
A. fumigatus revealed the fungal xanthocillin biosynthetic pathway and hints at diverse
functions of ICS homologues in eukaryotes.

Based on the phylogeny of the ICS domain (PF05010), we found that A. fumigatus
harbors all three variations of ICS domain proteins (Fig. 1 and 2). ICS homologues
appear to be widely distributed in both bacteria and fungi, with outlier representation
in oomycetes, plants, and metazoans (Fig. 2). Fungal ICSs do not appear to have
been recently horizontally acquired from bacteria, are evolutionarily arranged into
several distinct fungal clades, and occur particularly concentrated within the phy-
lum Ascomycota (Fig. 2). Significantly, our examination of the ICS phylogeny
revealed a recent evolutionary expansion of the novel ICS-NRPS hybrid enzymes in
many important fungal pathogens and highlighted the presence of ICS homologues in
a yeast taxon (Saccharomycotina) not normally known to harbor extensive secondary
metabolism capabilities, including the human-pathogenic Candida spp. (Fig. 2A, Ta-
ble S1, and Fig. S3). A detailed examination of the xan gene cluster architecture showed
conservation of five xan genes (xanA, xanB, xanC, xanD, and xanG) in both Penicillium
chrysogenum and Penicillium expansum (Fig. 7). P. expansum has been reported to
produce the isocyanide xanthocillin X (38). However, only xanA and xanB are conserved
in Penicillium oxalicum (Fig. 7). Conservation of flanking genes but not the xan BGC in
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FIG 5 xanC regulates xan cluster gene expression and metabolite production. (A) Northern analysis depicting expression of xanA
to -G in the both the wild type and OE::xanC mutant grown under copper-replete conditions. (B and C) Extracted-ion
chromatograms (EICs) corresponding to compounds 7 to 12 in the wild type grown with or without copper (red lines) and the
OE::xanC mutant with or without copper (black lines) in liquid shake culture. (D and E) EICs corresponding to compounds 7 to 12
in the wild type grown with or without copper (red lines), the OE::xanC mutant with or without copper (black lines), and the ΔxanC
mutant (green lines) in a solid plate culture.

TABLE 3 Production of xanthocillin derivatives in solid plate culture (compounds 7 to 12), comparing the OE::xanC mutant strain to the
�xanC deletion strain

Compound

Production of derivative in a:

WT OE::xanCmutant �xanC deletion mutant

�Cu �Cu �Cu �Cu �Cu �Cu
7 6.6E7 � 2.4E7 1.9E8 � 4.1E7 1.6E9 � 3.1E8 9.9E8 � 5.7E8 0 0
8 2.3E7 � 1.0E7 6.4E8 � 2.2E8 3.8E9 � 8.1E8 8.2E9 � 1.7E9 0 0
9 2.8E5 � 1.9E5 9.1E6 � 6.2E6 1.3E7 � 4.9E6 3.8E8 � 2.5E8 0 1.1E5 � 6.9E4
10 3.7E7 � 8.2E6 4.8E7 � 1.1E7 4.0E8 � 2.4E8 5.9E8 � 3.1E8 0 0
11 5.9E9 � 7.3E8 6.4E9 � 1.2E9 1.2E10 � 2.3E9 6.3E8 � 1.1E8 0 0
12 2.8E8 � 4.8E7 1.6E8 � 3.5E7 6.3E8 � 1.1E8 3.9E7 � 4.7E6 0 0
aThe numbers indicate the average � standard deviation for the peak intensity of each compound determined by LC-HRMS with three replicates.
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various fungal genera extending to Talaromyces marneffei, Trichophyton interdigitale,
and Coccidioides immitis suggests an insertion of the xan BGC in the Eurotiales (Fig. 7).

Yeast ICS homologues represent a family of proteins named Dit1, which are involved
in the production of the sexual spore wall component N,N-bisformyl dityrosine in
S. cerevisiae (27) and likely in C. albicans as well (39, 40). However, the specific enzymatic
function of this protein, including its enzymatic product, remains unknown. In both
S. cerevisiae and C. albicans, the dit1 gene is transcribed divergently from dit2, encoding
a cytochrome P450 monooxygenase, which is assumed to catalyze the formation of
N,N-bisformyl dityrosine from the product of Dit1 catalysis (Fig. 6) (27). Dit1 and Dit2 are
homologues of XanB and XanG in A. fumigatus, respectively. Given that the putative
mechanism of N,N-bisformyl dityrosine formation is strikingly similar to that of xantho-
cillin biosynthesis, we propose the unknown product of Dit1 catalysis in S. cerevisiae to
be a tyrosine isocyanide precursor (compound 13) (Fig. 6).

Our results demonstrate that in A. fumigatus, XanB is the dedicated synthase for
production of the copper-responsive isocyanides and their derivatives, and we suggest
that the Dit2-like protein XanG catalyzes oxidative dimerization, following isocyanide
formation via XanB. We showed that both copper-fist transcription factors (AceA and
MacA) are involved in governing the copper-responsive profile of the xan and crm
BGCs. Although the crm BGC is similarly regulated by copper availability, we find no
direct involvement of this BGC in the production of compounds 7 to 12. Given that
CrmA is a novel type of ICS-NRPS hybrid enzyme within the ICS3G-BGC found to be
enriched in many fungal pathogens of plants, insects, and humans, our ongoing work
aims to elucidate the activity of this enzyme and identify its biosynthetic product(s), to
further define the copper-responsive regulation of its gene cluster, and ultimately to

FIG 6 Putative biosynthesis of xanthocillin derivatives in A. fumigatus and related pathways in the bacterium
Xenorhabdus nematophila (5) and yeast Saccharomyces cerevisiae (36). Tyrosine is converted into intermediate
compound 14 by XanB, which is then converted by XanG into xanthocillin. N-Formyl and methyl moieties in
xanthocillin derivatives are introduced by XanA and XanE, respectively. Fumiformamide (compound 8) is converted
into melanocins E (compound 9) and F (compound 10) by oxidative and reductive cyclization, respectively. In yeast,
tyrosine is converted into N-formyl tyrosine (compound 15) by Dit1, followed by dimerization via Dit2 to form
N,N-bisformyl dityrosine (compound 16). The presence of isocyanide (compound 13) in yeast has not been
established.
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query their role or roles in the ecologic fitness or pathogenicity potential of A. fumigatus
and other pathogenic fungi. The involvement of this family of ICSs in fungi, on one
hand, to produce an important cell wall dipeptide (dityrosine) in yeast, and on the
other hand, to produce a potential defensive molecule (xanthocillin) in filamentous
mold makes for their interesting position at the interface of both primary and second-
ary metabolism.

The discovery of diverse ICSs in fungi revealed a novel, unexplored aspect of fungal
secondary metabolism. Whereas iron-responsive secondary metabolism in fungi is well
understood, our characterization of xanthocillin biosynthesis and regulation of the
synthases involved in its production in A. fumigatus offers the first insight into copper-
responsive secondary metabolism in fungi, possibly related to copper chelation pro-
cesses, as has been found for a few other natural products, such as yersiniabactin and
methanobactins (41, 42). Finally, it should be noted that two of the identified ICS BGCs
were “invisible” to current secondary metabolite prediction algorithms, including
antiSMASH (26) and SMURF (25) because of the lack of precedent for eukaryotic ICSs
and absence of canonical class-defining secondary-metabolite-producing synthases
(e.g., nonribosomal peptide synthetase, polyketide synthase, terpene cyclase, prenyl-
transferase, etc.). Revision of such algorithms will further expand the power of bioin-
formatically driven natural product mining.
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MATERIALS AND METHODS
Fungal growth and culture conditions. All A. fumigatus strains used in this study are listed in

Table S3. Strains were maintained as glycerol stocks and activated on solid glucose minimal medium
(GMM) at 37°C (37). Growth medium was supplemented with 5.0 mM uridine and uracil and 5.7 mM
arginine for pyrG and argB auxotrophs, respectively. For isolation of genomic DNA (gDNA) for PCR and
Southern blotting, 10 ml of liquid minimal medium (43) with yeast extract was inoculated with spores
from solid medium and grown overnight at 37°C. For isolation of the OE::xanC and wild-type AF293 RNA,
50 ml of GMM was inoculated (1.0 � 106 spores per ml), and cells were grown for ~12 h at 37°C with
shaking at 200 rpm. For cDNA synthesis of crmA, A. fumigatus AF293 was inoculated at 1.0 � 106 spores
per ml into yeast extract-glucose (YG) medium for the inducing condition and YG medium plus trace
elements for the noninducing condition and cultured at 37°C for 24 h. For ultrahigh-performance liquid
chromatography (UHPLC)-HRMS and NMR analysis, strains were inoculated (1.0 � 106 spores per ml) into
50 ml GMM with (5 �M) and without copper supplementation in a 125-ml Erlenmeyer flask at 37°C with
shaking at 200 rpm for 120 h. For metabolite analysis under solid conditions, 1 � 108 total spores were
plated onto GMM solid plates with (5 �M) and without copper. For copper-starved growth, conidia used
for inoculation were harvested from copper-depleted GMM. For copper-replete growth, conidia used for
inoculation were harvested from GMM containing 5 �M supplemented copper.

Mutant construction. The mutants used in this study (Table S3) were created using the double-joint
PCR (DJ-PCR) method (44). Genomic DNA and RNA were isolated from A. fumigatus AF293 using standard
procedures. Construction of DJ-PCR products, protoplast production, and transformation were carried
out as previously described (44). Briefly, primers were designed to amplify approximately 1,000-bp flanks
with 20 bp of overlap of the selection marker-containing plasmid using SeqBuilder within the Laser-
gene12 suite (DNASTAR, Madison, WI). For deletion strains, plasmid pJW24 (45) or pJMP4 (46) was used
to amplify the A. parasiticus pyrG or A. fumigatus argB genes, respectively. For the xanC overexpression
strain (OE::xanC mutant), plasmid pJMP9.1 (47) was used to amplify the A. parasiticus pyrG gene fused to
an A. nidulans gpdA constitutively active promoter. Both pyrG� (TFYL80) and argB� (TFYL84) mutants
were generated by complementing the pyrG-argB� double auxotroph (TFYL45) with A. fumigatus argB
(pJMP4) and A. fumigatus pyrG (pKJA12), respectively. The �crmA pyrG� mutant (TFYL90) was generated
from TFYL45. The �crmA mutant (TFYL93) was generated from TFYL84. The �xanB mutant (TFYL105) was
generated from TFYL80.1. The �crmA �xanB double mutant was generated from TFYL90. The OE::xanC
mutant was generated from TFYL80. Transformants were screened for proper integration of the construct
and loss of the gene of interest via PCR. Single integration of the transformation cassette was verified by
Southern analysis (Fig. S5). Expression of xanC in the OE::xanC mutant was confirmed via Northern
analysis. For all auxotrophic mutants, maintenance of the mutant allele(s) was confirmed via PCR after
complementation to prototrophy.

cDNA synthesis and cloning of crmA. Fungal mycelia were harvested from cells under both
inducing and noninducing conditions and lyophilized. Total RNA was extracted from the lyophilized
mycelia using TRIzol according to the manufacturer’s protocol. Ten micrograms of total RNA was
digested with DNase I and subjected to cDNA synthesis using the SuperScript III first-strand reverse
transcriptase system according to the manufacturer’s protocol. The full-length crmA genes according to
the new prediction (Fig. S1) were amplified and cloned into bacterial expression vector pTEV5 (48) to give
rise to pFYL15.

Phylogenetic analysis. To identify isocyanide synthases in A. fumigatus, a PSI-BLAST search using
amino acid sequences of the bacterial isocyanide synthase from P. aeruginosa, PvcA, was queried against
the genome of A. fumigatus AF293. To build the phylogenetic trees, the regions corresponding to
isocyanide synthase (Pfam domain PF05141), Fe2� �-ketoglutarate-dependent dioxygenase (Pfam do-
main PF02668) in the ICSs of Aspergillus fumigatus AF293, CrmA, and XanB, were queried against Ensembl
Genomes using phmmer, a member of the HMMER3 software suite (49) (web server accessed 15 July
2016). Significant hits were downloaded and filtered based on length and sequence composition and to
reduce redundancy in the data set using a custom perl script as well as IQ-TREE (50) (Table S1). Following
this filtering step, regions corresponding to each domain of interest were aligned with MAFFT v7.023b
using the G-INS-I strategy (51), and the topologies were inferred using maximum likelihood (ML) as
implemented in RAxML version 8.0.25 (52) using a PROTGAMMALG substitution model (automatically
determined to be the best model within RAxML) and rapid bootstrapping (100 replications). All
alignments and trees are available for download on the figshare data repository (https://doi.org/10.6084/
m9.figshare.4721116.v1). The phmmer-identified sequences were scanned for significant hits to addi-
tional Pfam domains using an hmmsearch E value inclusion threshold of 0.001 (Table S1).

Analytic methods and equipment overview. (i) NMR spectroscopy. NMR spectroscopy was
performed on a Bruker Avance III HD (800-MHz 1H reference frequency, 201 MHz for 13C) equipped with
a 5-mm CPTCL 1H-13C/15N cryo probe. Non-gradient phase-cycled double quantum-filtered correlation
spectroscopy (DQF-COSY) spectra were acquired using the following parameters: 0.6-s acquisition time;
400 to 600 complex increments, and 8, 16, or 32 scans per increment. Heteronuclear single quantum
coherence (HSQC) and heteronuclear multiple bond correlation (HMBC) spectra were acquired with the
following parameters: 0.25-s acquisition time, 200 to 500 complex increments, and 8 to 64 scans per
increment. 1H,13C-HMBC spectra were optimized for JH,C � 6 Hz. HSQC spectra were acquired with or
without decoupling. NMR spectra were processed and baseline corrected using MestreLabs MNOVA
software packages.

(ii) MS. Ultrahigh-performance liquid chromatography-high-resolution MS (UHPLC-HRMS) was per-
formed on a Thermo Scientific-Dionex Ultimate 3000 UHPLC system equipped with a diode array
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detector and connected to a Thermo Scientific Q Exactive Orbitrap operated in electrospray ionization-
positive (ESI�) or -negative (ESI�) mode.

(iii) Chromatography. Semipreparative chromatography was performed on an Agilent 1100 series
HPLC system using an Agilent Zorbax Eclipse XDB-C8 column (25 cm by 10 mm, 5-�m particle diameter).

Metabolite extraction and LC-MS analysis. Liquid fungal cultures (50 ml) including fungal tissue
and medium were frozen using a dry ice-acetone bath and lyophilized. The lyophilized residues were
extracted with 20 ml of ethyl acetate-methanol (9:1) for 1.5 h with vigorous stirring. Extracts were filtered
over cotton, evaporated to dryness, and stored in 4-ml vials. Crude extracts were suspended in 0.5 ml of
methanol and centrifuged to remove insoluble materials, and the supernatant was subjected to
UHPLC-HRMS analysis. An Agilent Zorbax RRHD Eclipse XDB-C18 column (2.1 by 100 mm, 1.8-�m particle
diameter) was used with acetonitrile (organic phase) and 0.1% formic acid in water (aqueous phase) as
solvents at a flow rate of 0.5 ml/min. A solvent gradient scheme was used, starting at 2% organic for
1 min, followed by a linear increase to 100% organic over 14 min, holding at 100% organic for 2.5 min,
decreasing back to 2% organic for 0.1 min, and holding at 2% organic for the final 1.4 min, for a total of
18 min.

Chromatographic purification of compounds 7, 9, 10, and 11. Liquid fungal cultures (1 liter)
including fungal tissue and medium were frozen using a dry ice-acetone bath and lyophilized. The
combined lyophilized residues were extracted with 500 ml of ethyl acetate-methanol (9:1) for 3.5 h with
vigorous stirring. Extracts were filtered over cotton, evaporated to dryness, and stored in 8-ml vials. Crude
extracts were fractionated via semipreparative HPLC using an Agilent XDB C8 column (25 cm by 10 mm,
5-�m particle diameter) with acetonitrile (organic phase) and 0.1% acetic acid in water (aqueous phase)
as solvents at a flow rate of 3.2 ml/min. A solvent gradient scheme was used, starting at 5% organic for
3 min, followed by a linear increase to 100% organic over 27 min, holding at 100% organic for 5 min,
decreasing back to 5% organic for 0.1 min, and holding at 5% organic for the final 4.9 min, for a total of
40 min. Further purification of fractions containing compounds 7, 9, 10, and 11 was accomplished by
semipreparative HPLC using an Agilent XDB C8 column (25 cm by 10 mm, 5-�m particle diameter) with
acetonitrile (organic phase) and 0.1 M (pH 8.0) ammonium acetate in water (aqueous phase) as solvents
at a flow rate of 3.2 ml/min with same gradient scheme described above.
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