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ABSTRACT Biosynthesis of many ecologically important secondary metabolites
(SMs) in filamentous fungi is controlled by several global transcriptional regulators,
like the chromatin modifier LaeA, and tied to both development and vegetative
growth. In Aspergillus molds, asexual development is regulated by the BrlA � AbaA �

WetA transcriptional cascade. To elucidate BrlA pathway involvement in SM regula-
tion, we examined the transcriptional and metabolic profiles of ΔbrlA, ΔabaA, and
ΔwetA mutant and wild-type strains of the human pathogen Aspergillus fumigatus.
We find that BrlA, in addition to regulating production of developmental SMs, regu-
lates vegetative SMs and the SrbA-regulated hypoxia stress response in a concor-
dant fashion to LaeA. We further show that the transcriptional and metabolic equiv-
alence of the ΔbrlA and ΔlaeA mutations is mediated by an LaeA requirement
preventing heterochromatic marks in the brlA promoter. These results provide a
framework for the cellular network regulating not only fungal SMs but diverse cellu-
lar processes linked to virulence of this pathogen.

IMPORTANCE Filamentous fungi produce a spectacular variety of small molecules,
commonly known as secondary or specialized metabolites (SMs), which are critical to
their ecologies and lifestyles (e.g., penicillin, cyclosporine, and aflatoxin). Elucidation
of the regulatory network that governs SM production is a major question of both
fundamental and applied research relevance. To shed light on the relationship be-
tween regulation of development and regulation of secondary metabolism in fila-
mentous fungi, we performed global transcriptomic and metabolomic analyses on
mutant and wild-type strains of the human pathogen Aspergillus fumigatus under
conditions previously shown to induce the production of both vegetative growth-
specific and asexual development-specific SMs. We find that the gene brlA, previ-
ously known as a master regulator of asexual development, is also a master regula-
tor of secondary metabolism and other cellular processes. We further show that brlA
regulation of SM is mediated by laeA, one of the master regulators of SM, providing
a framework for the cellular network regulating not only fungal SMs but diverse cel-
lular processes linked to virulence of this pathogen.

KEYWORDS biosynthetic gene cluster, conidia, hyphal growth, hypoxia, mycelial
growth, specialized metabolism, srbA, velvet protein complex

Filamentous fungi produce a remarkable diversity of specialized secondary metab-
olites (SMs), which are small molecules that play diverse ecological roles in fungal

defense, communication, and virulence (1). In fungi, SMs are typically produced by
pathways organized into contiguous biosynthetic gene clusters (BGCs), an organization
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atypical of metabolic pathways in most other eukaryotes (2). The transcription of
these BGCs is often controlled by both cluster-specific transcription factors, as well
as globally acting transcriptional regulators. These global regulators respond to a
variety of environmental signals, including pH, temperature, light, and nutrient
sources, to transcriptionally regulate BGCs and are typically well conserved in
filamentous fungi (3).

Many of the environmental signals that regulate SM production in Aspergillus
fungi, including temperature, pH, and carbon or nitrogen sources, also trigger the
onset of asexual and sexual development (4). At the cellular level, this coupling
between SM production and development is orchestrated in part by the velvet
protein complex, which is composed of two velvet domain proteins, VelA and VelB,
and the methyltransferase LaeA (5). Although the precise mechanism by which the
velvet complex regulates the two processes is unknown, LaeA regulates transcrip-
tion epigenetically through heterochromatin reorganization of target DNA (6, 7).
The result of this coupling of SM and development is that several SMs show tissue
specificity: i.e., they are localized or produced only in certain tissues. For example,
the SMs 1,8-dihydroxynaphthalene-melanin (DHN-melanin), fumigaclavines, endo-
crocin, trypacidin, and fumiquinazolines appear to be localized to the asexual spores
of Aspergillus fumigatus (8–12). Importantly, several of these asexual spore (conidial)
metabolites, all LaeA regulated (13), are part of the pathogenic arsenal of this human
pathogen (reviewed in reference 14).

In Aspergillus, asexual development is controlled by three regulatory genes sequen-
tially expressed at specific stages of asexual fruiting body development (conidiation)
(14). The first protein of this regulatory cascade, BrlA, accumulates in vegetative cells
shortly before asexual development (15). In the middle stages of conidiation, BrlA
activates AbaA, which controls the development of the asexual fruiting body (conid-
iophore) and spores (conidia). In late stages of asexual development, AbaA activates
WetA, which is required for conidial maturation through governance of critical conidial
cell wall components (15). Recent evidence suggests that these three regulators may
also be involved in regulating the expression of BGCs whose SM products are specif-
ically found in asexual spores (8, 12, 16, 17).

To shed light on the relationship between regulation of asexual development and
tissue-specific regulation of secondary metabolism in filamentous fungi, we performed
global transcriptomic and metabolomic analyses on ΔbrlA, ΔabaA, and ΔwetA mutant
and wild-type (WT) strains of A. fumigatus under conditions previously shown to induce
the production of both vegetative growth-specific and asexual development-specific
SMs (13). Our results show that BrlA positively regulates the transcriptional activity of
13 BGCs and their SMs; importantly, BrlA regulates not only the production of both
asexual development-specific SMs and vegetative growth-specific SMs, but also the
activity of several transcriptional regulators of diverse cellular processes, such as the
SrbA-regulated hypoxia stress response. Remarkably, comparison of BrlA- and LaeA-
regulated BGCs shows that nine BGCs (DHN-melanin, fumigaclavine, endocrocin,
trypacidin, helvolic acid, fumisoquin, gliotoxin, fumiquinazoline, and pyripyropene A)
appear to be identically regulated by both proteins. To further dissect this regulatory
overlap between LaeA and BrlA, we used chromatin immunoprecipitation-quantitative
PCR (ChIP-qPCR) to show that laeA loss results in heterochromatic marks in the brlA
promoter and hence dampening of brlA expression; this finding is not only consistent
with work showing that LaeA governs BrlA expression in Penicillium oxalicum (18) but
also suggests that LaeA control of BrlA expression is evolutionarily conserved. The
effect of LaeA activity on brlA transcript levels explains, to a large degree, the concor-
dance of BGC regulation and hypoxia gene regulation by these two proteins. These
results argue that LaeA and BrlA are key conserved components of the cellular network
governing tissue-specific secondary metabolism as well as diverse cellular processes in
filamentous fungi.
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RESULTS AND DISCUSSION
Genome-wide transcriptional impact of BrlA, AbaA, and WetA. To examine the

genome-wide regulatory roles of the three central regulators of asexual development,
we performed RNA sequencing on A. fumigatus wild-type (WT) and ΔbrlA, ΔabaA, and
ΔwetA mutant strains grown on minimal medium under conditions known to induce
the production of both vegetative growth-specific and asexual development-specific
SMs. A total of 6,738 of the 9,784 genes in the genome of the A. fumigatus Af293 strain
were differentially expressed in the ΔbrlA mutant versus WT comparison (3,358 over-
expressed and 3,380 underexpressed) (Table 1; see Table S1 in the supplemental
material). Fewer genes were differentially expressed in the ΔabaA versus WT compar-
ison (1,895 differentially expressed genes: 1,148 overexpressed and 747 underex-
pressed) and in the ΔwetA mutant versus WT comparison (2,158 differentially expressed
genes: 1,192 overexpressed and 966 underexpressed).

To determine processes positively regulated by BrlA, AbaA, and WetA, we performed
Gene Ontology (GO) enrichment analysis for genes underexpressed in each deletion
strain. Among the 55 functional categories enriched in genes underexpressed in the
ΔbrlA mutant versus the WT were secondary metabolism, response to stress, develop-
mental process, asexual sporulation, cellular respiration, ribosome, mitochondrion, and
structural molecule activity (Fig. 1A; see Table S2 in the supplemental material). Genes
underexpressed in the ΔabaA mutant versus WT were enriched for six functional
categories, namely, secondary metabolic process, oxidoreductase activity, cellular
amino acid metabolic process, response to chemical stimulus, toxin metabolic process,
and transferase activity (Fig. 1B; Table S2). Finally, genes underexpressed in the ΔwetA
mutant versus WT were enriched for three categories, which were secondary metabolic
process, toxin metabolic process, and oxidoreductase activity (Fig. 1C; Table S2).

BrlA is a key regulator of BGCs and SMs. As BrlA is a key developmental regulator,
we questioned whether its regulation of secondary metabolism is limited to metabo-
lites associated with asexual spores. To answer this, we examined the transcriptional
responses of the all 33 A. fumigatus BGCs (see Table S3 in the supplemental material)
(19). While only five characterized BGCs (DHN-melanin, endocrocin, trypacidin, fumiga-
clavine, and fumiquinazoline) have been reported to be highly induced during asexual
development, we found that 27/33 (82%) BGCs are differentially expressed in one or
more of the three mutants examined (Fig. 2A), suggesting a much broader governance
of SM production by these transcriptional regulators of asexual development. To
confirm this trend, backbone synthesis genes from selected gene clusters were assayed
by semiquantitative reverse transcription-PCR (RT-PCR) and showed the same trends
observed from the transcriptome sequencing (RNA-seq) analysis (see Fig. S2 in the
supplemental material). Like the trend observed with genome-wide transcriptional
impact of these regulators, we find BrlA to be a major contributor to changes in BGC
expression, regulating all but one of the differentially expressed BGCs (26/27 [96%]),
followed by WetA (15/27 [45%]) and AbaA (11/27 [34%]) (Fig. 2A). Of the 27 differen-
tially expressed BGCs, 9 were regulated by all three transcriptional regulators, 10
showed BrlA-specific regulation, 1 showed WetA-specific regulation, 2 showed joint
regulation by both BrlA and AbaA, and 5 showed joint regulation by BrlA and WetA
(Fig. 2B). These results suggest that, unlike BrlA, WetA (with the exception of one BGC)
and AbaA do not independently regulate their BGC targets.

TABLE 1 Numbers of differentially expressed genes between mutant and wild-type
strains in all RNA-seq comparisons

Expression level

No. of genes differentially expressed

�brlA mutant
in GMM

�abaA mutant
in GMM

�wetA mutant
in GMM

Overexpressed 3,358 1,148 1,192
Underexpressed 3,380 747 966
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FIG 1 Genes underexpressed in the ΔbrlA mutant are involved in a diverse set of cellular processes. Shown
are results from Gene Ontology (GO) enrichment analysis for genes underexpressed in (A) ΔbrlA (selected), (B)
ΔabaA, and (C) ΔwetA mutant strains compared to the wild type. The percentage of underexpressed genes
in each GO category was calculated by dividing the number of genes in the category that are underexpressed
by the total number of genes in the category. Only a representative subset of categories is shown for the ΔbrlA
mutant; the full list of statistically enriched categories is provided in Table S2.
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The nine BGCs that are jointly regulated by BrlA, AbaA, and WetA include the BGCs
for ferricrocin, DHN-melanin, fumigaclavines, endocrocin, gliotoxin, fumiquinazolines,
and pyripyropenes, as well as the unknown nonribosomal peptide synthetase (NRPS)
cluster 24 and the unknown polyketide synthase (PKS) cluster 31 (Fig. 2). Four of the five
known asexual development-specific BGCs (endocrocin, fumigaclavine, fumiquinazo-
line, and DHN-melanin) are regulated by all three developmental regulators (Fig. 2); the
only exception is the conidial PKS BGC for trypacidin, which appears to not be under
the control of any of the developmental regulators under the conditions tested.
However, the trypacidin pathway-specific transcription factor gene tpcE (Afu4g14540) is
positively regulated by BrlA (Table S1) (10). While BrlA is required for production of
trypacidin when cultures are grown on solid plates (20), it is possible that the liquid
shake conditions used here impact trypacidin production. Aside from these four asexual
development-specific BGCs, the other five BGCs that are jointly regulated by all three
developmental regulators include the gliotoxin BGC, the intracellular siderophore
ferricrocin BGC, the meroterpene pyripyropene BGC, and BGCs 24 and 31 (Fig. 2).
Although previous results indicated the involvement of BrlA in regulating gliotoxin
biosynthesis (16), it is not yet known whether this mycotoxin is present in asexual
spores.

Joint regulation by BrlA, AbaA, and WetA extends beyond the nine BGCs and
includes genes involved in sulfur/methionine metabolism (8 genes) and aromatic
amino acid metabolism (4 genes) (Table S1), suggesting a connection between primary
metabolism (e.g., substrate availability) and secondary metabolism. For example, the

Cluster 1 - PKS
Cluster 2 - NRPS

Cluster 3 - Ferricrocin
Cluster 4 - PKS
Cluster 5 - PKS

Cluster 6 - NRPS
Cluster 7 - DHN melanin spore pigment

Cluster 8 - Fumigaclavine
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FIG 2 BrlA, AbaA, and WetA transcriptionally regulate many biosynthetic gene clusters (BGCs) involved in secondary metabolism. Shown is
expression of all secondary metabolic BGCs in Aspergillus fumigatus in all strains tested. (A) Expression in the ΔbrlA, ΔabaA, and ΔwetA mutants.
BGCs in which half or more of the genes are overexpressed (overexpressed clusters) are shown in blue, BGCs in which half or more of the genes
BGC are underexpressed (underexpressed clusters) are shown in red, and BGCs in which half or more of the genes were differentially expressed
but did not have half or more genes either overexpressed or underexpressed (mixed expression) are shown in purple. (B) Overlap between BGCs
underexpressed in the ΔbrlA, ΔabaA, and ΔwetA mutants.
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GO category cellular amino acid metabolism is significantly enriched in underexpressed
genes in the ΔbrlA and ΔabaA mutants (Fig. 1; Table S2). (This category is not
significantly enriched in the ΔwetA mutant, but 22 of its genes are underexpressed.)
This is consistent with previous work linking methionine and tryptophan availability
with natural product synthesis (21–23), as well as with evidence that A. fumigatus
tryptophan metabolism mutants show altered secondary metabolite output (24). Spe-
cifically, many NRPS metabolites incorporate aromatic amino acids, such as tryptophan
(e.g., fumiquinazoline) or phenylalanine (e.g., gliotoxin), in their carbon skeleton, and
gliotoxin itself impacts homeostasis of the methionine cycle (25, 26).

To examine whether the gene expression changes observed for these BGCs correlate
with metabolite production, we performed SM profiling using the same fungal cultures
as for the transcriptomic experiments (Fig. 3). In the ΔbrlA and ΔabaA mutant cultures,
the metabolite profiles are consistent with the gene expression profiles of their
corresponding BGCs. For example, production of ferricrocin, fumigaclavines, endocro-
cin, gliotoxin, fumiquinazolines, and pyripyropene A is completely abolished or signif-
icantly reduced in the ΔbrlA mutant culture (Fig. 4), mirroring the underexpression of
their BGCs in the ΔbrlA mutant versus WT comparison (Fig. 2). These compounds are
also significantly reduced in the ΔabaA mutant culture and correlate with the gene
expression patterns of their BGCs in the ΔabaA mutant versus WT comparison, albeit to
a lesser degree than that observed in the ΔbrlA mutant (Fig. 2 and 4). Ten of the 27
differentially regulated BGCs are under BrlA-specific control (Fig. 2B). Except for the BGC
of the extracellular siderophore fusarinine C, the SM products of the remaining nine
BrlA-specific BGCs have yet to be characterized. Both BrlA and AbaA regulate the
fumitremorgin and fumisoquin gene clusters (Fig. 2B).

One additional gene cluster regulated by both BrlA and AbaA is the fumitremorgin-
producing gene cluster. As the A. fumigatus Af293 strain used in this study is reported
to harbor a point mutation in ftmD (Afu8g00200) that renders it incapable of producing
the terminal product fumitremorgin C (19), metabolomic analysis on the fumitremorgin

Ferricrocin

Fumigaclavine A

Fumigaclavine C

Terezine D

Endocrocin

Questin

Helvolic acid

Gliotoxin

Bismethylthiolgliotoxin

Fumiquinazoline F

Fumiquinazoline A
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Pyripyropene A
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Fumagillin

Pseurotin A
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FIG 3 Secondary metabolites are produced at lower levels in the �brlA strain relative to the wild type.
Summary of metabolite production in �brlA, �abaA, and �wetA mutants relative to the wild-type strain.
Heat map colors represent log2 fold change in peak area intensity, and gray indicates no metabolite was
detected.
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BGC was performed using an early pathway precursor, brevianamide F. Total produc-
tion of brevianamide F is slightly increased in cultures of all three transcriptional
regulator mutants (Fig. 4H). Surprisingly, we also detected a significant amount of
fumitremorgin C (as determined through m/z and retention time matched to the
fumitremorgin C standard) in the WT strain as well as—at even higher levels—in
mutant cultures of all three developmental regulators, suggesting there may be
compensation for this mutation or this mutation is absent in our strains (Fig. 4H). FtmD
is an O-methyltransferase, and it is possible that other O-methyltransferases in the
genome may function at this step. On the other hand, Kato et al. (19) note that the
mutated FtmD enzyme still functions, and it is possible we observed fumitremorgin C
production as we grew the fungus under a different condition than the one used in the
previous report allowing for FtmD function.

In contrast to the ΔbrlA and ΔabaA mutants, the correlation between ΔwetA gene
expression and metabolite profiles was much lower. For example, we observed an
increase (although not statistically significant) of several SMs, such as the fumiga-
clavines and endocrocin, in the ΔwetA mutant, even though their corresponding BGCs
are underexpressed in the ΔwetA mutant versus WT comparison (Fig. 2 and (3).
Endocrocin is also produced as an early shunt product redundantly by the trypacidin
BGC in the strain of A. fumigatus used in this study (10) and thus could be attributed
to that BGC as well. Although we did not detect the final product trypacidin, minute
amounts of the trypacidin precursor question were produced in the wild-type fungus
and, to much lesser degree, in the ΔwetA mutant (Fig. 4D). The high metabolite
production levels in the ΔwetA mutant in spite of low gene expression levels could be
attributed to the compromised cell wall of this developmental mutant (27), which
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FIG 4 Levels of secondary metabolites produced by wild-type and ΔbrlA, ΔabaA, and ΔwetA mutant cultures. Shown is peak area intensity representing total
production of representative metabolites from differentially expressed BGCs in A. fumigatus. Metabolite analysis was performed using the same two replicate
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resulted in increase in SM extraction efficiency compared to other test strains of the
fungus.

Assessment of metabolites from both fungal tissue and growth supernatant (se-
creted) showed that a major fraction of extracted SMs, including all the known
conidium-associated SMs (fumigaclavines, endocrocin, fumiquinazolines, and questin),
the intracellular siderophore ferricrocin, and pseurotin A, accumulate in the fungal
tissue, whereas those of other SMs, such as the fumitremorgins, terezine D, fumagillin,
pyripyropene A, and helvolic acid, are secreted into the growth supernatant (see Fig. S1
and Table S4 in the supplemental material). This may be a reflection of the chemical
properties of these metabolites and their ability to diffuse or be actively released to the
outside of the cell.

Our gene expression data indicate that WetA positively regulates its sole specific
target, the iron-coordinating hexadehydroastechrome (HAS) BGC. As metabolite detec-
tion of the iron coordination complex of HAS is challenging, we used the monomeric
unit of this complex, terezine D, in our metabolite profiling of this BGC. In contrast to
the gene expression data, which show that the BGC is underexpressed in the ΔwetA
mutant versus the WT, we observed that terezine D production is increased in the
ΔwetA mutant (Fig. 4I). Even though the HAS BGC does not appear to be transcrip-
tionally regulated by BrlA or AbaA, we still observed a decrease in terezine D produc-
tion in both mutants (Fig. 4I). This could be related to other cellular processes as HAS
is a tryptophan-derived metabolite dependent on iron homeostasis (28), with genes in
both networks regulated by the BrlA cascade. BrlA and WetA jointly govern the helvolic
acid BGC, the fumagillin/pseurotin supercluster, and three unknown BGCs (Fig. 2).
Compared to WT levels, production of both fumagillin and helvolic acid is increased in
the ΔbrlA mutant, unchanged in the ΔwetA mutant, and substantially increased in the
ΔabaA mutant (Fig. 4J and (K).

In summary, examination of transcriptional and metabolic profiles of the ΔbrlA,
ΔabaA, and ΔwetA mutant and WT strains of A. fumigatus showed that several BGCs and
SMs exhibit BrlA-specific regulation; in contrast, no BGCs or SMs were under AbaA-
specific control, and only one showed WetA-specific regulation. Furthermore, several
additional BGCs and SMs appeared to be under control of BrlA and WetA or AbaA or
under control of all three proteins (Fig. 2). Given that strains lacking brlA do not enter
asexual development, it is perhaps not surprising that both the gene expression and SM
production of asexual development-specific BGCs, such as those for endocrocin and
fumigaclavine, are under BrlA control (Fig. 2 and Fig. 4B and C). However, in addition
to these spore-associated BGCs and SMs, BrlA also appears to regulate BGCs and SMs,
such as helvolic acid and fumisoquin, which are not known to be associated with
specialized developmental tissues but rather with vegetative growth, suggesting that
BrlA regulation of secondary metabolism extends beyond asexual development. Pro-
duction of fumisoquin was not assessed due to lack of available purified standard.

LaeA regulation of secondary metabolism is extensively mediated through
BrlA. LaeA, a member of the fungus-specific velvet protein complex, is known to
regulate secondary metabolism in many agriculturally and medically important fila-
mentous fungi (29). Given the surprising global changes in BGC expression in the �brlA
mutant as well as the aberrant conidial phenotype previously observed in the �laeA
mutant (30), we further assessed the genetic relationship between these two global
regulators and their governance on secondary metabolism. Global transcriptome com-
parison between the LaeA and BrlA regulons in A. fumigatus shows striking concor-
dance in BGC regulation, with 13/16 of the LaeA-regulated BGCs as determined by
microarray-based transcriptome analysis (13) also regulated by BrlA (see Table S5 in
the supplemental material). These include the BGCs responsible for the production
of DHN-melanin, fumigaclavines, endocrocin, helvolic acid, fumisoquins, gliotoxin,
fumiquinazolines, fumitremorgins, fumagillin/pseurotin, and pyripyropenes and three
uncharacterized BGCs (cluster 24, an NRPS-based cluster upstream of the gliotoxin
cluster, cluster 15, a PKS-based BGC, and cluster 2, a nidulanin-like BGC) (Table S5).
Unlike BrlA, which shows both positive and negative regulation of BGCs, LaeA strictly
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regulates BGCs in a positive manner in A. fumigatus at the time point assessed (13)
(Fig. 5). Interestingly, except for the fumitremorgin BGC, all of the jointly regulated BGCs
are positively regulated by BrlA, further supporting a linked regulatory network be-
tween these two global regulators.

To further decipher the genetic relationship between the LaeA and BrlA transcrip-
tional networks, we assessed the expression of these two genes in each respective
deletion mutant. Northern analysis of brlA expression and laeA expression in the laeA
and brlA deletion mutants showed that, whereas laeA expression is not significantly
impacted in the ΔbrlA strain (Fig. 6A), brlA expression is significantly reduced in the
ΔlaeA mutant (Fig. 6B), in agreement with previous microarray and RNA-seq data (31,
32). Because LaeA loss is known to be involved in silencing of BGCs through chromatin
remodeling (12) and a previous study in A. nidulans has shown that LaeA allows for SM
expression by counteracting heterochromatin marks on BGC gene promoters, specifi-
cally reducing H3K9 methylation through heterochromatin protein 1, HepA (AN1905)
(6), we suspected that the regulatory effect of LaeA on brlA could be governed through
modifications to the chromatin landscape within the brlA promoter. Indeed, chromatin
immunoprecipitation (ChiP) examining histone modifications of the brlA promoter
shows that although the histone H3 occupancy at the brlA promoter is unchanged
between the WT and �laeA mutant, there is a substantial decrease of a modification
correlating with euchromatin (H3K4me3 [histone H3 trimethyl K4]) in the �laeA strain,
while the heterochromatic mark H3K9me3 (histone H3 acetyl K9) is greatly enriched
(Fig. 6C). Thus, as with BGC regulation, it appears that LaeA epigenetically regulates brlA
by impeding heterochromatin formation on the brlA promoter (Fig. 6). Based on these
results, we infer that LaeA regulation of secondary metabolism is significantly mediated
through its impact, via chromatin modification, on brlA transcript levels.

Several transcriptional regulators of diverse cellular processes, including the
SrbA-regulated hypoxia stress response, are also BrlA and LaeA regulated. These
findings piqued our interest on whether the LaeA-BrlA regulatory relay extends beyond
secondary metabolism. To address this question, we compared the differential expres-
sion profiles of all A. fumigatus transcription factors (TFs) in both the ΔlaeA mutant
versus WT comparison and in the ΔbrlA mutant versus WT comparison. We found that,
similar to the observed overlap of differential expression profiles for BGCs (Table S5),
many LaeA-regulated TFs are also regulated by BrlA (Fig. 6D). A detailed assessment of
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FIG 5 Chromosomal location of all biosynthetic gene clusters involved in secondary metabolism regulated by BrlA
and by LaeA. White chromosomes depict BGCs regulated by LaeA, and gray chromosomes depict BGCs regulated
by BrlA.
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functionally characterized TFs showed that both LaeA and BrlA positively regulate TFs
found within BGCs (GliZ [Afu6g09630], FmpR/FapR [Afu6g03430], TpcE [Afu4G14550],
and FsqA [Afu03430]) as well as a series of TFs involved in sulfur metabolism (MetR
[Afu6g07530]), sexual development (NsdD [Afu3g13870]), asexual development
(StuA [Afu2g07900], and AbaA [Afu1g04830]), the unfolded protein response (HacA
[Afu3g04070]), zinc response (ZafA [Afu1g10080]), and the hypoxia response (SrbA
[Afu2g01260]) (Fig. 6D). In addition, we also observe that both LaeA and BrlA negatively
regulate a series of TFs involved in fungal morphogenesis (MtfA [Afu6g02690]), viru-
lence (SebA [Afu4g09080]), pH signaling (PacC [Afu3g11970]), acetate utilization (FacB
[Afu1g13510]), and repression of sexual development (RosA [Afu4g09710]) (Fig. 6D). It
thus appears that a substantial part of the LaeA transcriptional cascade is moderated
via BrlA.

To further examine a cellular process independent of secondary metabolism that is
regulated by LaeA and BrlA, but not AbaA or WetA, we focused on the SrbA-regulated
hypoxia stress response (33). Underexpressed genes in the ΔbrlA mutant versus WT are
enriched for categories associated with stress response and mitochondrial activity,
including cellular respiration, mitochondrion, and response to stress (Fig. 1). Among
these genes are the hypoxia regulators srbA (Afu2g01260) and srbB (Afu4g03460)
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(Table S1). Both transcription factors contribute to virulence and are critical for regu-
lation of iron uptake, heme biosynthesis, and ergosterol synthesis in A. fumigatus (33).
Previous work has determined that SrbA is a DNA-binding protein that binds upstream
of 97 genes in A. fumigatus CEA10, 91 of which have orthologs in the Af293 strain used
in this study (33). Sixty-nine of 91 (76%) of these genes are underexpressed in the ΔbrlA
mutant versus the WT (Table 2; see Table S6 in the supplemental material). In contrast,
the percentages of SrbA-regulated genes were substantially smaller in both the ΔabaA
mutant versus WT (14/91 genes [15%]) or the ΔwetA mutant versus WT (13/91 genes
[14%]). Among the genes coregulated by BrlA and SrbA are those in the ergosterol
biosynthetic pathway, including the first enzyme in the pathway, Erg1 (Afu5g07780),
both 14-� sterol demethylases (Erg11A/Cyp51A [Afu4g06890] and Erg11B/Cyp51B
[Afu7g03740]), Erg5 (Afu1g03950), and both C4-sterol methyl oxidases (Erg25A
[Afu8g02440] and Erg25B [Afu4g04820]) (34, 35). The nitrate assimilation genes niiA
(Afu1g12840) and niaD (Afu1g12830) are also regulated by BrlA and SrbA, linking
sporulation and hypoxia to nitrate assimilation, observations noted in earlier studies
(17, 36). Examination of the ΔlaeA transcriptional profile shows near 100% identity of
regulation of these genes (13). These findings largely replicate the working model for
transcriptional regulation of the hypoxic response previously presented by Chung et al.
(33), placing LaeA and BrlA as critical upstream regulators of this pathway.

A cellular network regulating fungal secondary metabolism as well as diverse
cellular processes. In filamentous fungi, SM production is coupled with the onset of
asexual development. In Aspergillus, asexual development is governed by the central
regulators BrlA, AbaA, and WetA, which are required for the early, middle, and late
stages of asexual development, respectively. To investigate how regulation of asexual
development is linked to the tissue-specific regulation of secondary metabolism, we
examined the global transcriptomic and metabolomic profiles of ΔbrlA, ΔabaA, and
ΔwetA mutant and WT strains of A. fumigatus. We find a distinct role for BrlA in
regulating both asexual development-specific and vegetative growth-specific second-
ary metabolism, as well as diverse cellular processes, including the hypoxia stress
response. Interestingly, BrlA’s involvement in SM regulation occurs in the context of the
BrlA � AbaA � WetA cascade, whereas the protein’s involvement in the regulation of
diverse cellular processes appears to be dissociated from AbaA and WetA. We further
find that the BrlA transcriptional program is highly similar to the LaeA transcriptional
program and elucidate that LaeA activity impacts brlA expression via chromatin mod-
ification.

Interestingly, although LaeA regulation of BrlA had been known since 2007 in
A. fumigatus (13) and more recently a similar requirement of LaeA for brlA expression
was noted in P. oxalicum (18), no mechanism for this regulation has been uncovered
until now. Our results, coupled with those in P. oxalicum, suggest that this regulatory
relationship is broadly conserved across filamentous fungi, possibly as a mechanism to
couple synthesis of appropriate natural products with appropriate developmental
stages and allow for a hierarchical framework of LaeA and BrlA function in fungal
differentiation processes (Fig. 7).

Both the set of BrlA � AbaA �WetA-regulated genes and the set of BrlA/SrbA-
regulated genes show substantial overlap with the set of LaeA-regulated genes (13, 29)

TABLE 2 Numbers and percentages of differentially expressed SrbA-bound genes in
ΔbrlA, ΔabaA, and ΔwetA mutants

SrbA-bound gene group

No. (%) of genes differentially expresseda

�brlA mutant
in GMM

�abaA mutant
in GMM

�wetA mutant
in GMM

Overexpressed 6 (7) 26 (29) 18 (20)
Underexpressed 69 (76) 14 (15) 13 (14)
No change in expression 16 (18) 51 (56) 60 (66)
aAll comparisons are against the wild type.
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(Fig. 6; Tables S4 and S5). Our finding that LaeA epigenetically regulates brlA expression
provides a mechanistic explanation of these overlaps and alters our understanding of
the role of LaeA in the regulation of secondary metabolism in the context of both
fungal vegetative growth and asexual development, as well as in the regulation of
additional cellular processes. We propose that LaeA, perhaps as a member of the velvet
protein complex, regulates key “cellular switches,” with BrlA representing one of these
switches (Fig. 7). BrlA is a known transcription factor that was first identified as a
regulator of conidiophore development in A. nidulans (37, 38). BrlA has also been
characterized in several Aspergillus and Penicillium species, and its regulatory functions
have always been associated with sporulation and frequently with secondary metab-
olism (16, 39–41). The regulatory elements in the brlA enhancer have been extensively
characterized and are thought to include transcriptional complexes comprised of
several regulatory proteins, including two velvet protein family proteins, VosA and VelB
(reviewed in reference 39). It is possible that LaeA associates with one or more of these
proposed positive-acting transcriptional complexes to inhibit heterochromatic marks
on the brlA promoter and allow for its activation.

The global nature of BGC regulation by BrlA was surprising and accounts for the
majority of LaeA-regulated SMs. Interestingly, of the nine characterized BGCs that our
results suggest are identically regulated by both proteins, six do not contain a pathway-
specific transcription factor, and of the other three, the BGC-specific transcription
factors (TpcE [Afu4g14540], FsqA [Afu6g03430], and GliZ [Afu6g09630] [Table S1]) are
highly regulated by BrlA. Thus, it appears that, minimally, these nine BGCs are induced
by LaeA-mediated BrlA activation. However, not all BGCs were similarly regulated by
LaeA and BrlA, suggesting that they may require LaeA activation through other or
additional “cellular switches,” that they may be solely (positively or negatively) regu-
lated by BrlA, or that they may be regulated through LaeA- and BrlA-independent
cascades. Since both LaeA and BrlA are present in other fungal genera, including
Penicillium and Talaromyces, and the secondary metabolites produced by organisms in
these genera are distinct from those produced by A. fumigatus, it will be of future
interest to address how conserved global molecular circuitries are rewired to control
species-specific processes such as secondary metabolism (42).
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FIG 7 Model framework for the cellular network regulating fungal secondary metabolism and diverse cellular processes. Under
our proposed model, the chromatin modifier LaeA, by epigenetically regulating the transcription factor BrlA, controls
secondary metabolism in the context of fungal vegetative growth and asexual development, as well as additional cellular
processes, such as the hypoxia response.
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Finally, our work shows that BrlA is the likely mediator of many of the known LaeA
cellular cascades, including several associated with A. fumigatus virulence, substantially
expanding the diversity of cellular processes that appear to be regulated by BrlA. For
example, both proteins are critical for activation of members of the aromatic amino acid
and sulfur/methionine pathways, which play a role in virulence of this pathogen (43,
44). We also find that BrlA is a key regulator of hypoxia-regulated genes, likely through
its regulation of SrbA and SrbB, the two key transcription factors critical for hypoxia
adaptation in A. fumigatus (33, 45). SrbA is also important in azole resistance through
its regulation of the ergosterol biosynthetic pathway (46), and our work uncovers a
direct signaling pathway from LaeA to BrlA to SrbA/B to ergosterol gene expression
which may reveal new avenues to study the expanding threat of antifungal resistance
in Aspergillus species (47).

MATERIALS AND METHODS
Fungal strains and growth conditions. All strains used in this study are listed in Table 3. The three

developmental mutant strains studied (ΔbrlA, ΔabaA, and ΔwetA) are deficient in asexual reproduction
to various degrees. While both the ΔabaA and ΔwetA mutants produce conidiophores and spores, their
structures are aberrant; the ΔbrlA mutant does not produce conidiophores or spores (27, 48). Fungal
strains are maintained in �80°C glycerol stocks and activated on glucose minimal medium (GMM) at 37°C
(49). For RNA-seq analysis, 2.5 � 106 spores of the WT, five plates of the �brlA mutant (with fungal
hyphae point inoculated onto each plate and allowed to grow to the extent of the dish), two plates of
the �abaA mutant (with fungal hyphae point inoculated onto each plate and allowed to grow to the
extent of dish), and 1 � 107 spores of the �wetA mutant were inoculated into 500 ml of liquid YPD (1%
yeast extract, 2% peptone, 2% glucose) and grown under a 250-rpm shaking condition for 24 h at 37°C
to synchronize development between strains. The size of the inoculum chosen was previously deter-
mined to provide comparable fungal mass after 24 h of incubation under the above condition. In a sterile
environment, fungal mycelia were filtered through Miracloth (EMD Millipore) and thoroughly washed in
phosphate-buffered saline (PBS) to remove residual YPD. Equal amounts of mycelia were transferred into
three flasks containing 250 ml of liquid GMM and incubated at 30°C under a 250-rpm shaking condition
to induce development and conidiation (30). Approximately equal amounts of mycelia were removed
from all fungal strains at 48 h postinduction, flash frozen in liquid nitrogen, lyophilized, and stored at
�80°C until used for RNA extraction and downstream RNA sequencing. For metabolomics analysis, all
fungal cultures were left to incubate, and total cultures (growth supernatant and fungal mycelia) were
harvested at 96 h postinduction and then frozen at �80°C until ready to be extracted and analyzed.

RNA isolation and sequencing. Total RNA was extracted with QIAzol reagent (Qiagen) from
freeze-dried mycelia harvested at 48 h postinduction of asexual development following the manufac-
turer’s protocol and further purified using silica membrane spin columns from the RNeasy Plant minikit
(Qiagen). Total RNA was subjected to DNase I digestion to further remove genomic DNA contamination.
RNA-seq libraries were constructed and sequenced at the Genomic Services Lab of Hudson Alpha
(Huntsville, AL) using 50-bp Illumina paired-end-stranded reads. Libraries were constructed with the
Illumina TruSeq stranded mRNA library prep kit (Illumina) and sequenced on an Illumina HiSeq 2500
sequencer. Two biological replicates were generated for each strain sequenced, and 28 to 53 million
reads were generated for each library.

Differential gene expression analysis. Raw RNA-seq reads were trimmed of low-quality reads and
adapter sequences using Trimmomatic with the suggested parameters for paired-end read trimming
(50). After read trimming, all samples contained between 19 and 49 million read pairs, with the average
sample containing 28 million reads. Trimmed reads were aligned to the A. fumigatus Af293 version
s03_m04_r11 genome from the Aspergillus Genome Database (51, 52). Read alignment was performed
with Tophat2 using the reference gene annotation to guide alignment and without attempting to detect
novel transcripts (parameter –no-novel-juncs) (53). Reads aligning to each gene were counted using
HTSeq-count with the union mode (54). Differential expression was determined using the DESeq2
software (55). Genes were considered differentially expressed if their Benjamini-Hochberg adjusted
P value was �0.1.

Functional enrichment analysis. Functional category enrichment was determined for differentially
expressed genes under all conditions tested using the Cytoscape plugin BiNGO (56, 57). To allow for a
high-level view of the types of differentially expressed gene sets, the Aspergillus GOSlim v1.2 term subset

TABLE 3 Strains used in this study

Strain Identifier Genotype Reference

Af293 WT Wild type 63
TJW54.1 �laeA mutant �laeA::A. parasiticus pyrG; pyrG1 30
ΔAfbrlA7 �brlA mutant �brlA::A. fumigatus pyrG; pyrG1 48
TSGa17 �abaA mutant �abaA::A. fumigatus pyrG; pyrG1 27
TSGw4 �wetA �wetA::A. fumigatus pyrG; pyrG1 27
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was used (58). The Benjamini-Hochberg multiple testing correction was applied, and functional catego-
ries were considered significantly enriched if the adjusted P value was �0.05.

Gene cluster expression. A. fumigatus BGCs were taken from a combination of computationally
predicted and experimentally characterized gene clusters involved in secondary metabolism (59, 60). A
list of all BGCs used in this study is available in Table S2. BGCs were designated as differentially expressed
if half or more of the genes in the BGC were differentially expressed. BGCs were designated as
overexpressed if half or more of the genes in the BGC were overexpressed or were designated as
underexpressed if half or more of the genes in the BGC were underexpressed. BGCs in which half or more
of the genes in the BGC were differentially expressed but did not have half or more genes either
overexpressed or underexpressed were designated as mixed expression.

Semiquantitative RT-PCR analysis. Semiquantitative RT-PCR analysis was performed using 10 �g
RNA, which was digested with DNase I (NEB catalog no. M0303L) to remove any contaminating genomic
DNA. cDNA synthesis reactions were performed using the Bio-Rad iScript cDNA synthesis kit (catalog no.
170-8891) according to the manufacturer’s protocols. Fifty nanograms of cDNA was used per reaction to
amplify specific fragments using gene-specific primers. The primers used are listed in Table S7 in the
supplemental material. Wild-type strain 293 and the ΔbrlA mutant were grown in liquid shake GMM at
29 and 37°C under conditions similar to those for RNA sequencing.

Metabolomics analysis. (i) Metabolite extraction. Total cultures (growth supernatant and fungal
mycelia) were obtained 96 h postinduction of asexual development. Growth supernatant and fungal
mycelia were separated via filtration through Miracloth (EMD Millipore). Prior to extraction of the growth
supernatant, residual mycelial debris was pelleted via centrifugation, and 5 ml of the growth supernatant
was subjected to solid-phase extraction (SPE) using Evolute ABN SPE columns (Biotage) following the
manufacturer’s protocol. The fungal mycelia were washed thoroughly with PBS to remove residual
growth supernatant and extracted using ethyl acetate-dichloromethane-methanol (3:2:1 [vol/vol/vol])
with 1% (vol/vol) formic acid (61) coupled with incubation in a water sonicator for 1 h. Both the growth
supernatant and fungal mycelial crude extracts were evaporated to dryness using a Thermo Scientific
Savant SC250 vacuum concentrator and stored at �20°C until ready for ultrahigh-performance liquid
chromatography-mass spectrometry (UHPLC-MS) analysis.

(ii) UHPLC-MS analysis: equipment overview and analytical methods. High-resolution UHPLC-MS
was performed on a Thermo Scientific Vanquish UHPLC system coupled to a Thermo Scientific Q Exactive
hybrid quadrupole Orbitrap MS. The system was operated in both electrospray positive-ionization (ESI�)
and electrospray negative-ionization (ESI�) modes with ion voltages set at 3.5 kV in both modes.

Crude extracts were reconstituted in 0.5 ml of 50% (vol/vol) acetonitrile plus 0.1% (vol/vol) formic
acid and syringe filtered through the 0.2-�m-pore polytetrafluoroethylene (PTFE) filter to remove
insoluble materials. Ten microliters was injected into the UHPLC-MS system, separated using an Agilent
Zorbax Eclipse XDB-C18 column (2.1 by 150 mm, 1.8-�m particle diameter), and run using 0.05% formic
acid in acetonitrile as the organic phase and 0.05% formic acid in water as the aqueous phase at a flow
rate of 0.2 ml/min. The solvent gradient starts at 20% organic for 2 min, followed by a linear increase to
60% organic over 10 min, a linear increase to 100% organic over 1 min, and a final holding at 100%
organic for 5 min totaling to 18 min of run time and data collection. The XDB-C18 column was
equilibrated at 20% organic for 5 min in between each sample injection throughout the sequence.

Purified standards were used to validate compounds analyzed in this study. The standards used were
either commercially purchased or kindly given by other investigators as described below: helvolic acid
(21580; Cayman Chemical Company), gliotoxin (G9893; Sigma-Aldrich), brevianamide F (HY-100385;
MedChem Express), fumagillin (11332; Cayman Chemical Company), pseurotin A (14441; Cayman Chem-
ical Company), fumitremorgin C (11030; Cayman Chemical Company), pyripyropene A (11896; Cayman
Chemical Company), terezine D (purified and given by the Schroeder lab at Cornell University), endoc-
rocin and questin (purified and given by the Wang lab at University of Southern California), fumiquina-
zolines F and A (purified and given by the Walsh lab at Harvard Medical School), trypacidin (purified and
given by the Puel lab at the French National Institute for Agricultural Research—Toulouse), and
fumigaclavine A (SC-203051; Santa Cruz Biotechnology). Standards for ferricrocin and fumigaclavine C
were unavailable, and thus compound abundances were inferred from calculated m/z.

Data visualization, peak alignment, analysis of full-scan UHPLC-MS data, ion extraction, and metab-
olite quantitation were performed using Xcalibur (Thermo Scientific) and MAVEN (64). Ionization mode
was chosen for each compound based on optimal peak profiles of their respective standards as assessed
in both ESI� and ESI� modes. Both total ion chromatograms (TICs) and extracted ion chromatograms
(EICs) were generated in GraphPad Prism 7 (GraphPad Software, Inc.) using coordinate data of peak
intensity (y) versus retention time (x) obtained from MAVEN. The area below the peak that corresponds
to each compound was used to generate the table for metabolite quantitation in GraphPad Prism 7
(GraphPad Software, Inc.).

Chromatin immunoprecipitation and real-time qPCR analysis. Fifty-milliliter cultures of liquid
GMM were inoculated with 1 � 106 spores per ml and incubated at 250 rpm and 37°C for 24 h under
light. Triplicate cultures were performed for each strain. Chromatin immunoprecipitation was carried out
as described previously (62). Antibodies used for ChIP were rabbit polyclonal to histone H3 acetyl K9
(ab10812; Abcam, Inc.), rabbit polyclonal to histone H3 trimethyl K4 (07-473; Upstate), rabbit polyclonal
to histone H3 acetyl K9 (ab8898; Abcam, Inc.), and rabbit polyclonal to C-terminus histone H3 antibody
(ab1791). Two micrograms of antibody was used per reaction mixture of 200 mg total protein. Ampli-
fication and detection of precipitated DNA in real-time qPCR were performed with iQ SYBR Green
supermix (Bio-Rad, catalog no. 170-8880) following the manufacturer’s instructions using primers AF
brlA(p) F qPCR (CGTACGGGTGTAAGTCTGATC) and AF brlA(p) R qPCR (CTCTGTATCTTCTAGTTCAATGG).
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Relative amounts of DNA were calculated by dividing the immunoprecipitated DNA by the input DNA.
Each PCR was replicated. To normalize the amount of DNA precipitated with histone H3-acetyl K9 and
H3-trimethyl K4, the quantities from precipitation with these antibodies were divided by the previously
calculated ratio of the anti-C-terminus histone H3 precipitation to input DNA.

Accession number(s). All short read sequences are available in the NCBI Sequence Read Archive
under BioProject no. PRJNA396210.

Data availability. All short read sequences are available in the NCBI Sequence Read Archive.
Differential gene expression from RNA-seq analysis is presented in Table S1, and data from metabolomics
experiments are presented in Table S4.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00050-18.
FIG S1, PDF file, 0.3 MB.
FIG S2, PDF file, 1.2 MB.
TABLE S1, XLSX file, 1.1 MB.
TABLE S2, XLSX file, 0.1 MB.
TABLE S3, XLSX file, 0.1 MB.
TABLE S4, XLSX file, 0.1 MB.
TABLE S5, XLSX file, 0.1 MB.
TABLE S6, XLSX file, 0.1 MB.
TABLE S7, XLSX file, 0.1 MB.

ACKNOWLEDGMENTS
A.L.L. was supported by U.S. National Library of Medicine training grant

2T15LM007450. This work was supported in part by the National Science Foundation
(DEB-1442113 to A.R.), by the National Institutes of Health (R01 AI065728-01 to N.P.K.
and T32 GM07133 and NRSA AI55397 to A.A.S.). This work was conducted in part using
the resources of the Advanced Computing Center for Research and Education at
Vanderbilt University (http://www.accre.vanderbilt.edu/).

REFERENCES
1. Bennett JW, Bentley R. 1989. What’s in a name?—microbial secondary

metabolism. Adv Appl Microbiol 34:1–28. https://doi.org/10.1016/S0065
-2164(08)70316-2.

2. Keller NP, Turner G, Bennett JW. 2005. Fungal secondary metabolism—
from biochemistry to genomics. Nat Rev Microbiol 3:937–947. https://
doi.org/10.1038/nrmicro1286.

3. Brakhage AA. 2013. Regulation of fungal secondary metabolism. Nat Rev
Microbiol 11:21–32. https://doi.org/10.1038/nrmicro2916.

4. Calvo AM, Wilson RA, Bok JW, Keller NP. 2002. Relationship between
secondary metabolism and fungal development. Microbiol Mol Biol Rev
66:447– 459. https://doi.org/10.1128/MMBR.66.3.447-459.2002.

5. Bayram Ö, Krappmann S, Ni M, Bok JW, Helmstaedt K, Yu J-H, Braus GH,
Bayram O, Valerius O, Braus-Stromeyer S, Kwon N-J, Keller NP. 2008.
VelB/VeA/LaeA complex coordinates light signal with fungal develop-
ment and secondary metabolism. Science 320:1504 –1506.

6. Reyes-Dominguez Y, Bok JW, Berger H, Shwab EK, Basheer A, Gallmetzer
A, Scazzocchio C, Keller N, Strauss J. 2010. Heterochromatic marks are
associated with the repression of secondary metabolism clusters in
Aspergillus nidulans. Mol Microbiol 76:1376 –1386. https://doi.org/10
.1111/j.1365-2958.2010.07051.x.

7. Karimi-Aghcheh R, Bok JW, Phatale PA, Smith KM, Baker SE, Lichius A,
Omann M, Zeilinger S, Seiboth B, Rhee C, Keller NP, Freitag M, Kubicek
CP. 2013. Functional analyses of Trichoderma reesei LAE1 reveal con-
served and contrasting roles of this regulator. G3 (Bethesda) 3:369 –378.
https://doi.org/10.1534/g3.112.005140.

8. Lim FY, Ames B, Walsh CT, Keller NP. 2014. Co-ordination between BrlA
regulation and secretion of the oxidoreductase FmqD directs selective
accumulation of fumiquinazoline C to conidial tissues in Aspergillus
fumigatus. Cell Microbiol 16:1267–1283. https://doi.org/10.1111/cmi
.12284.

9. Berthier E, Lim FY, Deng Q, Guo CJ, Kontoyiannis DP, Wang CC, Rindy J,
Beebe DJ, Huttenlocher A, Keller NP. 2013. Low-volume toolbox for the

discovery of immunosuppressive fungal secondary metabolites. PLoS
Pathog 9:e1003289. https://doi.org/10.1371/journal.ppat.1003289.

10. Throckmorton K, Lim FY, Kontoyiannis DP, Zheng W, Keller NP. 2016.
Redundant synthesis of a conidial polyketide by two distinct secondary
metabolite clusters in Aspergillus fumigatus. Environ Microbiol 18:
246 –259. https://doi.org/10.1111/1462-2920.13007.

11. Akoumianaki T, Kyrmizi I, Valsecchi I, Gresnigt MS, Samonis G, Drakos E,
Boumpas D, Muszkieta L, Prevost MC, Kontoyiannis DP, Chavakis T,
Netea MG, van de Veerdonk FL, Brakhage AA, El-Benna J, Beauvais A,
Latge JP, Chamilos G. 2016. Aspergillus cell wall melanin blocks LC3-
associated phagocytosis to promote pathogenicity. Cell Host Microbe
19:79 –90. https://doi.org/10.1016/j.chom.2015.12.002.

12. Coyle CM, Kenaley SC, Rittenour WR, Panaccione DG. 2007. Association
of ergot alkaloids with conidiation in Aspergillus fumigatus. Mycologia
99:804 – 811.

13. Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS,
Nierman WC, Keller NP. 2007. Transcriptional regulation of chemical
diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 3:e50. https://
doi.org/10.1371/journal.ppat.0030050.

14. Yu JH. 2010. Regulation of development in Aspergillus nidulans and
Aspergillus fumigatus. Mycobiology 38:229 –237. https://doi.org/10
.4489/MYCO.2010.38.4.229.

15. Park HS, Yu JH. 2016. Developmental regulators in Aspergillus fumigatus.
J Microbiol 54:223–231. https://doi.org/10.1007/s12275-016-5619-5.

16. Shin KS, Kim YH, Yu JH. 2015. Proteomic analyses reveal the key roles of
BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus.
Biochem Biophys Res Commun 463:428 – 433. https://doi.org/10.1016/j
.bbrc.2015.05.090.

17. Twumasi-Boateng K, Yu Y, Chen D, Gravelat FN, Nierman WC, Sheppard
DC. 2009. Transcriptional profiling identifies a role for BrlA in the
response to nitrogen depletion and for StuA in the regulation of
secondary metabolite clusters in Aspergillus fumigatus. Eukaryot Cell
8:104 –115. https://doi.org/10.1128/EC.00265-08.

Tissue-Specific Secondary Metabolism in Fungi

March/April 2018 Volume 3 Issue 2 e00050-18 msphere.asm.org 15

 on M
arch 16, 2018 by guest

http://m
sphere.asm

.org/
D

ow
nloaded from

 

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA396210
https://doi.org/10.1128/mSphere.00050-18
https://doi.org/10.1128/mSphere.00050-18
http://www.accre.vanderbilt.edu/
https://doi.org/10.1016/S0065-2164(08)70316-2
https://doi.org/10.1016/S0065-2164(08)70316-2
https://doi.org/10.1038/nrmicro1286
https://doi.org/10.1038/nrmicro1286
https://doi.org/10.1038/nrmicro2916
https://doi.org/10.1128/MMBR.66.3.447-459.2002
https://doi.org/10.1111/j.1365-2958.2010.07051.x
https://doi.org/10.1111/j.1365-2958.2010.07051.x
https://doi.org/10.1534/g3.112.005140
https://doi.org/10.1111/cmi.12284
https://doi.org/10.1111/cmi.12284
https://doi.org/10.1371/journal.ppat.1003289
https://doi.org/10.1111/1462-2920.13007
https://doi.org/10.1016/j.chom.2015.12.002
https://doi.org/10.1371/journal.ppat.0030050
https://doi.org/10.1371/journal.ppat.0030050
https://doi.org/10.4489/MYCO.2010.38.4.229
https://doi.org/10.4489/MYCO.2010.38.4.229
https://doi.org/10.1007/s12275-016-5619-5
https://doi.org/10.1016/j.bbrc.2015.05.090
https://doi.org/10.1016/j.bbrc.2015.05.090
https://doi.org/10.1128/EC.00265-08
msphere.asm.org
http://msphere.asm.org/


18. Zhang X, Zhu Y, Bao L, Gao L, Yao G, Li Y, Yang Z, Li Z, Zhong Y, Li F, Yin
H, Qu Y, Qin Y. 2016. Putative methyltransferase LaeA and transcription
factor CreA are necessary for proper asexual development and control-
ling secondary metabolic gene cluster expression. Fungal Genet Biol
94:32– 46. https://doi.org/10.1016/j.fgb.2016.07.004.

19. Kato N, Suzuki H, Okumura H, Takahashi S, Osada H. 2013. A point
mutation in ftmD blocks the fumitremorgin biosynthetic pathway in
Aspergillus fumigatus strain Af293. Biosci Biotechnol Biochem 77:
1061–1067. https://doi.org/10.1271/bbb.130026.

20. Gauthier T, Wang X, Sifuentes Dos Santos J, Fysikopoulos A, Tadrist S,
Canlet C, Artigot MP, Loiseau N, Oswald IP, Puel O. 2012. Trypacidin, a
spore-borne toxin from Aspergillus fumigatus, is cytotoxic to lung cells.
PLoS One 7:e29906. https://doi.org/10.1371/journal.pone.0029906.

21. Gressler M, Meyer F, Heine D, Hortschansky P, Hertweck C, Brock M.
2015. Phytotoxin production in Aspergillus terreus is regulated by inde-
pendent environmental signals. Elife 4:e07861. https://doi.org/10.7554/
eLife.07861.

22. Litzka O, Then Bergh K, van den Brulle J, Steidl S, Brakhage AA. 1999.
Transcriptional control of expression of fungal beta-lactam biosynthesis
genes. Antonie Van Leeuwenhoek 75:95–105. https://doi.org/10.1023/
A:1001706729545.
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