-
clude reduction in tooth size, increased docility, reduction
in brain size, and many others [17]. Alternatively, correla-
tions between traits or suites of traits may be due to phyl-
ogeny, the retention of ancestral traits in descendant
species [19, 20]. Intrinsic, extrinsic, and phylogenetic factors
are not mutually exclusive, so inferences about interactions
among traits must consider each of these possibilities, a
task undertaken in relatively few comprehensive studies
[21–25], none of which have considered microbes or
metabolic traits.
The budding yeast subphylum Saccharomycotina is

among the most extensively characterized higher taxo-
nomic ranks [26]. In addition to the well-known model
system Saccharomyces cerevisiae and the human com-
mensal and pathogen Candida albicans, its more than
1000 known species share a common ancestor approxi-
mately half-a-billion years ago. These yeasts display con-
siderable genetic, phenotypic, and ecological diversity and
provide a unique opportunity to quantify trait associations
and elucidate the mechanisms that drive them [27–36].
Furthermore, these yeasts have been extensively described
by leading taxonomists, who have scored growth pheno-
types for a large number of phenotypic traits in The
Yeasts: A Taxonomic Study [26]. In addition to its compre-
hensive nature, an advantage of this phenotypic dataset is
that the methods used to score yeasts for trait presence
were uniform across species; therefore, there are fewer
biases than would occur by combining multiple published
datasets. We used this qualitative dataset of 48 traits in
784 budding yeast species to test whether physiological as-
sociations involving nitrogen and carbon source utilization
(i.e., assimilation or consumption), sugar fermentation,
and growth temperature traits were driven by intrinsic
(biological/functional) or extrinsic (environmental) fac-
tors. We identified pervasive positive and negative correla-
tions between traits among wild yeast species and found
that the structures of metabolic networks are dominant
factors that drive these associations, while environment
plays an important secondary role.

Results and Discussion
Since individual traits do not evolve independently of
each other, we hypothesized that the yeast phenotypic
dataset would include positive (traits that tend to co-
occur) and negative (traits that tend to not occur to-
gether) associations. We quantified pairwise associations
among 48 traits across 784 species. Most traits were
conditional growth, such as growth in a medium with a
single carbon source, and most species were represented
by a single strain, the taxonomic type strain. We verified
a subset of the dataset by growing 240 yeast species on

four carbon sources: galactose, maltose, sucrose, and raf-
finose (Additional file 1: Table S1). We found that 94%
of the growth results matched the data found within The
Yeasts: A Taxonomic Study, leading us to conclude that
this dataset is sufficiently accurate and reproducible.
For each trait pair, we quantified observed trait pair

counts (i.e., the number of times both traits in a pairwise
set were present across all species) and compared it to a
distribution of counts based on randomized or permuted
datasets (n = 10,000) to determine significance. The average
of these randomized counts represents our expected value,
and the difference between the observed and expected
counts represents the strength of the trait pair association.
We found several (n = 211) significantly positive (n = 104)
and negative (n = 107) pairwise associations among traits
(Fig. 1 and Additional file 2: Table S2). Clustering traits
based on association strength revealed that traits that
shared similar associations formed significant trait clusters
(p < 0.05, Additional file 3: Figure S1), which often involved
similar physiological functions (e.g., fermentation traits),
chemical bonds (e.g., glucosides), and functional groups
(e.g., sugar alcohols) (Additional file 2: Table S2), suggesting
that the biological properties of traits could be an important
factor affecting trait associations. Most negative associa-
tions occurred with sugar fermentation, growth on DL-
lactate, and growth at 37 °C (88/107, Fig. 1, bottom), each
of which will be highlighted below. In contrast, positive as-
sociations were broadly spread across traits and were not
driven by a few individual traits (Fig. 1b, bottom).

Intrinsic biological properties explain the largest
proportion of trait variation
Multiple factors could conceivably contribute to the positive
and negative trait associations we detected. We quantified
the extent to which phylogeny, biological properties, and
isolation environments contributed to the variance of trait
associations [37]. This variance decomposition showed that
biological properties (i.e., the functional attributes and struc-
tures of molecules consumed) largely drove the variation in
trait associations. Specifically, 47.9% of the variance was ex-
plained by biological properties alone (R2 = 0.479, Fig. 2),
while phylogeny and isolation environments explained only
0.0424% (R2 = 0.000424, Fig. 2) and 0.636% (R2 = 0.00636,
Fig. 2) of the variance on their own, respectively. In some
instances, multiple factors jointly explained the variance of
trait associations. The largest proportion of these complex
factors occurred between biological properties and isolation
environments, which together explained 8.12% of the vari-
ance (R2 = 0.0812, Fig. 2). Only 0.0541% of the variance
could be explained by both phylogeny and isolation envi-
ronments or by both phylogeny and biological properties.
In total, some combination of these three factors explained
56.8% of the variance in trait associations, leaving 43.2% un-
explained. These results show that the vast majority (98%)
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Fig. 1 Traits showed pairwise positive and negative associations, but the numbers and strength of association varied among traits. Bottom:
Stacked bar graph displaying the proportion of negative (red), positive (blue), and not significant (white) associations for all traits. Top: Heat map
of pairwise associations among traits. The color of a box represents the type of association: negative (red), positive (blue), and not significant
(white). The strength of the association (the difference between the observed and expected counts) is displayed by the saturation of the color.
We used a hierarchical cluster analysis to determine significant trait clusters with similar pairwise trait associations (Additional file 3: Figure S1; q <
0.05). Selected trait clusters are represented by the colors along the left-hand side and bottom of the graph
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of the explained variation among trait associations involves
biological properties intrinsic to the organism, while isola-
tion environments play an important secondary role, often
in conjunction with biological properties.

Limited effects of evolutionary history
Despite the limited amount of variance explained by
phylogeny in our full dataset, we tested individual traits
for a significant phylogenetic signal by calculating D
across individual traits using a phylogeny of 561 species
[38]. D is a measure of the character dispersion of binary
traits and is similar to the more commonly used Blom-
berg’s K and Pagel’s λ statistics, which are used for quan-
titative data. Negative D values represent phylogenetic
clustering, whereas values greater than 1 indicate phylo-
genetic over-dispersion. When D is not significantly dif-
ferent from 0, the trait is evolving according to a
Brownian motion process that tracks phylogeny. When
D does not significantly differ from 1, that trait is ran-
domly distributed across the phylogeny. Although we
detected some phylogenetic signal for most individual
traits (i.e., D significantly differed from 1 for 47/48
traits), these analyses also rejected simple Brownian mo-
tion for the majority of traits (i.e., D significantly differed

from 0 for 31/48 traits), suggesting that factors other
than phylogeny predominate (Additional file 4: Table
S3). Along with the variance decomposition (Fig. 2),
these results suggest that, although phylogenic history is
significantly associated with some individual traits, it is
not the major driver of the observed trait associations.

Environmental factors help drive trait associations
To test the role of isolation environments in trait associa-
tions further, we compiled and categorized the environ-
ments from which each species had been isolated from The
Yeasts: A Taxonomic Study and quantified the association
between isolation environments and traits using the same
methods to quantify trait associations (Additional file 5:
Table S4). Yeasts have been isolated from many
environments, including insects, plants, and food
(Additional file 6: Figure S2). These environments were
scored hierarchically, ranging from general categories (e.g.,
insects) to specific categories (e.g., ants). The broader cat-
egories increased the sample sizes available for statistical
analyses, but they may also aggregate cryptic ecologies.
Isolation environments differed by the numbers and

types of traits positively and negatively associated with
them (p < 0.05, Fig. 3 and Additional file 7: Table S5). The
strengths of these associations also varied among traits
and environments, partly due to differences in power. Sig-
nificant associations between traits and environments
were generally concordant with known ecologies. For ex-
ample, glucose and sucrose fermentation were positively
associated with fruit, fermented substrates, and drinks or
juice. These associations were not driven solely by the
genus Saccharomyces and included many non-Saccharo-
myces yeasts known to be important for fermentation and
spoilage of drinks, including yeasts that have been com-
mercialized as oenological starter cultures due to their fer-
mentation capabilities and their contributions to the
chemical compositions of wines (e.g., Hanseniaspora
uvarum, Torulaspora delbrueckii, Metschnikowia pulcher-
rima, and Lachancea thermotolerans [39]). H. uvarum
and T. delbrueckii have also both been shown to be in-
volved in the early stages of spontaneous fermentation of
grapes, demonstrating that these yeasts ferment fruits in
their natural environments [39, 40].
Growth at 37 °C was positively associated with isolation

from cacti (p < 0.001), which prefer warmer climates. Yeast
communities isolated from the family Cactaceae were pre-
viously associated with growth at high temperatures, al-
though species identifications were not possible in this
classic 1986 study [41]. Our analyses extend this pre-
molecular research to specific yeast taxa (e.g., Pichia cacto-
phila and Clavispora opuntiae), provide further statistical
support for this association, and highlight its relative im-
portance in a more comprehensive picture of yeast ecology.
Similarly, our analyses statistically supported the previously

Fig. 2 Variation in trait associations can largely be explained by
biological properties. We used variance partitioning to measure the
amount of variation in pairwise trait associations that could be
explained by biological properties (purple), isolation environments
(red), and phylogeny (green). Each circle represents a single factor,
while the overlap among circles represents interactions among
factors (e.g., the interaction between biological properties and
isolation environments is represented by the pink area). The values
provided in each area represent the amount each factor contributes
to the variation. In total, the factors represented here explain 0.568
(or 56.8%) of the variance in trait associations. The residuals
represent the proportion of the variance that is unexplained
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hypothesized positive associations between growth on DL-
lactate and isolation from oaks and cacti [41].
As expected, we also found growth at 37 °C was also

positively associated with yeasts being classified as patho-
genic (p = 0.0047). This oft-stated association [26, 28]
stems from the need to survive elevated temperatures
within endothermic hosts, but to our knowledge, it has
never been formally tested across a broad taxonomic scale.
In contrast, growth at 37 °C was negatively associated with
isolation from insects (p = 0.03) and fungi (p < 0.001),
which are not endothermic. More intriguingly, the endo-
thermic pathogenic/commensal lifestyle could help explain
the unexpected negative associations that we observed be-
tween growth at 37 °C and the ability to utilize a variety of
carbon sources (15/33 carbon sources, Table 1) because
emerging evidence suggests that carbon starvation is

frequently encountered by yeasts growing in mammalian
hosts [42–44].
The ability to survive in certain habitats requires suites

of traits, while other traits are expendable [10, 15];
therefore, both negative and positive trait associations
could be affected by extrinsic factors related to isolation
environments. To explore the extent to which extrinsic
factors contributed to trait associations further, we
tested whether the number of trait associations we saw
in each specific environment was more than that ex-
pected by chance. If there were more significant ob-
served trait associations (negative or positive) within a
given environment than expected, we would conclude
that the specific isolation environment tested was not
important to the significant trait associations. Instead,
for all isolation environments, we found no significant
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differences between the observed and expected associa-
tions for both the positive (Fig. 4a) and negative (Fig. 4b)
associations. In contrast, when we removed the effects
of the environment by drawing species from random en-
vironments and repeating our analyses as a control, we
found significant deviations from the number of positive
and negative associations. These results demonstrate
that the environment is an important factor in explain-
ing observed trait associations, even if it may often be
acting in concert with intrinsic biological factors.

Networks of intrinsic biological factors affecting traits
Given the amount of the variance in trait associations ex-
plained by biological properties, we examined the role of
biological factors in more detail. In particular, promiscu-
ous enzymes and pathway overlap are major features of
yeast carbon metabolism that could potentially underlie
many of the scored traits and the significant trait clusters
(p < 0.05, Fig. 1 and Additional file 3: Figure S1). Shared
enzymes and pathways are expected to lead primarily to
positive associations, and indeed, we found an enrichment
for positive associations relative to negative associations
among carbon source utilization traits (p = 7.67 × 10− 6).
Across trait pairs (n = 496), 75 pairs were significantly
positively associated, while only 34 were significantly
negatively associated (Fig. 5a and Additional file 8: Table

S6). Moreover, DL-lactate (n = 20) and methanol (n = 7)
resulted in 79% of all negative associations with other car-
bon sources, and most carbon sources were not negatively
associated with any beyond these two (Fig. 5b).
To explore the role and cause of trait associations among

carbon utilization traits further, we generated a network of
all significant positive associations (Fig. 6). We detected five
distinct communities or subnetworks within the complete
network using the Clauset–Newman–Moore algorithm, a
modularity maximization method that detects communities
by searching for subdivisions with high modularity [45].
Many of the carbon sources within each subnetwork shared
similar molecular structures and functional properties
(Additional file 9: Table S7). For example, we detected a
subnetwork that consisted exclusively of Glucosides, which
all contain a glucose moiety linked to other chemical
groups (p = 3.57 × 10− 5, Fig. 6a). Similar types of glucosidic
bonds are often cleaved by promiscuous enzymes [46], and
our findings suggest that these biochemical properties at
least partly explain trait associations across macroevolu-
tionary timescales. The Contains Galactose subnetwork
(p = 0.0001, Fig. 6a) included all three glucosides not found
in the Glucosides subnetwork (the galactosides melibiose,
raffinose, and lactose, Fig. 6c), as well as galactose and its
sugar alcohol, galactitol. The two trisaccharides in the data-
set even had significant edges connecting them to their
constituent disaccharide moieties (raffinose to melibiose
and sucrose, as well as melezitose to sucrose, Fig. 6b).
Finally, the Sugar Alcohols & Pentose Phosphate Path-

way subnetwork was enriched (p = 1.81 × 10− 5) for pen-
toses and sugar alcohols; 30 interactions occurred among
nodes within the subnetwork, compared to 13 outside the
subnetwork. Sugar alcohols accumulate as intermediate
products during pentose utilization in many microbes
[47], including yeasts [48, 49], suggesting that overlapping
biochemical pathways may explain the association be-
tween the utilization of these two types of carbon sources.
Strikingly, the ability to ferment various sugars was nega-
tively associated with the ability to utilize sugar alcohols
and pentoses (9 out of 11 pentoses/sugar alcohols, p =
0.006, Fig. 1 and Fig. 6d–i). Efficient fermentation of pen-
toses, such as xylose and arabinose, is one of the central
challenges of bioenergy research, and this broad negative
association across yeasts further underscores that only a
handful of yeast species have naturally evolved pentose
fermentation [50–53].

Biochemical pathways associated with intrinsic biological
factors
The enrichment for positive associations among carbon
sources and the communities of carbon sources with
similar properties and structures suggests that the ability
to utilize one carbon source can increase the potential
to utilize similar carbon sources. These findings provide

Table 1 Utilization of diverse carbon sources is negatively
associated with growth at high temperatures

Utilization Observed Expected padj Difference

Sucrose 428.000 374.15 <0.0001 53.8478

Galactose 445.000 396.3 <0.0001 48.7038

Trehalose 418.000 377.93 0.007 40.0716

Maltose 424.000 366.55 <0.0001 57.4544

Melezitose 402.000 352.02 <0.0001 49.9786

Methyl-α-D-glucoside 386.000 340.78 <0.0001 45.2166

Cellobiose 416.000 370.55 <0.0001 45.4488

Salicin 416.000 371.1 <0.0001 44.896

L-sorbose 429.000 382.19 <0.0001 46.8062

D-xylose 412.000 375.23 0.010 36.769

Ribitol 430.000 375.53 <0.0001 54.4678

D-mannitol 438.000 399.61 <0.0001 38.386

D-glucitol 447.000 404.41 <0.0001 42.5884

D-glucosamine 402.000 354.46 <0.0001 47.5448

2-keto-D-gluconate 413.000 363.27 0.002 49.7272

The observed data are a count of when one trait (e.g., the carbon utilization trait
or growth at 37 °C) is present, while the other trait is absent. The expected value
is the average count of the presence of either the carbon utilization trait of
interest or growth at 37 °C and the absence of the other trait across 10,000
permutations. The difference is the observed minus the expected columns. We
corrected for multiple tests across associations with the Benjamini–Hochberg
correction (q < 0.05 shown, all data in Additional file 2: Table S2), which is shown
in the column padj
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an empirical and evolutionary underpinning for a theor-
etical model of bacterial central carbon metabolism,
which proposed that metabolisms viable on one carbon
source can be preadapted to multiple other carbon
sources as a result of shared pathways [7]. Furthermore,
the enrichment for specific molecular properties, chem-
ical structures, and pathways within communities sug-
gests an underlying genetic and biochemical basis for
the suite of carbon metabolism traits present within a
given yeast species [54].
To determine whether the observed macroevolutionary

patterns of metabolic trait associations could indeed be
explained by the shared genetic and biochemical path-
ways, we measured the extent to which the presence of
several well-characterized genes from model organisms
could explain growth on various carbon sources. We fo-
cused on 79 species with extensive trait information, fully
sequenced genomes, and a well-resolved phylogeny [55].
For traits, we focused on two significant communities
within the positive carbon metabolism network (Fig. 6)
and searched the genomes for homologs of genes known
to enable the utilization of those carbon sources in model
organisms (Additional file 10: Table S8).
For the Contains Galactose community, the GAL1,

GAL7, and GAL10 genes, which encode the enzymes re-
quired for galactose utilization, were positively associated
with galactose utilization (p < 0.05, Additional file 10: Table

S8 and Additional file 11: Figure S3a) [56]. To test whether
interacting pathways could indeed explain some of the sig-
nificant edges within communities, we also tested whether
galactose utilization was positively associated with the pres-
ence of MEL1 and LAC12, which encode galactosidases
that are required for melibiose and lactose utilization, re-
spectively. Indeed, even though MEL1 and LAC12 are not
required for galactose utilization, we found significant asso-
ciations across macroevolutionary timescales (p < 0.05,
Additional file 11: Figure S3a, Additional file 12: Table S9).
The Glucosides community was rich in individual genes

(e.g., MAL11 and IMA5) associated with growth on mul-
tiple carbon sources, including maltose, melezitose, and
sucrose (p < 0.05, Additional file 10: Table S8 and
Additional file 11: Figure S3b). These results suggest that
these genes are pleiotropic and could be responsible for
the utilization of multiple carbon sources, in line with an
extensive body of research in Saccharomyces showing en-
zyme promiscuity [57], as well as with the demonstration
that the deletion of MAL1 and MAL2 in Ogataea poly-
morpha prevented this distantly related yeast from grow-
ing on multiple carbon sources, including maltose,
sucrose, and melezitose [58]. Our comprehensive analyses
suggest that the established mechanisms from these model
systems are general and further show how these promis-
cuous enzymes have led to positive trait associations
across a broad taxonomic range.

a b

Fig. 4 Isolation environments contribute to positive and negative associations among traits. We calculated the deviations for our observed data
for both a positive and b negative associations. All of the deviations for the observed data were close to zero, suggesting that isolation
environments contribute to the trait associations. The saturation of the bars represents sample sizes. In the insets, we removed the effect of the
environment by randomly sampling species without regard to their environment for multiple sample sizes (4 ≤ n ≤ 217) and reproduced the
environment data on the same scale for contrast (isolation versus random). Note that removing the effect of environment led to significant
deviations from expectations for both positive (inset in a) and negative (inset in b) associations
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Finally, we quantified whether genes that are involved in
the metabolism of carbon sources within each community
were more likely to co-occur. We found a significant differ-
ence in the frequency of co-occurrence among genes that
were from the same community (81.1%) versus when they
were from two different communities (60.2%) (Χ2 = 7.98,
p = 0.005, Additional file 11: Figure S3c). In other words,
genes involved in the utilization of positively associated car-
bon sources co-occurred more frequently than those of
randomly associated carbon sources. The significant co-

occurrence of genes associated with the utilization of posi-
tively associated carbon sources provides further support
that intrinsic biological properties contribute to positive
trait associations.

Conclusions
As seen in non-microbial taxonomic groups [22, 25], trait
pairs in the budding yeast subphylum show significant posi-
tive and negative associations of varying strengths. Positive
associations are particularly common among carbon

a

b

Fig. 5 Significant associations among carbon metabolism traits were biased toward positive associations. a Bar graph displaying the total number
of positive (blue) and negative (red) associations for each carbon source (Additional file 5: Table S4). b Negative association network between
carbon utilization traits. The width of the edge between nodes represents the strength of the association between carbon sources. Node color
represents similar molecular structures among compounds, and shading behind nodes represents significant communities within the network.
Note that, among negative associations, the majority (79%) of significant associations were with DL-lactate and methanol
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metabolism traits, relative to negative associations, espe-
cially those involving compounds with similar molecular
structures and pathways. These correlations suggest that
the ability to metabolize individual carbon sources can in-
crease the potential to utilize additional chemically related
carbon sources. Among negative associations, there are no
absolute exclusions where the presence of one trait is
perfectly correlated with the absence of another, suggesting
that any subtle trade-offs that may occur can be overcome
across macroevolutionary timescales. One caveat to our
study is that these data are a qualitative measure of growth.
Measuring correlations between quantitative growth

parameters, such as lag, growth rate, and saturation, may re-
veal trade-offs or interactions among traits that cannot be
seen with the current data. An interesting avenue of future
research would be to measure quantitatively the growth pa-
rameters of all species and look for positive and negative
associations.
The presence of negative associations could conceivably

be explained by intrinsic biological factors leading to trade-
offs or due to extrinsic factors. For example, highly fermen-
tative yeasts might be intrinsically poor pentose fermenters
due to a metabolic trade-off, possibly explaining the chal-
lenges encountered by biofuel researchers [59–61].

a

d e f

g h i

b

c

Fig. 6 Carbon source utilization trait associations form communities within the network that contain traits with similar structures and/or properties.
a Network of positive associations among carbon utilization traits. The width of the edge between nodes represents the strength of the association
between carbon sources. Node color represents similar molecular structures among compounds, and shading behind nodes represents significant
communities within the network. Each subnetwork is labeled with a description of the biochemical structures or pathways captured by that subnetwork.
b, c Reproduction of network highlighting compounds containing specific monosaccharide moieties. d–i Reproduction of network highlighting negative
(red) and positive (blue) associations with the fermentation of specific sugars. Note that fermentation of a specific sugar is always positively associated
with utilization of that sugar because utilization is a prerequisite for fermentation; in some cases, related sugars are also positively correlated. Trehalose
fermentation may be an exception to the general trend of negative associations with other carbon sources because many yeasts synthesize trehalose
internally [74]
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Alternatively, negative associations could also be explained
by extrinsic factors, such as adaptation to the environment
or an ecological niche. Under this second model, environ-
ments that select for robust pentose metabolism might not
typically favor highly fermentative species. Similarly, there
could be a trade-off between the utilization of a broad array
of carbon sources and growth at high temperatures, as sug-
gested by research demonstrating impaired growth on dif-
ferent carbon sources at 37 °C in Candida albicans [43].
Alternatively, yeasts may simply encounter a more limited
range of carbon sources within mammalian and endother-
mic hosts [44], resulting in the negative association between
carbon utilization breadth and growth at 37 °C, perhaps
through the neutral loss of metabolic pathways [56]. The
intrinsic explanations posit limitations to adaptability im-
posed by the metabolic network, while the extrinsic expla-
nations propose a dominant role for the ecological niche in
determining which traits are retained or acquired. An inter-
esting future research avenue will be to determine whether
similar patterns are observed in other large clades of diverse
eukaryotic microbes, or perhaps even in bacteria where
widespread horizontal gene transfer may further diminish
the role of phylogeny.
By accounting for both intrinsic and extrinsic factors, our

results demonstrate that both genetics and environment
contribute to trait associations. Indeed, these factors likely
interact to create a positive feedback loop, in which an or-
ganism’s genes ultimately underlie the traits needed for sur-
vival in an environment, and the environment then puts
additional selective pressure on those genes, leading to their
retention or further adaptation [62]. Together, these forces
shape the traits present in an organism, strengthen correla-
tions between those traits among organisms, and select for
common suites of traits or trait syndromes in diverse clades.

Methods
Species
We examined trait correlations in 784 Saccharomycotina
species [26] from 50 different isolation environments.
We quantified the phylogenetic signal across our trait
data for 578 species and curated isolation data for 831
yeast species.

Trait data
Qualitative trait data for 75 traits were curated from The
Yeasts: A Taxonomic Study [26] (Additional file 13: Table
S10). The trait data are largely based on the type strain
of a species; however, in some cases, multiple strains
were assessed for a species and condensed into one
value by the taxonomist. Traits were scored by multiple
taxonomists, but they used standardized protocols to
limit the biases of multiple techniques [26]. When mul-
tiple strains were qualitatively assessed for a species and
only some strains grew, the trait was scored as

“variable.” In the dataset, 6% of the trait matrix was
marked as variable. The occurrence of two traits being
variable within the matrix was less than 1%; therefore,
all traits scored as variable were considered positive and
scored as a 1 (Additional file 14: Table S11). Trait data
were not available for every trait for every species; there-
fore, any trait that was evaluated for presence or absence
in fewer than 80% of the species was removed from all
analyses. Species that were lacking trait data for more
than 80% of the traits considered in our study were also
removed from analyses, leaving 784 species and 48 traits
with sufficient data.

Growth validation
We validated the growth of 240 yeast species in our
dataset on four carbon sources, galactose, maltose, su-
crose, and raffinose. We inoculated the type strains of all
species in yeast extract peptone dextrose and allowed
them to grow for 3 days. After the initial inoculation, the
cultures were arrayed into a 96-well plate and a pinner
was used to inoculate a 96-well plate containing minimal
media plus 2% sugar. The cultures grew for a week and
were then scored for growth. We repeated the growth
validation experiment three times. A species was scored
as growing on a carbon source if it grew at least two or
three times. After blindly scoring the yeasts for growth,
we compared the results to the trait data from The
Yeasts: A Taxonomic Study.

Imputations
Since the trait data contained missing values, to deter-
mine the best way to handle these values, we tested
three methods: (1) all missing values were set to 0, (2)
all missing values were set to 1, and (3) missing values
would be either 1 or 0. Overall, the third method cor-
rectly predicted trait presence or absence 79% of the
time, while the other methods predicted trait presence
or absence correctly less often (Additional file 15: Table
S12). Trait associations were generally insensitive to
how missing values were handled, and the methods
agreed on trait associations 99% of the time. Therefore,
we performed the remaining analyses using the third
method (imputation).
The missing data were imputed and replaced with

a value of 1 or 0 by calculating the probability of a
value being 0 in a species, P(s), and trait, P(t),
respectively:

P sð Þ ¼ n0
ns

;

P tð Þ ¼ n0
nt

;

where n0 is the number of 0 values found for that spe-
cies or trait, and ns and nt are the total number of data
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points for that species and trait, respectively. The pro-
portion of 0 values was also calculated for the total
matrix, T(z):

T zð Þ ¼ n0
nr � nc

;

where nr and nc, are the total number of rows and col-
umns in the matrix, respectively. These values were then
multiplied to determine the probability that the missing
data for that cell would be 0, P(0):

Pð0Þ ¼ TðzÞ � ðPðsÞ � PðtÞÞ:
When P(0) was greater than 0.5, the missing value

was set to 0, and when it was less than 0.5 the
missing value was set to 1. This imputation method
quantitatively accounts for the observation that
some traits are more common than others, while
outperforming approaches encoding all missing
values as 0 or 1.

Associations
We permuted the trait presence/absence matrix (n =
10,000 permutations) using a swap algorithm to perform
the permutations (n = 1000 swaps per permutation) and
maintain row and column sums from the original matrix.
Permutations were performed using the R package
picante (v. 1.6–2) [63]. To determine whether traits
were positively or negatively associated, for each trait pair,
we counted the number of times that both traits were ob-
served (1,1) and the number of times only a single trait
was present (1,0 or 0,1) across species, respectively:

Positiveobs ¼ obs 1;1ð Þ;
Negativeobs ¼ obs 1;0ð Þ þ obs 0;1ð Þ:

These values were also calculated for the permuted
data, and the expected trait pair counts were determined
by calculating the mean of those permuted observations:

Posexp ¼
P

exp 1;1ð Þ
10;000

;

Negexp ¼
P

exp 0;1ð Þ þ exp 1;0ð Þ
10; 000

:

The strength of each association (Str) was calculated
by subtracting the observed and average accepted values
for the positive and negative associations, respectively:

Strpos ¼ Positiveobs−Posexp
�
�

�
�;

Strneg ¼ Negativeobs−Negexp

�
�
�

�
�
�:

We calculated the binomial confidence intervals to deter-
mined significant associations using the R package Hmisc
(v. 4.0–0) [64] and corrected for multiple tests across asso-
ciations with the Benjamini–Hochberg correction. padj. or q

< 0.05 was accepted as significant, and decreasing the sig-
nificance cutoff to q < 0.01 did not affect our general con-
clusions. For all significant associations, we reported the
observed [the count of either (1,1) or (1,0 or 0,1) within the
actual dataset] and expected values [the mean of either
(1,1) or (1,0 or 0,1) for the randomized dataset (n =
10,000)] for that association (Additional file 1: Table S1).
Since negative and positive associations were calculated
separately, if an association was not significant for either a
positive or negative association, we reported the observed
count for the highest difference between observed and ex-
pected (Additional file 1: Table S1). The same method was
applied to determine trait isolation associations.

Significant trait clusters
We determined whether traits showed similar patterns of
associations via cluster analysis. We calculated a dissimi-
larity matrix, using a Euclidean distance, for all trait pairs
using the difference between observed and expected asso-
ciation values for both the positive and negative associa-
tions. All associations that were not statistically significant
were set to a value of 0. Traits were clustered using Ward’s
method in the R package pvclust (v. 2.0–0) [65].

Variance partitioning of trait associations
Adjusted bi-multivariate statistics ( R2

a ) were computed
using the varpar() function in the R package vegan (v.
2.4–3). This statistic estimates the contributions of the in-
dependent variables (phylogeny, biological properties, and
isolation environments) to the response variable (trait asso-
ciation). Three matrices were used for the independent var-
iables. For the phylogenetic matrix, D1/D2 sequences from
the rDNA locus for 578 Saccharomycotina species in our
association analysis and the outgroup basidiomycete Cryp-
tococcus neoformans were used to construct a phylogenetic
tree of the subphylum Saccharomycotina [26, 66, 67]. All
sequences were aligned using MAFFT (v. 7.305) [68, 69].
RAxML-HPC BlackBox (v. 8.2.9) was applied to build the
phylogenetic tree under the GTRCAT model for nucleotide
sequences; 1000 bootstrap replicates were used to assess
the reliability of internal branches (Additional file 16: Table
S13) [69, 70].
The inferred maximum likelihood tree was then used to

make a matrix using the cophenetic.phylo() func-
tion in the R package ape (v. 4.1). The biological proper-
ties matrix calculated the numbers of each type of carbon
source (defined in Additional file 9: Table S7) utilized by a
species (e.g., the number of hexoses utilized by S. cerevi-
siae), and the isolation environments matrix was a binary
matrix consisting of all species and whether or not they
were isolated from an environment. The response variable
was a trait association matrix that consisted of whether
two traits (e.g., sucrose and maltose utilization) were both
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present (1) or one trait was present while the other was
absent (0) in a species.

Phylogenetic signal of traits
The D1/D2 maximum likelihood tree was used to detect
the phylogenetic signal in our trait data. We determined
whether there was a phylogenetic signal for individual
traits by calculating D, a measure of dispersion for bin-
ary traits [38], and testing for a significant departure
from both random associations (D = 1) and the clump-
ing expected under a Brownian model of evolution (D =
0). It was calculated using the phylo.d function in the
R package caper (v.0.5.2) [71]. We used 1000 permuta-
tions to detect whether D was significantly different
from random associations and clumping.

Isolation environments
Isolation environments were manually scored and cu-
rated from the “Ecology” section for each species avail-
able in The Yeasts: A Taxonomic Study [26]. Isolation
environments were classified into specific isolation con-
ditions (e.g., oak, ant, and beer) and broad isolation con-
ditions (e.g., tree, insect, and fermentation). Each
isolation environment was scored as a 1 or 0 to repre-
sent species presence and absence in each environment
(Additional file 5: Table S4). If the isolation environment
of a species was unknown, it was classified as unknown.
Analyses were performed for isolation environments that
contained four or more species.

Quantifying direct and indirect associations
To determine whether the negative and positive asso-
ciations among traits were indirectly caused by the
environment, we calculated the average difference be-
tween the observed and expected numbers of trait
associations for each environment using a co-
occurrence matrix [72]. Any deviations from 0 would
suggest the trait associations observed were driven by
something other than the isolation environment. We
removed the effects of the environment by randomly
drawing species, regardless of their isolation environ-
ment, for a range of sample sizes (n = 4, 11, 26, 47,
76, 147, 217). For each sample size, we randomly
drew that number of species from our trait data set
and ran the analysis described above. We did this for
each sample size 1000 times and calculated the aver-
age difference for each sample size.

Carbon metabolism network analyses
To quantify whether there was an enrichment of positive
associations in our association data, the data were lim-
ited to carbon metabolism traits that had at least one
significant association, and we used a two-sided Fisher’s
exact test. Positive and negative association networks

were created in the R package igraph (v. 1.0.1) [73],
and carbon trait communities in these networks were
determined through the Clauset–Newman–Moore algo-
rithm (fast.greedy community), an algorithm that
maximizes modularity. We determined whether there
was enrichment for specific molecular properties or
functions within each subnetwork using two-sided Fish-
er’s exact tests.

Gene carbon analysis
Gene presence was detected using TBLASTX and
BLASTN searches using query sequences [53] from
the characterized pathways in model organisms (e.g.,
S. cerevisiae) versus 79 previously curated genome
assemblies [55], using an e value cutoff of 10−10. We
also collapsed the MAL12 and IMA1–4 genes into a
single IMA/MAL group since these genes are closely
related paralogs [57]. For each carbon source, we
quantified how often each gene was present and
there was growth on the carbon source, as well as
the sum of how often a gene was absent and there
was growth plus how often a gene was present and
there was no growth. We used a Χ2 test to detect
associations between growth and gene presence and
corrected for multiple tests across associations with
the Benjamini–Hochberg correction. We also tested
whether genes of positively associated traits co-
occurred more frequently than those of traits that
showed random associations using a test for equal
proportions. We included two groups of genes in
our analyses; the first group of genes (Contains Gal-
actose) consisted of GAL1, GAL7, GAL10, LAC12,
and MEL1. The second group (Glucosides) comprised
MAL11, MAL13, MAL6, the IMA/MAL-collapsed
genes, IMA5, and SUC2. We tested whether genes
within each group co-occurred more frequently than
genes that were from the two different groups. All
statistical analyses were done in R.

Additional files

Additional file 1: Table S1. Growth validation of 240 yeasts on four
carbon sources. Growth on a carbon source was scored as 1, while no
growth was scored as 0. Cases where our data did not match The Yeasts:
A Taxonomic Study are indicated with an X. A summary, including the
counts of mismatched data, proportion of mismatches, and percentage
correct, is given below each column. (XLSX 17 kb)

Additional file 2: Table S2. All pairwise trait associations. The
“Direction” column indicates whether a trait association was classified as
a positive, negative, or random association. The expected value is the
average value from the randomized data (n = 10,000). (XLSX 75 kb)

Additional file 3: Figure S1. Hierarchical cluster analysis of traits, using
similarities among trait associations. The different colors represent
selected significant clusters. Biologically meaningful clusters were named
accordingly. Note that the strengths of the positive and negative
associations with fermentation and with growth at high temperatures (37
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°C) lead to clustering, which, in some cases, obscures the subtler
associations among carbon source utilization traits that are readily
observed in the network analysis presented in Fig. 6. (PDF 285 kb)

Additional file 4: Table S3. Over 50% of individual traits do not evolve
under a Brownian model of evolution. To test for a phylogenetic signal in
our data, we calculated D, a measure of dispersion used for binary traits that
tests for a significant departure from both random associations (D = 1) and
the clumping expected under a Brownian model of evolution (D = 0).
Values that significantly differ from 0 suggest a trait is not evolving under
Brownian evolution. The function calculates randomized data sets (n =
1000) for both departures from random distributions and patterns expected
under a Brownian model of evolution. To test for phylogenetic randomness,
the function randomly shuffles trait values relative to the tips of the
phylogeny. To test for evolution under a Brownian model, the function
evolves a continuous trait along the phylogeny under a Brownian process,
and then it is converted to a binary trait using a threshold that reproduces
the relative prevalence of the observed trait. (XLSX 11 kb)

Additional file 5: Table S4. Species isolation environment matrix. A
value of 1 means the species was isolated from that environment, while
a value of 0 means the species was not isolated from that environment.
(XLSX 94 kb)

Additional file 6: Figure S2. Bar graph of number of species found in
each isolation environment. (PDF 185 kb)

Additional file 7: Table S5. Pairwise association quantifications among
traits and isolation environments. The “Direction” column indicates
whether an isolation/trait association was classified as positive, negative,
or random. The expected value is the average value from the
randomized data (n = 10,000) (XLSX 111 kb)

Additional file 8: Table S6. Number of positive, negative, and random
associations among carbon utilization traits. (XLSX 10 kb)

Additional file 9: Table S7. Assigned functional categories used
statistically to analyze the similarities between carbon sources. (XLSX 11 kb)

Additional file 10: Table S8. Gene and trait presence for 79 species with
curated genome sequences [55]. Gene presence was detected using TBLASTX
and BLASTN searches using query sequences from the characterized
pathways in model organisms (e.g., S. cerevisiae) versus the curated genome
assemblies [55], using an e value cutoff of 10− 10. (XLSX 15 kb)

Additional file 11: Figure S3. Genes show pleiotropic functions for
carbon utilization. We determined gene presence for 79 species for
which we had trait data and curated genome sequences [55]. We
quantified associations with gene presence and growth on two sets of
carbon sources that show similar trait associations in Fig. 6. a Bar graph
of growth on carbon sources (Contains Galactose) when genes are
present (gray) or absent (white). Significant associations are denoted with
an asterisk. It is well established that galactose utilization is associated
with the presence of the GAL1, GAL7, and GAL10 genes [56]; this result
serves as a control for our BLAST cutoffs. MEL1 and LAC12 are
galactosidases that cleave the disaccharides melibiose and lactose,
respectively, and were also significantly associated with galactose
utilization across macroevolutionary timescales. The melibiose and lactose
utilization data are consistent (but not significant) with this trend;
however, there are few species that can use them. b Bar graph of growth
on carbon sources (Glucosides) when associated genes are present (gray)
or absent (white). We found significant associations (asterisk) between
glucoside utilization genes and multiple carbon sources. These results
suggest that pleiotropic genes could be responsible for the utilization of
multiple carbon sources. c We quantified whether genes associated with
traits that show positive trait associations co-occur more frequently than
those that show random associations. Genes associated with positively
associated traits (e.g., from a, GAL1, GAL7, GAL10, MEL1, and LAC12 com-
prise one set of genes, and from b, IMA5¸ IMA/MAL collapsed genes,
MAL11, MAL13, MAL6, and SUC2 make up the second set) co-occurred
81.1% of the time (red), while genes associated with randomly associated
traits co-occurred 60.2% of the time (gray). The significant co-occurrence
of genes associated with the utilization of positively associated carbon
sources provides further support that biological properties contribute to
positive trait associations. (PDF 521 kb)

Additional file 12: Table S9. Χ2 associations between gene presence
and carbon traits. The “Same” column represents the number of times a
gene was present and there was growth on the carbon source. The
“Different” column represents the count of gene absence and growth
plus gene presence and no growth. We corrected for multiple tests
across associations with the Benjamini–Hochberg correction (q < 0.05
considered significant), which is represented by the column labeled
“pAdj”. (XLSX 11 kb)

Additional file 13: Table S10. Species trait matrix, scored with growth
(+), no growth (−), variable (v), or data unavailable (n), curated from The
Yeasts: A Taxonomic Study [26]. (XLSX 245 kb)

Additional file 14: Table S11. Imputed binary species trait matrix.
(XLSX 137 kb)

Additional file 15: Table S12. Proportion of correctly predicted traits
across each method implemented to handle missing data. (XLSX 12 kb)

Additional file 16: Table S13. Newick file of D1/D2 sequences
generated for 578 yeast species in RAxML-HPC BlackBox. (XLSX 23 kb)
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