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SUMMARY

Budding yeasts (subphylum Saccharomycotina) are
found in every biome and are as genetically diverse
as plants or animals. To understand budding
yeast evolution, we analyzed the genomes of 332
yeast species, including 220 newly sequenced
ones, which represent nearly one-third of all known
budding yeast diversity. Here, we establish a robust
genus-level phylogeny comprising 12 major clades,
infer the timescale of diversification from the Devo-
nian period to the present, quantify horizontal gene
transfer (HGT), and reconstruct the evolution of 45
metabolic traits and the metabolic toolkit of the
budding yeast common ancestor (BYCA). We
infer that BYCA was metabolically complex and
chronicle the tempo and mode of genomic and
phenotypic evolution across the subphylum, which
is characterized by very low HGT levels and wide-
spread losses of traits and the genes that control
them. More generally, our results argue that
reductive evolution is a major mode of evolutionary
diversification.
C

INTRODUCTION

Yeasts—unicellular fungi that lack fruiting bodies—have

evolved multiple times across fungi (Stajich et al., 2009), but

most known yeast species belong to the subphylum Saccharo-

mycotina (hereafter referred to as budding yeasts or simply

yeasts). This diverse group, whose genetic diversity is on par

with the plant and animal lineages (Figure 1), includes the

baker’s yeast and premier eukaryotic model system Saccharo-

myces cerevisiae (Peter et al., 2018), the common human

commensal and opportunistic pathogen Candida albicans,

and over 1,000 other known species with more continuing to

be discovered (Dujon and Louis, 2017; Hittinger et al., 2015;

Kurtzman et al., 2011).

Yeasts exhibit remarkably diverse heterotrophic metabolisms,

which have allowed them to successfully partition nutrients and

ecosystems to inhabit every continent and every major aquatic

and terrestrial biome (Kurtzman et al., 2011; Opulente et al.,

2018). Comparative genomic investigations have served as the

launching pads into the evolution of budding yeast metabolism

and ecological specialization in numerous clades, including the

clade of S. cerevisiae and its close relatives (Hittinger, 2013),

the genus Lachancea (Vakirlis et al., 2016), the C. albicans/

Candida tropicalis clade (Butler et al., 2009), and the Candida
ell 175, 1533–1545, November 29, 2018 ª 2018 Elsevier Inc. 1533
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Figure 1. Levels of Evolutionary Sequence

Divergence within the Budding Yeast Sub-

phylum Are on Par with Levels Observed in

Animals and Plants

The phylogenetic distance (in terms of amino

acid substitutions/site) between iconic species

in budding yeasts (Saccharomyces cerevisiae),

animals (Homo sapiens), and plants (Arabidopsis

thaliana) and other representative species in

each lineage. For each lineage, phylogenetic

distance was estimated from a concatenated ML

tree inferred from analysis of 295 single-copy

BUSCO genes. S. cerevisiae, Saccharomyces

cerevisiae; S. paradoxus, Saccharomyces para-

doxus; S. uvarum, Saccharomyces uvarum;

C. glabrata, Candida glabrata; K. lactis, Kluyver-

omyces lactis; Wy. anomalus, Wickerhamomyces

anomalus; D. hansenii, Debaryomyces hansenii;

C. albicans, Candida albicans; B. bruxellensis,

Brettanomyces bruxellensis; L. starkeyi, Lip-

omyces starkeyi; Y. lipolytica, Yarrowia lipolytica.

Images representing taxa were drawn by hand,

taken from PhyloPic (http://phylopic.org), or

modified from Google Images. The data matrix

and ML tree used for calculating sequence diver-

gence in each of the three lineages are provided in

the Figshare depository.
glabrata/Nakaseomyces clade (Gabaldón et al., 2013). Although

these investigations have shaped our understanding of budding

yeast evolution, they have either focused on small slices of biodi-

versity or have been very broad investigations using collections

of taxa skewed toward biomedically or industrially relevant

yeasts (Gabaldón et al., 2013; Génolevures Consortium et al.,

2009; Riley et al., 2016).

This sparse and sporadic sampling of genome sequences

has forestalled efforts to examine the impact of different evolu-

tionary processes or to identify major evolutionary trends

across the entire subphylum. For example, several illustrative

studies have shown how the presence of specific genes and

pathways correlates with phenotypes, including clear cases

of gains (Gonçalves et al., 2018; Hall and Dietrich, 2007) and

losses (Hittinger et al., 2004; Riley et al., 2016; Slot and Rokas,

2010; Wolfe et al., 2015), but the frequency and generality of

these observations remain unclear. Collectively, the use of a

relatively small subset of distantly related budding yeast ge-

nomes has prevented the state-of-the-art quantification and

statistical analyses that would be required to understand the

tempo and mode of genomic and metabolic evolution across

the subphylum.

To address this gap, we sequenced the genomes of 220

budding yeast species and coupled them with the published ge-

nomes of an additional 112 species to investigate the evolution

of biodiversity of the subphylum Saccharomycotina. By interro-

gating genomic and metabolic trait variation, we reconstructed

a robust genome-wide phylogeny, established the geological

timeline of budding yeast diversification, quantified horizontal

gene transfer (HGT) in budding yeast genomes, and inferred

the evolution of 45 metabolic traits and their underlying genetic

toolkit from the �400 million-year-old budding yeast common

ancestor (BYCA) to the present.
1534 Cell 175, 1533–1545, November 29, 2018
RESULTS AND DISCUSSION

332 Yeast Genomes Spanning the Diversity of the Yeast
Subphylum
We sampled the genomes of 332 budding yeast species repre-

senting 79/92 genera across the subphylum Saccharomycotina

(STAR Methods). Of the 332 yeast genomes, 112 were publicly

available and previously published, 24 sequenced by RIKEN

were publicly available (http://www.jcm.riken.jp/cgi-bin/nbrp/

nbrp_list.cgi) but are described here for the first time, and 196

were newly sequenced by the Y1000+ Project (http://www.

y1000plus.org) (Figures 2 and S1; Table S1). 195/196 newly

sequenced Y1000+ Project genomes were from type strains

(the other was from an authentic strain), as were at least 81/

136 publicly available ones; in addition, 72/79 included genera

were represented by their type species (Table S1).

Compared to the 136 publicly available genomes, the 196

newly sequenced genomes (Y1000+ Project genomes) had

generally smaller averageN50 values (new=417.2 kb vs. public =

1,235.4 kb), but they had comparable degrees of genome as-

sembly completeness (new = 91.3% vs. public = 94.0%), GC

contents (new = 40.3% vs. public = 41.1%), and average

numbers of predicted genes (new = 5,822.4 genes vs. public =

5,525.7 genes), suggesting that they are suitable for most evolu-

tionary genomic analyses.

A Robust Phylogeny for the Subphylum
Saccharomycotina
To infer the budding yeast phylogeny, we assembled 2 full data

matrices (2408OG data matrix and 1292BUSCO data matrix)

and 7 additional ones (by subsampling subsets of genes in

the 2408OG data matrix) and analyzed them using three

phylogenetic strategies (concatenation under a single partition,

http://www.jcm.riken.jp/cgi-bin/nbrp/nbrp_list.cgi
http://www.jcm.riken.jp/cgi-bin/nbrp/nbrp_list.cgi
http://www.y1000plus.org
http://www.y1000plus.org
http://phylopic.org
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Figure 2. Time-Calibrated Phylogeny of the Budding Yeast Subphylum

Divergence times were estimated using the autocorrelated clock model of rate variation across different lineages implemented in MCMCTree (clock = 3), with a

topology reconstructed from the concatenation-based maximum likelihood analysis of 2,408 amino acid orthologous groups (OGs) under a single LG+G4model.

The 32 internal branches that were not robustly recovered across our analyses are marked with circles. The 220 genomes published in this study are shown in

bold. The bar plot next to each species indicates genomic quality assessed by a set of 1,759 BUSCO genes. ‘‘Complete’’ indicates the fraction of full-length

BUSCOgenes; ‘‘Fragmented’’ indicates the fraction of geneswith a partial sequence; and ‘‘Missing’’ indicates the fraction of genes not found in the genome. Note

that the CUG-Ser1 clade includes interspersed taxa from the families Debaryomycetaceae, Metschnikowiaceae, and Cephaloascaceae; the CUG-Ser2 clade

includes the families Ascoideaceae and Saccharomycopsidaceae; the newly recovered CUG-Ala clade includes several taxa in need of reassignment; the

Pichiaceae clade includes several taxa in need of reassignment; and the Dipodascaceae/Trichomonascaceae clademainly includes interspersed taxa from these

two families. mya, million years ago.

See also Figures S1, S2, and S3 and Tables S1 and S2.
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concatenation under gene-based partitioning, and coales-

cence). These analyses produced a strongly supported and

largely concordant phylogeny (Figure 2); only 32/331 yeast inter-

nodes were not recovered by all 27 phylogenies, with most in-

stances of incongruence being due to whether the data matrix

was analyzed by concatenation or coalescence (Figure S2).

Surprisingly, one of the resolved internodes concerned the

placement of the CUG-Ser2 clade, which was equivocal in pre-

vious phylogenomic studies (Riley et al., 2016; Shen et al.,

2016a, 2017). For example, the most recent phylogenomic anal-

ysis, in which the CUG-Ser2 clade was represented by a single

taxon, showed that the clade’s placement was unduly influenced

by inclusion of the DPM1 (in S. cerevisieae) gene (Shen et al.,

2017). However, our sampling of three additional representative

taxa from the CUG-Ser2 clade eliminated the gene’s dispropor-

tionate influence and resolved this clade’s placement in the

budding yeast phylogeny (Figure S3).

The new phylogeny divides the subphylum into 12 major

clades (Figure 2), at least 2 and up to 8 more than previously

recognized (Dujon and Louis, 2017; Hittinger et al., 2015;

Kurtzman and Boekhout, 2017; Kurtzman et al., 2011; Shen

et al., 2016a). Several families are now well circumscribed

(e.g., Pichiaceae), whereas other families are not recipro-

cally monophyletic (e.g., Dipodascaceae/Trichomonasca-

ceae), leading us to consider them as major clades comprised

of multiple known families. One major reorganization stems

from the recognition that the split between the genus Sporopa-

chydermia and other budding yeasts is very deep. Although

previous authors had recognized affinities to the families Dipo-

dascaceae and Trichomonascaceae, our analyses placed the

genus Sporopachydermia on its own long branch with deep

affinities to the family Alloascoideaceae in most analyses (Fig-

ure 2). A second major reorganization stems from the place-

ment of a group of species that all translate the CUG codon

as alanine (the CUG-Ala clade) (Krassowski et al., 2018; Riley

et al., 2016) as a lineage that is separate from and sister to the

Pichiaceae clade. In previous studies, some members of these

two clades were placed together, while the taxonomic place-

ments of taxa in the genera Nakazawaea, Pachysolen, and

Peterozyma were still unclear (Kurtzman and Boekhout,

2017; Kurtzman et al., 2011). Our results suggest that the

CUG-Ala clade represents a new, yet-to-be-described taxo-

nomic family.

A Timescale for Budding Yeast Diversification
To estimate divergence times of the budding yeast subphylum,

we employed Bayesian relaxed clock approach (Yang, 2007)

with four generally accepted calibration points (STAR Methods)

on the 2408OG data matrix. We estimate the origin of the sub-

phylum between 317 and 523 (95% credibility interval; posterior

mean date: 404) million years ago (mya); the origin of the CUG-

Ser1 clade, which contains the major opportunistic pathogen

C. albicans, between 178 and 248 (210) mya, the origin of the

whole-genome duplication (WGD) clade between 82 and 105

(93) mya, and the divergence of S. cerevisiae and C. albicans

from their sister species (Saccharomyces paradoxus and

Candida dubliniensis) between 4.0 and 5.8 (4.9) mya and 5.0

and 14.0 (8.7) mya, respectively (Figure 2; Table S2).
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HGT into Budding Yeasts
To identify the tempo and mode of HGT into the budding yeast

gene lineage, we investigated all 1,538,912 genes that reside

in the 8,792 contigs R 100 kb using a robust and conservative

phylogeny-based approach (STAR Methods). We found that

878 genes in 186 yeast genomes were likely acquired via 365

distinct HGT events from non-fungal (mostly bacterial) sources

(Figures 3A and S4; Table S3). Gene ontology enrichment anal-

ysis of the 878 genes shows that most are associated with meta-

bolism-related terms (Figure S5; Table S3). Furthermore, 616/

878 genes (�70%) were significantly supported with the approx-

imately unbiased (AU) test (Shimodaira, 2002), a value quite

similar to the percentage supported by AU tests among previ-

ously described HGT-acquired genes (15/21, or �71%; Table

S3). Although precisely quantifying the fraction of HGT events

is challenging, the approximately 0.04% (616/1,538,912) to

0.06% (878/1,538,912) of genes identified to have been puta-

tively acquired via HGT suggests that the process is a very small

contributor to overall yeast genome diversification.

From the 878 HGT-acquired genes, 333 were present in the

genomes of the six representative species from the W/S clade

(Figure 3A; Table S3). In contrast, the genomes of 57/103 spe-

cies in the CUG group, whose genetic codes deviate from the

universal one, did not contain any HGT-acquired genes (Fig-

ure 3A). The fraction of HGT-acquired genes was significantly

higher in the 226 yeast genomes that use the universal genetic

code than in the 103 CUG group genomes (0.071% of

1,054,747 genes vs. 0.025% of 484,165 genes; Fisher’s exact

test; p value = 2.23 10�16; which remained significant even after

exclusion of the W/S clade species at 0.041% of 1,027,319

genes vs. 0.025%of 484,165 genes; Fisher’s exact test; p value=

2.5 3 10�5), supporting the hypothesis that altered genetic

codes serve as barriers to HGT (Richards et al., 2011;

Woese, 2000).

Finally, our dense genome sampling also facilitated the identi-

fication of cases involving the independent acquisition of genes

participating in the samemetabolic pathway into the same yeast

lineage, as well as the independent acquisition of the same gene

in two distantly related yeast lineages (Figures 3B and 3C). Spe-

cifically, an ancestor of Wickerhamiella (Candida) versatilis and

Wickerhamiella domercqiae, two highly osmotolerant species,

acquired a choline oxidase associated with the production of

the osmoprotectant betaine from choline; remarkably, that

same ancestor appears to have also independently acquired a

choline sulfatase involved in the conversion of choline-O-sulfate

into choline (Figure 3B). W. versatilis and W. domercqiae also

horizontally acquired a nitronate monooxygenase likely associ-

ated with resistance to propionate 3-nitronate (P3N; a plant

and fungal toxin) from genus Pseudomonas bacteria (Figure 3C).

Evolution of Metabolic Traits across Budding Yeasts
To examine the evolution of budding yeast metabolism, we used

Bayesian inference to estimate rates of gain and loss for a

compilation of 45 discrete metabolic traits in 274/332 budding

yeasts across the subphylum (Kurtzman et al., 2011; Opulente

et al., 2018) (STAR Methods; Table S4). We found that 39/45

traits experienced higher rates of loss, whereas the remaining

6 experienced higher rates of gain (Table 1; Figure S6). These
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Figure 3. Very Few Budding Yeast Genes Were Acquired via HGT

(A) Mapping of the 878 putative HGT-acquired genes on the 332-taxon phylogeny of budding yeasts (Figure 2). These 878 genes were acquired through 365

distinct HGT events, of which 230 appear to be species-specific and the other 135 involve two or more species.

(B) Two independent HGT events provided osmotolerant budding yeasts the genetic machinery to produce the osmoprotectant glycine betaine. Top: the

biochemical pathway for the biosynthesis of glycine betaine from choline-O-sulfate is shown. Choline-O-sulfate is first converted by the action of choline sulfatase

into choline; then choline is converted by the action of choline oxidase into glycine betaine. Bottom: the phylogenies for the choline sulfatase and choline oxidase

genes are shown. Note that the sequences of the sister lineages to the W. domercqiae and W. versatilis choline sulfatase sequences are from Proteobacteria,

whereas the sequences of the sister lineages to the W. domercqiae and W. versatilis choline oxidase sequences are from Actinobacteria.

(C) Two independent events provided two different lineages of budding yeasts (the W/S clade and a clade of three species in the genus Kluyveromyces) the

genetic machinery to metabolize the mitochondrial toxin propionate-3-nitronate (P3N). Top: the biochemical pathway for the oxidation of P3N is shown, where

P3N is converted intomalonic semialdehyde via the action of nitronatemonooxygenase. Bottom: the phylogeny for the nitronate monooxygenase acquired by an

ancestor of W. domercqiae and W. versatilis is shown. Note that the sequences of the sister lineages to the W. domercqiae and W. versatilis nitronate mono-

oxygenase sequences are from Proteobacteria in the genus Pseudomonas; the phylogeny for the nitronate monooxygenase acquired by an ancestor of the three

Kluyveromyces species is not displayed, but these sequences are most closely related to sequences from Proteobacteria in the genus Acinetobacter.

The budding yeast species inferred to have been the recipients of horizontally transferred genes are shown in bold. Data matrices and phylogenies for all

HGT-acquired genes are provided in the Figshare repository.

See also Figures S4 and S5 and Table S3.
trends were statistically significant for 16/39 traits where the rate

of loss was higher than the rate of gain and for 1/6 traits where

the rate of gain was higher than the rate of loss (Table 1). As

the metabolic trait data came from multiple sources and the
strains tested sometimes differed from the strains sequenced,

we also experimentally determined the growth on 13/45 meta-

bolic traits and a control trait (glucose) (Table S4) for 328/332

strains of the budding yeast species whose genomes we
Cell 175, 1533–1545, November 29, 2018 1537



Table 1. Rates of Trait Gain, Loss, and Posterior Probabilities of Ancestral States 0 and 1 of the BYCA for 45 Metabolic Traits

Trait q01 q10 PP (0) PP (1)

Glucose fermentation 1.16 0.37 0.96 0.04

Galactose fermentationa 0.31 1.48 0.87 0.13

Sucrose fermentation 0.40 2.00 0.98 0.02

Maltose fermentationa 0.34 3.17 0.56 0.44

Lactose fermentationa 0.17 78.03 0.50 0.50

Raffinose fermentationa 0.27 2.35 0.76 0.24

Trehalose fermentationa 0.38 1.55 0.00 1.00

Inulina 0.23 3.49 0.12 0.88

Sucrose 0.21 0.92 0.68 0.32

Raffinosea 0.23 2.13 0.00 1.00

Melibiosea 0.06 2.89 0.00 1.00

Galactose 0.49 0.31 0.01 0.99

Lactosea 0.18 2.74 0.04 0.96

Trehalose 0.62 0.83 0.28 0.72

Maltose 0.27 0.92 0.67 0.33

Melezitose 0.43 1.22 0.83 0.17

Methyl-a-D-glucoside 0.24 1.53 0.00 1.00

Soluble starcha 0.11 2.25 0.00 1.00

Cellobiose 0.24 0.75 0.17 0.83

Salicin 0.10 0.76 0.20 0.80

L-Sorbose 0.50 0.51 0.01 0.99

L-Rhamnosea 0.02 1.97 0.03 0.97

D-Xylose 0.12 0.38 0.00 1.00

L-Arabinosea 0.02 1.36 0.00 1.00

D-Arabinose 0.18 2.27 0.99 0.01

D-Ribose 0.17 0.96 0.99 0.01

Methanol 0.03 0.27 1.00 0.00

Ethanol 0.73 0.14 0.00 1.00

Glycerola 1.95 0.23 0.40 0.60

Erythritola 0.03 1.38 0.00 1.00

Ribitol 0.33 0.38 0.97 0.03

Galactitola 0.13 1.85 0.09 0.91

D-Mannitol 0.11 0.27 0.00 1.00

D-Glucitol 0.04 0.23 0.00 1.00

myo-Inositol 0.01 1.43 0.00 1.00

DL-Lactate 0.68 0.89 0.66 0.34

Succinate 0.35 0.20 0.00 1.00

Citrate 0.46 0.85 0.08 0.92

D-Gluconate 0.75 0.97 0.58 0.42

D-Glucosaminea 0.04 1.35 0.01 0.99

N-Acetyl-D-glucosamine 0.08 0.57 0.21 0.79

Hexadecane 0.17 0.89 0.91 0.09

Nitratea 0.01 2.12 0.02 0.98

Nitrite 0.16 1.18 0.95 0.05

2-Keto-D-gluconate 0.53 0.48 0.87 0.13

q01 (instantaneous transition rate of trait gain): the rate of change from state 0 (absent) to state 1 (present). q10 (instantaneous transition rate of

trait loss): the rate of change from state 1 to state 0. PP (0) and PP (1) denote posterior probabilities of ancestral states 0 (absence) and 1 (presence)

for the budding yeast common ancestor (BYCA). Every value in this table is derived from the largest peak of density of posterior distributions.

See also Figure S6 and Table S4.
aTraits in which rates q01 and q10 are significantly different (assessed by Bayes factors).
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Figure 4. Evolution of Metabolic Traits

across the Budding Yeast Subphylum

(A) The number of traits per major clade (columns)

is depicted in a scatterplot where each gray dot

corresponds to a species. Red dots indicate

representative species, and black dots represent

the median number of traits across each family.

Right: the distribution across the subphylum Sac-

charomycotina in histogram form. The red line

corresponds to the inferred number of metabolic

traits present (i.e., posterior probability of trait

presence > 0.5 in Table 1) in the BYCA (budding

yeast common ancestor). The blue dashed and

solid lines represent the 75th (25 traits), 50th

(median; 20 traits), and 25th (12 traits) percentiles

of the numbers of traits. Representative species

names are written using a four-letter abbrevi-

ation as follows: Lsta, Lipomyces starkeyi; Ylip,

Yarrowia lipomyces; Wver, Wickerhamiella versa-

tilis; Stbo, Starmerella bombicola; Bbru, Bretta-

nomyces bruxellensis; Calb, Candida albicans;

Cyja, Cyberlindnera jadinii; Klac, Kluyveromyces

lactis; Cgla, Candida glabrata; Scer, Saccharo-

myces cerevisiae.

(B) Heatmap showing the fraction of species in

each major clade (columns) that display a repre-

sentative set of metabolic traits; values near white

indicate major clades (whose species are) lacking

the trait, and values near black indicate major

clades with the trait. To the left of the heatmap, the

presence (black) or absence (white) of a trait in

BYCA (inferred from ancestral trait reconstruction)

is shown. To the right of the heatmap, well-char-

acterized genes whose distributions are signifi-

cantly associated with each trait are shown.

(C) Positive association network for genes and

traits. Traits and genes are represented by squares

and circles, respectively. Trait communities are

represented by the following colors: magenta,

contains galactose; purple, modified glucose,

green, respiratory; orange, glucosides; cyan,

sugar alcohols and pentose phosphate pathway

(Opulente et al., 2018). Associations among gene

and traits were calculated using mutual informa-

tion (MI) analysis, and negative associations were

detected using a Jaccard index (all values less

than 0.25 were considered negative associations

and excluded). Edges connecting genes to traits are colored gray and are represented by solid lines for associations that had a MI value greater than or equal to

0.15; for genes already appearing in the figure, dashed lines representing MI values between 0.10 and 0.15 were included. The inset includes genes associated

with GPHN, which encodes gephyrin.

See also Table S5.
analyzed. We found that the average consistency of the char-

acter states shared between the compilation of available meta-

bolic trait data and our experimental measurements was 94%

(Table S4), suggesting that our inferences are based on accurate

data.

Metabolic trait reconstruction also allowed us to infer the

ancestral state at each node in the budding yeast phylogeny

(STAR Methods). For example, we inferred that BYCA was

most likely a metabolically complex organism capable of assim-

ilating 27/45 of the carbon- and nitrogen-containing compounds

analyzed (average posterior probability of trait presence = 0.64;

average posterior probability of trait absence = 0.36) (Figure 4A;

Table 1). Using a stricter cutoff (posterior probability R 0.9), we
found 21 traits that were most likely present in BYCA (e.g.,

nitrate, xylose, and galactose assimilation), and 8 that were

most likely absent (e.g., glucose fermentation and methanol,

ribose, and hexadecane assimilation) (Table 1).

Although the genetic bases for many of these metabolic traits

remain unknown, the genes involved in a handful of metabolic

pathways are well characterized, allowing us to not only recon-

struct characterized genetic pathways, but to also use the cooc-

currence of traits and genes across the budding yeast phylogeny

to identify novel connections and functions. To this end, we used

a mutual information-based approach to analyze the phyloge-

netic distribution of functional annotations of genes in yeast spe-

cies, together with the metabolic trait values of those species
Cell 175, 1533–1545, November 29, 2018 1539
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Figure 5. Interconnections and Interdependence of Nitrate Assimilation, Xanthine Assimilation, and the Molybdopterin Cofactor Biosyn-

thesis Pathways across the Budding Yeast Subphylum

The concentric tracks on the periphery of the figure depict (from inner to outer) the phylogenetic distribution of growth phenotype on media containing nitrate or

nitrite as a sole nitrogen source (inner green circles) and genes encoding proteins involved in nitrate/nitrite assimilation (green squares); hypoxanthine/xanthine

assimilation (orange squares); and Moco biosynthesis (blue squares). The underlying phylogeny and distribution of taxa is the same as in Figure 2, but species

names have been omitted. The central diagram depicts the individual steps of nitrate assimilation (green, top), xanthine assimilation (orange, right), and Moco

biosynthesis (blue, left) pathways, with proteins involved shown in bold: nitrate transporter (YNT), nitrate reductase (YNR), nitrite reductase (YNI), cyclic pyr-

anopterin monophosphate synthase (MOCS1), molybdopterin synthase (MOCS2), gephyrin (GPHN), molybdopterin sulfurtransferase (MS), and xanthine de-

hydrogenase (XDH). Molecules in the pathways: guanosine triphosphate (GTP), cyclic pyranopterin monophosphate (cPMP), molybdopterin (MPT), adenylated

molybdopterin (MPT-AMP), molybdenum cofactor (Moco), and thiomolybdenum cofactor (Moco-sulfide). Solid arrows indicate subsequent steps in each

pathway; dashed lines indicate use of a specific cofactor by an enzyme.

See also Table S6.
(STAR Methods). We then overlaid our gene-to-trait scores onto

a network of trait-to-trait ecological associations among 784

budding yeast species (Opulente et al., 2018). These analyses

recovered multiple positive gene-to-trait associations for gene-

trait pairs established inmodel systems, such as genes encoding

beta-galactosidases (e.g., LAC4) with growth on lactose, alcohol

oxidases (e.g., MOX) with growth on methanol, and the GAL1,
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GAL7, and GAL10 genes with growth on galactose (Figure 4B;

Table S5) (Riley et al., 2016). These examples validate the utility

of this analytical approach for elucidating the genetic underpin-

nings of metabolic trait variation.

As expected from our analyses showing a strong trend

toward metabolic trait loss (Table 1) and previous studies on

the losses of iconic genetic pathways (Hittinger et al., 2004;



Figure 6. Evolution of the Budding Yeast Subphylum Is Character-

ized by Lineage-Variable HGT and Widespread Losses of Genes

and Traits

The x axis depicts the posteriormean of the age of (representative) nodes in the

budding yeast phylogeny, and the y axis depicts the number of metabolic traits

inferred to have been present at these nodes. The lines of different colors

represent the evolutionary trajectories (in the spaces of time and metabolic

traits) for 7 representative yeast taxa and their common ancestors (depicted by

dots). For each ancestral node, metabolic traits were considered to be present

when the posterior probability of ancestral state 1 (present) was > 0.5 for the

node. The gray region is the 95% confidence interval for the number of meta-

bolic traits present across budding yeast evolution based on ancestral trait

reconstruction of the distribution of inferences for 45 metabolic traits across

274 budding yeasts. The inferred numbers of HGT-acquired genes are de-

picted by the circles of different sizes next to each taxon’s name. C. albicans,

Candida albicans; L. starkeyi, Lipomyces starkeyi; Cy. jadinii, Cyberlindnera

jadinii; B. bruxellensis, Brettanomyces bruxellensis; W. versatilis, Wick-

erhamiella versatilis; Y. lipolytica, Yarrowia lipolytica; S. cerevisiae, Saccharo-

myces cerevisiae; BYCA, budding yeast common ancestor; mya, million years

ago; Dev., Devonian; Carb., Carboniferous; Per., Permian; Tri., Triassic; Jur.,

Jurassic; Cre., Cretaceous; Pal., Paleogene; Neo., Neogene.

See also Figure S7.
Riley et al., 2016; Slot and Rokas, 2010; Wolfe et al., 2015), the

distributions of many of the genes involved in these metabolic

processes (e.g., the genes required to assimilate D-glucosamine

andN-acetyl-D-glucosamine and the genes required for L-rham-

nose assimilation) were consistent with widespread losses,

which included both ancient losses deep within major clades

and more recent losses differentiating closely related taxa.

Complex Interactions between Metabolic Pathways
Affect Gene Retention
By analyzing these gene and trait networks, we also identified

genes whose associations with specific metabolic traits has

heretofore received only limited attention in select budding

yeasts. For example, although the model yeast S. cerevisiae

cannot assimilate nitrate or nitrite (Kurtzman et al., 2011), we

found that the genomes of 50 budding yeasts that could assim-

ilate either of these nitrogen sources were generally predicted to

encode nitrate/nitrite transporters (YNTs, 39/50), nitrate reduc-

tases (YNRs, 40/50), and nitrite reductases (YNIs, 47/50) (Figures
4C and 5). These proteins are homologs of a pathway commonly

deployed in filamentous fungi to import nitrate (YNTs), reduce ni-

trate into nitrite (YNRs), and reduce nitrite into ammonia (YNIs)

for central metabolism (Slot and Hibbett, 2007), strongly sug-

gesting that the same pathway is deployed across many

budding yeasts (Pérez et al., 1997). As with most other metabolic

traits (Figure 4), nitrate assimilation genes were frequently lost,

both anciently (e.g., in the CUG-Ser1 clade) and more recently

(e.g., in the genus Cyberlindnera).

Our network-based approach also enabled us to use the

phylogenetic distribution of the nitrate assimilation pathway to

identify additional metabolic genes, pathways, and traits that co-

varied but lacked obvious ecological connections. For example,

we uncovered several significant associations with the gene en-

coding gephyrin (Figure 4C; Table S5), an enzyme involved in the

biosynthesis of the molybdenum cofactor (Moco) used by the ni-

trate reductase enzyme (Schwarz and Mendel, 2006). When we

examined secondary associations (genes associated with genes

that are, in turn, associated with traits), we identified genes pre-

dicted to encode the full Moco biosynthesis pathway (Figures

4C, inset, and 5; Table S6).

Surprisingly, the phylogenetic distribution of various compo-

nents of the Moco biosynthesis and nitrate assimilation path-

ways revealed that YNRs were never present in the absence of

the Moco biosynthesis pathway, but the reverse was often the

case (Figure 5). Furthermore, most of the organisms that

harbored the Moco biosynthesis pathway but lacked the nitrate

assimilation genes also contained the genes encoding xanthine

dehydrogenases (XDHs) (Figure 5). In filamentous fungi, XDH is

responsible for the assimilation of xanthine and hypoxanthine

and requires a thiolated form of Moco, which is created during

an additional processing step performed by a specialized

Moco sulfurtransferase (MS) (Bittner et al., 2001). The phyloge-

netic distributions of the genes encoding XDHs and MSs were

strongly correlated; of the 83 species with either gene, 78

(or 94%) were predicted to have both genes, illustrating how

the underlying metabolic architecture of genetic pathways can

lead to remarkable evolutionary linkages between traits that

may seem unconnected at first.

Conclusions
Genome sequencing and analyses of 332 metabolically diverse

species allowed us to infer that the last common ancestor of

budding yeasts, BYCA, was metabolically complex, that very

few genes were acquired via HGT, and that the observed meta-

bolic diversity of extant budding yeasts was largely achieved

through repeated, extensive lossesofmetabolic traits through re-

ductions in their underlying genetic toolkit (Figure 6). Thus, the

portrait of BYCA that emerges is similar to an archetypal member

of its sister subphylum, Pezizomycotina, which contains iconic

filamentous fungi, such as Aspergillus and Neurospora. These

filamentous fungi have much larger genomes (�30–80 Mb) and

gene sets (�10,000–�13,000 genes, includingmetabolic genes).

Consequently, they exhibit a broader appetite and consume a

wide array of nitrogen and carbon sources by deploying many

genes not present in S. cerevisiae (Wisecaver et al., 2014).

How have budding yeasts survived and even thrived while un-

dergoing this reductive evolution? Although the arc of budding
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yeast evolution bends strongly toward reduced genomes and

metabolisms across history, among both extant and inferred

ancestral yeasts, plenty of taxa have much broader metabolic

capabilities than the mean (Figures 6 and S7). One attractive hy-

pothesis, whose testing will require even denser taxon sampling,

is that generalist lineages with less reduced genomes and more

metabolic capabilities are more likely to produce new species

and less likely to go extinct. Evolutionary dynamics favoring gen-

eralists over specialists could conceivably play out over geolog-

ical time through some form of clade selection (Stanley, 1975;

Williams, 1992), by drawing from the considerable genetic varia-

tion segregating within species (Hittinger et al., 2010; Peter et al.,

2018), or both.

The observed pattern of widespread metabolic trait and gene

losses complements the well-established losses or reductions

of several flagship eukaryotic genomic and molecular features in

many budding yeasts, such as introns, the molecular machinery

for RNA interference, and H3K9me2/3 heterochromatin (Dujon

and Louis, 2017). Evolution by loss is well documented for para-

sitic and symbiotic lineages (Dujon et al., 2004; Katinka et al.,

2001; Spanu et al., 2010; Vogel and Moran, 2013; Wolfe et al.,

1992) and in theaftermathof thewholegenomeduplicationevents

wheremost second copies are lost (Soltis et al., 2015;Wolfe et al.,

2015). Nonetheless, the magnitude and pervasiveness of meta-

bolic trait and gene loss across 400million years of budding yeast

evolution in organisms with widely divergent, free-living lifestyles

provides unexpectedly broad support for the argument that

reductive evolution is amajor contributor to genome evolution (Al-

balat andCañestro, 2016;Wolf and Koonin, 2013), in general, and

not simply associatedwith specific lifestyles and genomic events.
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Further information and requests may be directed to and will be fulfilled by the corresponding authors Chris Todd Hittinger

(cthittinger@wisc.edu) and Antonis Rokas (antonis.rokas@vanderbilt.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Taxon sampling
Detailed information about the strains and genomes of the 332 budding yeast species sampled and analyzed in this study can be

found in Table S1. We did not include genomes associated with different strains from the same species or with known interspecies

hybrids. Taxonomy, strain ID, and source information of 332 budding yeasts and the 11 outgroup taxa (9 representatives of the sub-

phylum Pezizomycotina and 2 representatives of the subphylum Taphrinomycotina) used in this study are provided in Table S1. All

sequenced strains have been publicly deposited in the NRRL, CBS, and/or JCM strain collections.

The percentage of newly sequenced 220 species (196 newly sequenced genomes from the Y1000+ Project and 24 publicly avail-

able but unpublished genomes from RIKEN) in each of the 12 major clades ranged from 41% to 100%, with an average of 78% (Fig-

ure S1). Specifically, these newly sequenced 220 species represent 63 different genera; 74 are representatives of 36 genera (e.g.,

Ambrosiozyma, Saturnispora, and Barnettozyma) whose genomes have not been previously sequenced; 111 are representatives

of 25 genera (e.g., Ogataea, Kazachstania, Lipomyces, and Cyberlindnera) that previously had one or two publicly available
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mailto:cthittinger@wisc.edu
mailto:antonis.rokas@vanderbilt.edu
http://www.bork.embl.de/pal2nal/#Download
http://abacus.gene.ucl.ac.uk/software/paml.html
http://abacus.gene.ucl.ac.uk/software/paml.html
http://orthomcl.org/common/downloads/software/v2.0/
https://github.com/blackrim/phyutility
http://www.microbesonline.org/fasttree/
https://sourceforge.net/projects/phylotreepruner/
http://trimal.cgenomics.org/
http://www.iqtree.org/
ftp://phylomedb.org/phylomedb/phylomes/phylome_0005/
https://www.zfmk.de/de/forschung/forschungszentren-und-gruppen/mare
https://www.zfmk.de/de/forschung/forschungszentren-und-gruppen/mare
https://sco.h-its.org/exelixis/web/software/raxml/index.html
https://sco.h-its.org/exelixis/web/software/examl/index.html
https://sco.h-its.org/exelixis/web/software/examl/index.html
https://github.com/smirarab/ASTRAL
https://www.megasoftware.net/
https://itol.embl.de/help.cgi#batch
http://www.evolution.rdg.ac.uk/BayesTraitsV3.0.1/BayesTraitsV3.0.1.html
http://www.evolution.rdg.ac.uk/BayesTraitsV3.0.1/BayesTraitsV3.0.1.html
https://cran.r-project.org/web/packages/igraph/index.html
https://cran.r-project.org/web/packages/infotheo/index.html
https://cran.r-project.org/web/packages/infotheo/index.html
https://www.bioconductor.org/packages/release/bioc/html/minet.html
https://www.bioconductor.org/packages/release/bioc/html/minet.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://bioconductor.org/packages/release/bioc/html/topGO.html
https://bioconductor.org/packages/release/bioc/html/topGO.html
https://www.kegg.jp/ghostkoala/
https://bioconductor.org/packages/release/data/experiment/html/aracne.networks.html
https://bioconductor.org/packages/release/data/experiment/html/aracne.networks.html


genomes; and the remaining 35 are representatives of genera (e.g., Candida and Hanseniaspora) that already had 3 or more publicly

available genomes. The sampled 332 budding yeasts use three different genetic codes: 229 follow the universal genetic code and

decode the CUG codon as leucine (Figure 2; Table S1); 5 in the genera Nakazawaea, Pachysolen, and Peterozyma, decode CUG

codon as alanine (CUG-Ala clade); 94 in the families Debaryomycetaceae, Metschnikowiaceae, and Cephaloascaceae encode

CUG codon as serine (CUG-Ser1 clade); and 4 in the families Ascoideaceae and Saccharomycopsidaceae also decode CUG codon

as serine (CUG-Ser2 clade).

Yeast growth
Most yeast strainswere obtained from the USDAAgricultural Research Service (ARS) NRRLCulture Collection in Peoria, Illinois, USA.

Strains from all yeast species were initially plated from freezer stock on yeast extract peptone dextrose (YPD) plates and grown for

single colonies. For all carbon and nitrogen testing, we set up 5 replicates on separate days using different colonies for each yeast

species. Yeast strains from each species were inoculated into YPD and grown for 48 hours at room temperature. After 48 hours of

growth, we randomized and arrayed species into a 96-well deep well plate for storage and future use. Using the same cultures, we

also inoculated species into aminimal-based starvationmedium containing 0.1%glucose, 5g/L ammonium sulfate, and 1.7g/L Yeast

Nitrogen Base (w/o amino acids, ammonium sulfate, or carbon) and grew themovernight. After 24 hours of growth, we transferred the

yeast species into carbon or nitrogen treatment plates for phenotyping.

METHOD DETAILS

Genome sequencing and assembly
For each of the 196 newly sequenced species from the Y1000+ Project (Table S1), genomic DNA (gDNA) was isolated using a modi-

fied phenol:chloroform extraction method that used a second round of phenol:chloroform to remove additional proteins, sonicated,

and ligated to Illumina sequencing adaptors as previously described (Hittinger et al., 2010). The paired-end libraries were submitted

for paired end sequencing (2 3 250 base pairs) on an Illumina HiSeq 2500 instrument.

Paired-end Illumina DNA sequence reads were used to generate whole genome assemblies using the meta-assembler pipeline

iWGS v1.1 (Zhou et al., 2016). We first preprocessed the raw sequenced reads by trimming of adapters and low-quality bases

with Trimmomatic v0.33 (Bolger et al., 2014) and Lighter v1.1.1 (Song et al., 2014). Next, we identified the optimal k-mer length

for each genome’s assembly using KmerGenie v1.6982 (Chikhi and Medvedev, 2014). We then used the processed sequence reads

as input into six different de novo assembly tools: ABYSS v1.5.2 (Simpson et al., 2009), DISCOVAR r51885 (Weisenfeld et al., 2014),

MASURCA v2.3.2 (Zimin et al., 2013), SGA v0.10.13 (Simpson and Durbin, 2012), SOAPdenovo2 v2.04 (Luo et al., 2012), and

SPADES v3.7.0 (Bankevich et al., 2012). The resulting genome assemblies were assessed for quality with QUAST v4.4 (Gurevich

et al., 2013); as the ‘‘best’’ assembly for each genome we chose the one with the highest genome size and N50 value (i.e., the contig

or scaffold value above which 50% of the total length of the sequence assembly can be found).

For the genomes of the 24 species sequenced by RIKEN (Table S1), a paired-end library with an approximate insert size of 240 bp

was prepared from the genomic DNA using the TruSeq DNA PCR-free Library Preparation Kit (Illumina, San Diego, CA, USA) accord-

ing to themanufacturer’s protocols. Amate-pair library with an approximate insert size of 3 kb was also prepared fromDNA using the

Nextera Mate Pair Sample Preparation Kit (Illumina) with some modifications. Both paired-end and mate-pair libraries were

sequenced on a HiSeq 2500 (Illumina) to generate 151-base paired-end reads. Mate-pair libraries derived from the DNA of Hypho-

pichia homilentoma JCM1507,Candida sorboxylosa JCM1536,Candida intermedia JCM1607,Wickerhamia fluorescens JCM1821,

Cyberlindnera fabianii JCM 3601, Saccharomycopsis malanga JCM 7620, Candida carpophila JCM 9396, Candida succiphila JCM

9445,Wickerhamiella domercqiae JCM 9478, Sporopachydermia quercuum JCM 9486, Starmerella bombicola JCM 9596, Candida

boidinii JCM 9604, Nakazawaea peltata JCM 9829, Scheffersomyces lignosus JCM 9837, and Ambrosiozyma kashinagacola JCM

15019 were sequenced on a MiSeq (Illumina) to generate 309-base paired-end reads. All mate-pair reads were processed using

NextClip software, v0.8 (Leggett et al., 2014) to trim the adaptor sequences. The estimated sequencing depths ranged from 76 3

for Yarrowia deformans JCM 1694 to 281 3 for Wickerhamiella versatilis JCM 5958. The ALLPATHS-LG software version 51828

(for Cyberlindnera fabianii JCM 3601, Wickerhamiella domercqiae JCM 9478, and Starmerella bombicola JCM 9596), version

52155 (for Hyphopichia homilentoma JCM 1507, Candida sorboxylosa JCM 1536, Candida intermedia JCM 1607, Priceomyces hap-

lophilus JCM1635, Yarrowia deformans JCM 1694,Wickerhamia fluorescens JCM 1821,Ambrosiozymamonospora JCM 7599,Sac-

charomycopsis malanga JCM 7620, Candida carpophila JCM 9396, Candida succiphila JCM 9445, Sporopachydermia quercuum

JCM 9486,Candida boidinii JCM 9604,Nakazawaea peltata JCM 9829, Scheffersomyces lignosus JCM 9837, Yarrowia keelungensis

JCM 14894, and Ambrosiozyma kashinagacola JCM 15019), and version 52488 (for Wickerhamiella versatilis JCM 5958, Ascoidea

asiatica JCM 7603, Alloascoidea hylecoeti JCM 7604, Ogataea methanolica JCM 10240, and Millerozyma acaciae JCM 10732)

were used to assemble the reads into scaffolds using the default parameters (Gnerre et al., 2011). Small contigs (< 1 kb) were not

included in the final genome assemblies. The sequence library generation and sequencing were performed at the Genome Network

Analysis Support Facility, RIKEN Center for Life Science Technologies (Yokohama, Japan).
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Assessment of genome assemblies
The qualities of the genome assemblies of the 196 newly sequenced (Y1000+ Project genomes) and 136 publicly available (RIKEN

plus previously published genomes) budding yeast species were assessed by quantifying their completeness based on the expected

gene content of the Benchmarking Universal Single-Copy Orthologs (BUSCO), version 2.0.1 (Waterhouse et al., 2017), as described

previously (Shen et al., 2016a). We used a set of 1,759 BUSCO genes inferred to be saccharomyceta-specific (‘‘saccharomyceta’’ is

an informal taxonomic rank used by many databases, including NCBI: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.

cgi?mode=Info&id=716545) and single-copy in at least 90%of 60 genomes in theOrthoDB Version 9 database (Zdobnov et al., 2017)

to evaluate the completeness of the 332 genome assemblies. Briefly, for each BUSCO gene, its consensus orthologous protein

sequence among the 60 reference genomes was used as query in a tBLASTn search against each genome to identify up to three

putative genomic regions, and the gene structure of each putative genomic region was predicted by AUGUSTUS v 3.2.2 (Stanke

and Waack, 2003). Next, the sequences of these predicted genes were aligned to the HMM-profile of the BUSCO gene, and the

ones with alignment bit-scores higher than a pre-set cutoff (90% of the lowest bit-score among the 60 reference genomes) were

kept. If only one predicted gene from a genome was retained and its aligned sequence length in the HMM-profile alignment

was R 95% of the aligned sequence lengths of genes in the 60 reference genomes, the BUSCO gene was classified to be present

in the genome examined as single-copy, ‘‘full-length.’’ If two or more predicted genes from a genome were retained and their aligned

sequence lengths in the HMM-profile alignments wereR 95%of the aligned sequence lengths of genes in the 60 reference genomes,

the BUSCO gene was classified as duplicated, ‘‘full-length.’’ If one or more predicted genes from a genome were retained but their

aligned sequence lengths in the HMM-profile alignment were < 95% of the aligned sequence lengths of genes in the 60 reference

genomes, the BUSCO gene was classified as ‘‘fragmented.’’ If no predicted gene from a genome was retained, the BUSCO gene

was classified as ‘‘missing.’’ For each genome, we then calculated the fractions of single-copy (full-length) genes, duplicated (full-

length) genes, fragmented genes, and missing genes, which in turn provided us with a measure of the completeness of gene content

in each of the 332 genomes (Shen et al., 2016a).

Genome annotation
With the exception of Saccharomyces cerevisiae andCandida albicans, whose genome annotations are of exceptionally high quality,

for consistency we annotated all the other 330 budding yeast genomes analyzed in our study using the MAKER genome annotation

pipeline v2.31.8 (Holt and Yandell, 2011). Genome annotation using MAKER occurs in an iterative manner and relies on multiple

inputs, some of which were universal to all genomes (e.g., homology evidence), whereas the others were species-specific (e.g.,

parameters for ab initio gene predictors). The procedure described below was followed for the annotation of all 330 genomes.

The homology evidence used in our genome annotation consists of fungal protein sequences in the SwissProt database (release

2016_11; ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2016_11/knowledgebase/uniprot_sprot-only2016_

11.tar.gz) and annotated protein sequences of select yeast species from Mycocosm (Grigoriev et al., 2014), a web portal developed

by theUSDepartment of Energy Joint Genome Institute for fungal genomic analyses. Three ab initio gene predictorswere usedwith the

MAKER pipeline, including GeneMark-ES v4.32 (Ter-Hovhannisyan et al., 2008), SNAP v2013-11-29 (Korf, 2004), and AUGUSTUS v

3.2.2 (Stanke and Waack, 2003), each of which was trained for each individual genome. For GeneMark-ES, repeats in the genome

sequence were first soft-masked using RepeatMasker v4.0.6 (http://www.repeatmasker.org) with the library Repbase library

release-20160829 and the ‘‘-species’’ parameter set to ‘‘saccharomycotina’’ for all genomes. GeneMark-ES was then trained on

the masked genome sequence using the self-training option (‘‘–ES’’) and the branch model algorithm (‘‘–fugus’’), which is optimal

for fungal genome annotation. On the other hand, the training of both SNAP and AUGUSTUS requires pre-existing gene models as

training data. Therefore, we carried out an initial MAKER analysis where gene annotations were generated directly from homology ev-

idence (the ‘‘protein2genome’’ option in the ‘‘maker_opts.ctl’’ control file was set to 1) without using any ab initio gene predictors. The

resulting gene annotations supported by homology evidence (‘‘keep_preds’’ set to 0) were then used to train SNAP and AUGUSTUS.

Once all three ab initio gene predictors were trained, they were used together with homology evidence to conduct a first round

of full MAKER analysis; it should be noted that, here, the homology evidence was only used to inform gene predictions

(‘‘protein2genome’’ set to 0). Resulting gene models supported by homology evidence (‘‘keep_preds’’ set to 0) were used to re-train

SNAP and AUGUSTUS. A second round of MAKER analysis was conducted using the newly trained SNAP and AUGUSTUS param-

eters, and once again the resulting genemodels with homology supports were used to re-train SNAP and AUGUSTUS. Finally, a third

round of MAKER analysis was performed using the new SNAP and AUGUSTUS parameters. All resulting genemodels were reported

(‘‘keep_preds’’ set to 1), and these comprise the final set of annotations for the genome.

Thirty-nine out of the 136 published genomes analyzed in our study have previously been annotated. To evaluate the quality of our

genome annotations, we performed direct comparisons between our annotations and existing ones for the same species. Genome

annotations of 39 budding yeast species were downloaded from their respective sources and compared to the corresponding an-

notations generated in our study using Cuffcompare v2.2.1 (Trapnell et al., 2012). Using the existing annotations as the reference, our

annotations achieved high levels of specificity (ranging from 92% to 99.2%, with an average of 97.3%) and sensitivity (ranging from

85.3% to 99.3%, with an average of 94.9%) at the base pair level, as well as contained few missing exons (the fraction of exons

missing ranged from 2.7% to 15%, with an average of 4.8%) and genes (the fraction of genes missing ranged from 1.1% to

11.9%, with an average of 3.9%) across the 39 budding yeast species. Note that all of these calculations assume that the previously

published annotations contain no errors, which might inflate estimates of inaccuracies in our annotations.
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Identification of potential hybrid species
Althoughwe excluded the genomes of known hybrid species from our study, the possibility exists that some of the 332 budding yeast

genomes are the products of hybridization (Hittinger et al., 2015). To test whether this was the case, for each of the 332 budding yeast

genomes, we examined the genome-wide distribution ofKs (number of synonymous substitutions per synonymous site) values deter-

mined from pairs of orthologous genes identified in the species of interest and its closest relative in the budding yeast phylogeny

depicted in Figure 2 (following Ortiz-Merino et al. [2017]). To calculate the Ks distribution for a species of interest, for each gene in

the species of interest we identified its closest homolog in the genome of their closest relative using BLASTP with an e-value cut

off of 10�10. The protein sequences of the gene pairs were then aligned using MAFFT, version 7.299 (Katoh and Standley, 2013),

with options ‘‘–genafpair–maxiterate 1000.’’ DNA/codon alignments were then generated by threading the DNA sequence onto

the protein alignment using PAL2NAL (Suyama et al., 2006). Using the DNA/codon alignments, Ks was calculated using the

LWL85m method implemented in the YN00 module of PAML4 (Yang, 2007).

In known hybrid species, such asSaccharomyces pastorianus and Zygosaccharomyces parabailii (Dunn and Sherlock, 2008; Ortiz-

Merino et al., 2017), the genome-wide distribution of Ks values is bimodal, reflecting the fact that some genes in the hybrid genome

are most closely related to one parental species and some to the other more divergent parent. In contrast, non-hybrid species have a

unimodalKs distribution, reflecting the fact that genes originated from a single parental species.We visually inspected the resultingKs

distributions and found that the newly sequenced genomes of Citeromyces siamensis and Martiniozyma abiesophila had bimodal

distributions of Ks similar to those of S. pastorianus and Z. parabailii (Dunn and Sherlock, 2008; Ortiz-Merino et al., 2017), suggesting

that Ci. siamensis and Ma. abiesophila are of potentially hybrid origin. Consistent with this hypothesis, Ci. siamensis and Ma. abie-

sophila also had the highest numbers of predicted genes (12,786 and 12,589, respectively), the highest numbers of gene duplicates

(24.1% and 23.6%, respectively), and the highest genome sizes (24.8 Mb and 14.5 Mb, respectively) in our dataset (Table S1). Both

hybrid taxa were not associated with any of the 32 incongruent internodes (Figure 2).

Phylogenomic data matrix construction
We generated two complete data matrices (2408OG data matrix and 1292BUSCO data matrix) from the genomes of 332 budding

yeasts and 11 outgroups, as well as 7 additional data matrices by subsampling subsets of the orthologous groups of genes (OGs)

in the 2408OG data matrix.

a) 2408OG data matrix
The 2408OG orthologous group data matrix was constructed based on a 5-step workflow.

In step 1, we used all protein sequences of the 2,012,541 genes present in the 332 budding yeasts and 11 outgroups to perform an

all-versus-all search using BLASTP with an e-value cutoff of 10�10. We then used the BLASTP results to cluster homologous protein

sequences using the Markov Cluster (MCL) algorithm implemented in OrthoMCL, version 2.0 (Li et al., 2003); we adopted the widely

used inflation parameter of 1.5 for two reasons. First, this inflation parameter value was found to be the optimal one in a previous

evaluation of the effects of different inflation parameter values on orthology assignment in the budding yeasts (Salichos and Rokas,

2011). Second, our examination of a range of different inflation parameter values (from 1.2 to 2.0, with a step of 0.1) showed that all

values led to the generation of nearly sets of clusters of homologous genes. OrthoMCL clustering resulted in the identification of

171,715 singleton clusters that contain a single protein and 61,763 clusters that contain two or more proteins. Plotting of the distri-

butions of the lengths of genomic contigs that contain the 171,715 singleton clusters and 61,763 clusters with two or more proteins

showed that the two distributions were very similar. Retaining only those clusters with gene occupancyR 50%, that is those clusters

that were present in at least half (R172) of the 343 genomes (332 budding yeasts and 11 outgroups), resulted in the identification of

4,036 putative OGs.

In step 2, we inspected these 4,036 putative OGs for the presence of two or more sequences (i.e., paralogous sequences) from a

taxon. For each putative OG, we first aligned its protein sequences using the program MAFFT, version 7.299 (Katoh and Standley,

2013), with the parameters ‘‘–auto’’ and ‘‘–maxiterate 1000’’ and removed columns whose site occupancy was less than 0.01 from

the resultant alignment using the program Phyutility, version 2.2.6 (Smith and Dunn, 2008), with the parameters ‘‘-aa’’ and ‘‘-clean

0.01.’’ We then used each trimmed OG alignment to reconstruct a quick but ‘‘approximate’’ maximum likelihood (ML) tree using

the program FastTree, version 2.1.9 (Price et al., 2010), with the LG model of amino acid substitutions (Le and Gascuel, 2008), a

discrete gamma approximation with 20 categories (-gamma), 4 rounds of minimum-evolution subtree-prune-regraft moves

(-spr 4), and the more exhaustive ML nearest-neighbor interchange option enabled (-mlacc 2 -slownni). Whenever there were 2 or

more protein sequences from a specific taxon in a given OG, we identified the best (i.e., putatively orthologous) one by using a

tree-basedmethod (maximally inclusive subtree) implemented in PhyloTreePruner, version 1.0 with aminimum internal support value

of 0.95 (Kocot et al., 2013). This resulted in the retention of 2,908 OGs with gene occupancy R 50%.

In step 3, we performed multiple sequence alignment for each of the 2,908 OGs using the E-INS-i strategy (–genafpair–maxiterate

1000) as implemented by the programMAFFT, version 7.299 (Katoh and Standley, 2013), and excluded ambiguously aligned regions

using trimAl v1.4 with the ‘‘gappyout’’ option on (Capella-Gutiérrez et al., 2009). We then examined all the resulting alignments and

removed protein sequences whose lengths were shorter than 50% the length of the trimmed multiple sequence alignment length of
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the OG to which they belonged. We also removed OGs whose total trimmed multiple sequence alignment length was < 167 amino

acid sites. These filters resulted in the retention of 2,424 OGs, each of which hadR 50% gene occupancy andR 167 amino acid site

alignment length.

In step 4, to minimize the inclusion of potentially spurious sequences, we inferred an ML phylogram for each OG using IQ-TREE

1.5.1 (Nguyen et al., 2015) with an automatic detection for the best-fitting model of amino acid evolution and then used theML phylo-

gram to identify and to remove all protein sequences that resulted in terminal branch lengths that were at least 20-times longer than

the median of all terminal branch lengths across the phylogram. This step led to the removal of 421 potentially spurious sequences

from 292 OGs; the remaining 2,132 OGs did not contain any spurious sequences.

In the final step (step 5), we redid mutiple sequence alignment and trimming for those 292 OGs that we removed as spurious se-

quences as part of step 4. From the 292OGs, 276OGs retainedR 50%gene occupancy andR 167 amino acid site alignment length

and, thus, were kept; the remaining 16 were discarded.

Retention of the 2,132 OGs from step 4 and the 276 OGs from step 5 yielded a final data matrix consisting of 2,408 orthologous

groups (OGs) (1,162,805 amino acid sites) of genes from the 332 budding yeast taxa and 11 outgroups.

b) 1292BUSCO data matrix
As BUSCO genes are a set of reliable markers for phylogenomic inference of diverse lineages (Waterhouse et al., 2017), including the

budding yeasts (Shen et al., 2016a), we used 1,757 / 1,759 single-copy, full-length BUSCO genes from 332 budding yeasts and 11

outgroups to construct a datamatrix (the EOG09344D43 and EOG09344ST8 BUSCO genes were excluded because wewere unable

to consistently recover them from our genomes). The number of BUSCO genes whose protein sequences are all present in the same

orthologous group (OG) identified by OrthoMCL with the inflation value of 1.5 is 1,650 (�94% out of 1,757). Multiple sequence align-

ment; trimming of ambiguously aligned regions; removal of short, spurious, or paralogous sequences; and filtering for R 50% gene

occupancy andR 167 amino acid site alignment length were done in the same way as described above for the 2408OG data matrix.

Application of these filters resulted in a data matrix of 1,292 BUSCO genes (527,069 amino acid sites), each of which had R 50%

gene occupancy and R 167 amino acid site alignment length.

c) 7 additional subsampled data matrices
To explore the stability of phylogenetic relationships among the 332 budding yeasts, we constructed 7 additional data matrices by

subsampling subsets of OGs from the 2408OG data matrix as follows:

1. OG2BUSCO data matrix: This data matrix was constructed by retaining only those OGs that were present in both the 2408OG

data matrix and the 1292BUSCO data matrix. Overlapping OGs between the two data matrices were determined by BLASTP

(e-value cutoff of 10�10). Briefly, a query 2408OG sequence was considered to be overlapping to a subject 1292BUSCO

sequence only if they were from the same taxon and were at least 95% similar at the protein sequence level. OGs between

the two data matrices were considered overlapping only if all their sequences were overlapping, resulting in a data matrix

of 1,081 OGs (545,300 amino acid sites), each of which had R 50% gene occupancy and R 167 amino acid site alignment

length.

2. OG2PHYLOME data matrix: This data matrix was constructed by retaining only those OGs that were present in both the

2408OG data matrix and the phylomeDB, version 4 (Huerta-Cepas et al., 2014). First, 1,838 orthologs from the S. cerevisiae

phylome (P21) containing at least 11 taxa were selected. The S. cerevisiae phylome was curated using 21 budding yeast ge-

nomes (8 are representatives from the CUG-Ser1 clade; 12 are representatives from the Saccharomycetaceae; 1 is a repre-

sentative from the Dipodascaceae/Trichomonascaceae clade). Overlap between the two sets of OGs was determined in

the same way as described above for the OG2BUSCO data matrix, resulting in a data matrix of 819 OGs (317,158 amino

acid sites), each of which had R 50% gene occupancy and R 167 amino acid site alignment length.

3. Top500_ABS data matrix: This data matrix was constructed by retaining the 500 OGs (from the 2408OG data matrix) with the

highest average bootstrap support (ABS) value of all internal branches on the ML gene tree (Shen et al., 2016b) and contains

472,241 amino acid sites.

4. Top500_completeness data matrix: This data matrix was constructed by retaining the 500 OGs (from the 2408OG data matrix)

with the highest gene occupancy (Shen et al., 2016b) and contains 295,429 amino acid sites.

5. Top500_ informativeness data matrix: This data matrix was constructed by retaining the 500 OGs (from the 2408OG data

matrix) with the highest information content and contains 174,183 amino acid sites. Information content was calculated based

on quartet-mapping (Nieselt-Struwe and von Haeseler, 2001) implemented in MARE, version 0.1.2 (https://www.zfmk.de/de/

forschung/forschungszentren-und-gruppen/mare), with default settings.

6. Top500_length data matrix: This data matrix was constructed by retaining the 500 OGs (from the 2408OG data matrix) with the

longest trimmed multiple sequence alignment lengths (Shen et al., 2016b), and contains 494,658 amino acid sites.
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7. Top500_treeness2RCFV data matrix: This data matrix was constructed by retaining the 500 OGs (from the 2408OG data

matrix) with the highest ratio of treeness to relative composition frequency variability (RCFV) (Phillips and Penny, 2003;

Shen et al., 2016b), and contains 328,534 amino acid sites. Treeness is defined as the ratio (sum of lengths of all internal

branches) / (total tree length) (Phillips and Penny, 2003; Shen et al., 2016b). RCFV (Phillips and Penny, 2003) is defined as:

RCFV =
Ps

i = 1

Pt
j =1

�
�
�Fij � Fi

�
�
� =tWhere s is the number of the character states (here the s is 20 for amino acids) and t is the number of

taxa in a given trimmed OG alignment. Fij is the frequency of state i for the jth taxon, and Fi is the average frequency of state i across

t taxa.

Phylogenetic analyses
For each of these 9 data matrices, we inferred individual gene trees, as well as three estimates of the species phylogeny; two species

phylogeny estimates were obtained by concatenation (concatenation under a single partition and concatenation under gene-based

partitioning) (Rokas et al., 2003) and one by coalescence (Mirarab and Warnow, 2015).

Individual gene tree inference

Individual gene trees were reconstructed usingmaximum likelihood (ML) analysis. For each gene, we conducted 10 independent tree

searches (5 used starting trees inferred by parsimony and the other 5 used random starting trees) to obtain the best-scoring ML tree

using RAxML, multithread version 8.2.3 (Stamatakis, 2014), under the best-fitting model of amino acid substitution selected by the

IQ-TREE program (option -m TEST -mrate G4) with the Bayesian information criterion (BIC).

Concatenation-based ML species tree inference

Our recent evaluation of 19 empirical phylogenomic data matrices showed that IQ-TREE and RAxML/ExaML typically recovered the

ML trees with the highest-observed likelihood scores (Zhou et al., 2018). Moreover, our pilot concatenation-basedML tree inferences

under a single ‘‘LG (Le and Gascuel, 2008) +G4 (Yang, 1996)’’ model of amino acid substitutions using the multi-threaded version of

IQ-TREE v1.5.1 (Nguyen et al., 2015) and the MPI parallel version of ExaML v3.0.17 (Kozlov et al., 2015) for the 2408OG and

1292BUSCO data matrices, showed that IQ-TREE and ExaML produced topologically identical ML trees with very similar likelihood

scores, but IQ-TREE did so faster (IQ-TREE:�3,000 CPU hours / single tree search; ExaML:�4,200 CPU hours / single tree search).

Therefore, we adopted the program IQ-TREE to infer concatenation-based ML trees under a single partition (LG+G4) and gene-

based partitions (i.e., model parameters were unlinked across genes with the -q option in IQ-TREE), respectively. Branch support

for each internode in the ML tree was evaluated with 100 rapid bootstrapping replicates using RAxML, hybrid version 8.2.3 (Stama-

takis, 2014) with the CAT model with 25 categories instead of G4 model.

Coalescence-based species tree inference

For each data matrix, we used the set of individual ML gene trees (see section on individual gene tree inference above) to infer the

coalescence-based phylogeny with ASTRAL-II, version 4.10.2 (Mirarab and Warnow, 2015). This is a summary species tree method

that aims to account for individual gene tree heterogeneity due to incomplete lineage sorting (ILS). The reliability of each internal

branch in the coalescence-based species tree was evaluated using the local posterior probability (LPP) measure.

Quantification of incongruence

For each of 27 species phylogenies inferred from the 9 data matrices (2 original data matrices + 7 subsampled data matrices) under

the three different approaches (two concatenation-based and one coalescence-based), we used internode certainty (ICA) to quantify

the degree of incongruence for every internode by considering all prevalent conflicting bipartitions among individual ML gene trees

(Salichos and Rokas, 2013). The (partial) internode certainty (ICA) values were calculated as implemented in RAxML, multithread

version 8.2.3 (option -f i).

Molecular dating
We used the Bayesian method MCMCTree in the paml4.9e package (Yang, 2007) to estimate divergence times among the 332

budding yeasts using the 2408OG data matrix. The input tree was derived from the concatenation-based ML analysis under a single

LG+G4 model (Figure 2). Since budding yeasts lack a reliable fossil record, we adopted four well-estimated ranges of divergence

from four internodes of the budding yeast phylogeny as our calibrations (Kumar et al., 2017; Marcet-Houben and Gabaldón,

2015). These were: the Saccharomyces cerevisiae –Saccharomyces uvarum split (lower bound: 14.3 MYA – upper bound: 17.94

MYA), the Saccharomyces cerevisiae - Kluyveromyces lactis split (103 MYA – 126 MYA), the Saccharomyces cerevisiae - Candida

albicans split (161 MYA – 447 MYA), and the origin of the subphylum Saccharomycotina (304 MYA –590 MYA).

Because Bayesian molecular dating is computationally intractable for data matrices that contain hundreds of species and thou-

sands of genes (Irisarri et al., 2017), such as the 2408OG one, we created 50 replicate data matrices, each of which comprised of

a different, randomly chosen subset of 100 OGs, to infer the budding yeast timetree (inference of each of the replicates took

�500 CPU hours). For each replicate, we first estimated branch lengths under a single LG+G4 model with codeml in the paml4.9

e package (Yang, 2007) and obtained a roughmean of the overall mutation rate. Next, we applied the approximate likelihoodmethod

(dos Reis and Yang, 2011) to estimate the gradient vector and Hessian matrix with Taylor expansion (option usedata = 3). Last, we

assigned (a) the gamma-Dirichlet prior for the overall substitution rate (option rgene_gamma) as G(1, 12.5), with a mean of 0.08

(meaning 8 3 10�10 amino acid substitutions per site per year), (b) the gamma-Dirichlet prior for the rate-drift parameter (option

sigma2 gamma) as G(1, 10), and (c) the parameters for the birth-death sampling process with birth and death rates l = m = 1 and
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sampling fraction r = 0. We employed the autocorrelated-rate model (option clock = 3) to account for the rate variation across

different lineages and used soft bounds (left and right tail probabilities equal 0.025) to set minimum and maximum values for the

four calibration splits mentioned above. The MCMC run was first run for 100,000 iterations as burn-in, then sampled every 500 iter-

ations until a total of 3,000 samples was collected. Lastly, the divergence time estimate for each internal branchwas calculated as the

average across the timetrees produced by the 50 replicates.

In addition to the BayesianMCMCTreemethod, we also used the non-Bayesian RelTimemethod, as implemented in the command

line version of MEGA7 (Kumar et al., 2016). As RelTime is computationally much less demanding thanMCMCTree (Mello et al., 2017),

we conducted divergence time estimation using the complete 2408OGdatamatrix.We used the sameML tree and calibrations aswe

did for the MCMCTree analysis (see above).

Comparison of divergence time estimates between RelTime andMCMCTree revealed that theywere broadly consistent (Pearson’s

correlation coefficient r = 0.87, P-value < 2.2e-16; average time deviation = �19.5%), which is in agreement with a previously pub-

lished comparison of the two methods based on analyses of 8 empirical phylogenomic data matrices (Mello et al., 2017). Further-

more, both our study and that of Mello et al. (2017) found that the RelTime estimates were generally older than MCMCTree estimates

for the deep internodes of the budding yeast phylogeny (e.g., for the internodes between 12major clades) andwere generally younger

than the MCMCTree estimates for shallower internodes (e.g., within the families Pichiaceae, Saccharomycodaceae, Saccharomy-

cetaceae, Phaffomycetaceae, the CUG-Ala clade, and the CUG-Ser1 clade).

Horizontal gene transfer analyses
Identification of HGT events

To detect genes in budding yeast genomes that may have been horizontally acquired from non-fungal organisms, we employed a

robust and conservative phylogeny-based approach (Husnik and McCutcheon, 2018; Marcet-Houben and Gabaldón, 2010; Ri-

chards et al., 2011; Wisecaver et al., 2016). Briefly, for a given budding yeast gene, we inferred it to have been acquired by HGT if

there was substantial topological disagreement between the gene tree and its associated species tree and the budding yeast

gene sequence was robustly nested within the donor lineage in the gene tree.

To avoid spurious results due to the presence of small genomic fragments of contaminant organisms in our genome assemblies

(Schönknecht et al., 2014), we limited our analyses to those genes that resided in genomic contigs or scaffolds that wereR 100 kb.

This filter resulted in the analysis of 1,538,912 predicted genes (out of a total of 1,892,694 genes) in 329 yeast genomes. The remain-

ing three genomes (Botryozyma nematodophila, Blastobotrys nivea, and Citeromyces siamensis) did not contain genomic contigs

that were R 100 kb).

For each gene, we evaluated whether it had been horizontally acquired using a two-step workflow.

In step 1, we first carried out a BLASTP search against a custom database (nr+) consisting of the NCBI non-redundant (nr) protein

database (last accessed January 20, 2017) and all predicted protein sequences from 329 yeasts genomes, with an e-value cutoff

of 10�10. We next used custom Perl scripts to: (a) assign taxonomic information to each BLAST hit rating with the dump files down-

loaded from the NCBI Taxonomy database (nodes.dmp, merged.dmp, and names.dmp; ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy),

and then (b) parse the BLAST hits, based on their taxonomic information, into three different lineages (RECIPIENT: Saccharomyco-

tina; GROUP: Fungi; OUTGROUP: non-fungal) so as to obtain three values: bbhO (BLAST bitscore of the best hit in OUTGROUP line-

age), bbhG (bitscore of the best hit in GROUP lineage but not in RECIPIENT lineage), and maxB (bitscore of the query to itself).

Using this information, we next calculated: (a) the Alien Index (AI) value (Wisecaver et al., 2016), which is a normalized

difference of bitscore between the best hit in OUTGROUP lineage and the best hit in GROUP lineage but not in RECIPIENT lineage:

AI = bbhO=maxB� bbhG=maxB, and (b) the percentage of species fromOUTGROUP lineage (outg_pct) in the list of the top 300 hits

that have different taxonomic species names (so that we avoid over-representation of multiple strains of the same species) (Marcet-

Houben and Gabaldón, 2010). From the 1,538,912 genes analyzed, we found 1,806 genes with AI valueR 0.1 and outg_pctR 90%.

In step 2, we retrieved the 300 most similar homologs that have different taxonomic species names from the nr+ database

(see above), aligned them by the MAFFT, version 7.299 (Katoh and Standley, 2013), with ‘‘–auto’’ option, and trimmed ambiguously

aligned regions using trimAl v1.4 (Capella-Gutiérrez et al., 2009) with ‘‘-automated1’’ option. We then used the resulting alignment to

infer the ML tree using IQ-TREE 1.5.1 (Nguyen et al., 2015) with its best-fitting model of amino acid evolution and 1000 ultrafast boot-

strapping replicates (Minh et al., 2013). Lastly, we rooted each ML tree at the midpoint using the ape and phangorn R packages and

visualized it using the command version of iTOL v3 (Letunic and Bork, 2016). After manually inspecting all 1,806 ML trees, we iden-

tified 878 genes in 186 / 329 budding yeast genomeswhose phylogenies indicated theywere putatively acquired via HGT. A summary

table file that contains species name, gene name, genomic contig ID, genomic contig length, HGT status, and Gene Ontology (GO)

term for each of 1,538,912 genes in 329 yeast genomes that we examined has been deposited on the Figshare data repository.

Analysis of HGT-acquired genes

For each of 878 genes inferred to have been horizontally transferred into budding yeast genomes, we used the gene sequence and

taxon names of their closest relatives on the ML tree to infer the gene name, gene function, and likely donor lineage of the HGT-

acquired gene (Table S3). To examine the biological processes, cellular components, and molecular functions that these 878

HGT-acquired genes are associated with, we conducted gene ontology (GO) enrichment analysis using topGO 2.28.0 (Alexa and

Rahnenfuhrer, 2016).We found that these geneswere significantly enriched inmetabolism-related terms, such asmetabolic process,

oxidation-reduction process, carbohydrate metabolic process (terms in Biological process), beta�galactosidase complex, integral
Cell 175, 1533–1545.e1–e11, November 29, 2018 e8

ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy


component of membrane (terms in Cellular component), acetyltransferase activity, and catalytic activity (terms in Molecular function)

(Figure S5). In the list of 878 putative HGT-acquired genes (Table S3), the largest number of horizontally acquired genes, 169, was

found in the genome ofW. versatilis, one of the six representative species from theW/S clade (Figure 3A). Transcriptome data in NCBI

(SRA accession numbers: SRR5942408, SRR5942407, SRR5942426, SRR5942425, SRR5942428, SRR5942427, SRR5942422,

SRR5942421) showed that at least 91 of its 169 horizontally acquired genes had expression valuesR 5 FPKM (Fragments Per Kilo-

base perMillionmapped fragments), suggesting that most are likely functional. Gene Ontology (GO) enrichment analysis of 169 HGT-

acquired genes in the genome of W. versatilis show they are significantly enriched in GO term functions and processes, such as

oxidation-reduction process, metabolic process, catalytic activity, cofactor binding, and oxidoreductase activity.

Examination of the 878 HGT-acquired gene phylogenies showed that they stem from 365 distinct HGT events, 230 species-spe-

cific ones and 135 that involve two or more species (Figure S4; Table S3). The average age of these 365 HGT events was 66.3 MYA

(95% credibility interval: 56.6-76.0), the average protein sequence identity between the HGT-acquired yeast gene and the most

closely related non-fungal donor gene was 58%, and the average percentage of descendent species that retained a given HGT-

acquired gene was 40.7%. These results suggest that most HGT events tend to affect one or a few species, they are relatively ancient

or divergent, and are frequently lost.

Finally, the examination of the genomic locations of the 878HGT-acquired genes showed that 77 geneswere physically linked in 13

contiguous clusters of 3 ormore genes each. Of these 13 horizontally acquired gene clusters, 4 were shared by several budding yeast

species, while the other 9 were species-specific.

Robustness of HGT inference

Inference of HGT can be noise-prone (Husnik and McCutcheon, 2018; Martin, 2018; Roger, 2018). To gauge the robustness of infer-

ence of HGT-acquired genes, we performed five additional sets of analyses.

First, we compared the list of 878 putative HGT-acquired genes to the list of 30 previously identified instances of HGT in budding

yeasts. We found that 21 / 30 (70%) of these previously detected instances of HGT were included in our set of 878 HGT-acquired

genes, corroborating the sensitivity and conservativeness of our high-throughput approach for identifying HGT (Table S3).

Second, to gauge whether setting the values of AI valueR 0.1 and outg_pctR 90% in step 1 was too strict, we also examined the

top 1,806 candidates with the highest AI scores for outg_pct R 10%. Examination of the overlap between the set of 1,806 genes

recovered with AI value R 0.1 and outg_pct R 90% and the set of the top 1,806 genes recovered with outg_pct R 10% showed

that that 605 / 878 strongly supported cases of HGT were present in both sets.

Third, we examined diverse properties of contigs containing HGT-acquired genes and compared to those of contigs lacking HGT-

acquired genes. Examination of the distribution of sequence lengths of the 480 genomic contigs that contain 878 HGT-acquired

genes, alongside the 8,312 genomic contigs that do not contain any HGT-acquired genes, showed that contigs containing the

HGT-acquired genes were typically longer than contigs that lack them. We further used different cutoff values of contig length

(from R 100 kb to R 1,500 kb with steps of 100 kb) to examine the percentage of HGT-acquired genes over total number of

gene examined and found that it slightly increased with contig size.

Fourth, we compared the percentages of HGT-acquired genes in the 220 newly sequenced genomes and in the 112 publicly avail-

able genomes and found them to be similar. In contrast, the percentage of HGT-acquired genes in the 164 genomes with the highest

N50 values was significantly higher than the percentage in the 165 genomes the lowest N50 values.

Finally, to test whether the maximum likelihood (ML) gene tree (i.e., the tree with the highest ML score, which shows that the hor-

izontally acquired yeast gene was nested within a clade of non-fungal donor genes) was statistically different from a constrained ML

tree in which all fungal and yeast genes were forced to be monophyletic, we applied the approximately unbiased (AU) (Shimodaira,

2002) test in the software package CONSEL (Shimodaira and Hasegawa, 2001), version 0.20. We found that 616 out of 878 putative

HGT-acquired genes are significantly supported with the AU test (AU test; p values < 0.05) (Table S3).

Analyses of trait evolution
In this study, we reconstructed the evolution of 45 discrete metabolic traits in 274 budding yeasts representing the 12 major clades.

All metabolic trait data were obtained from The Yeasts: A Taxonomic Study and pertain to budding yeasts’ abilities to grow on

different substrates (Kurtzman et al., 2011).

For each discrete metabolic trait, we scored each taxon for its ability to grow (hereafter scored as ‘‘1’’), not grow (hereafter scored

as ‘‘0’’), show variation in growth / absence of growth across different strains (hereafter scored as ‘‘v’’), or lack of information /missing

data (hereafter scored as ‘‘n’’) (Table S4).

To conduct analyses of trait evolution and ancestral state inference, we used BayesMultiStatemodule in the BayesTraits, version 3

(Pagel et al., 2004), because of its ability to apply reversible jump MCMC (rjMCMC) to optimize model uncertainty with different pa-

rameters. To infer ancestral states and the rates of trait gain and loss, BayesTraits takes as input the species phylogeny, the trait

states, and a model of trait evolution. For the input species phylogeny, we used the ML tree with branch lengths inferred from the

2408OG data matrix using a single LG+G4model (Figure 2), which was then pruned to keep the 274 budding yeast species for which

there were metabolic trait data.

For each trait, v and n values were recoded to be ‘‘01’’ (this means that the character’s state can be either ‘‘0’’ or ‘‘1’’) and ‘‘-’’ in the

BayesTraits analyses, respectively. We calculated the rate of gain (q01: rate of change from 0 to 1) and the rate of loss (q10: rate of

change from 1 to 0) across the budding yeast phylogeny. To test whether the rates of trait gain and loss were significantly different or
e9 Cell 175, 1533–1545.e1–e11, November 29, 2018



not, we compared estimates of marginal likelihoods under a model of trait evolution in which the rates of trait gain and loss were un-

constrained against those obtained under a model in which the rates of gain and loss were constrained to be equal. We determined

whether the two models were significantly different using log Bayes Factors (lnBF): 2(log marginal likelihood [unconstrained] –log

marginal likelihood [constrained]); the rates of gain and loss for a given trait were considered to be significantly different

when lnBF > 2.

For each metabolic trait, we also inferred the posterior probability of each of the two character states (0 and 1) at the root (i.e., the

budding yeast common ancestor [BYCA]) and at each of 272 internodes across the phylogeny. Each analysis was run for 10 million

generations, sampling parameters every 4,000 generations until 2,000 samples were collected. The stepping stone sampler was

used to estimate marginal likelihoods, sampling 200 stones in which each stone was run 1,000 generations.

Finally, we plotted the kernel density of the posterior distribution for the rates of trait gain and loss, as well as posterior probabilities

(PP) of states 0 and 1 at each internode, and identified the largest peak values from their densities. To visualize the ancestral state at

each internode across the budding yeast phylogeny, we used the pie chart function in iTOL v3 (Letunic and Bork, 2016).

Validation of metabolic trait data
As the metabolic trait data in The Yeasts: A Taxonomic Study (Kurtzman et al., 2011) comes from multiple sources, contains missing

data, and the strains tested sometimes differ from the sequenced strains, we also experimentally determined the growth for 328 / 332

strains of the budding yeast species whose genomes we used on 13 / 45 discrete metabolic traits, 11 carbon-based and 2 nitrogen-

based (Table S4). As a control, we also experimentally determined yeast species growth on glucose, a substrate onwhich all sampled

strains are known to grow (Kurtzman et al., 2011).

Carbon treatment plates contained a minimal media base with ammonium sulfate and one of twelve carbon sources at a 2% con-

centration (Kurtzman et al., 2011). The 12 carbon sources tested in our analyses included glucose, sucrose, raffinose, galactose,

lactose, maltose, cellobiose, L-rhamnose, D-xylose, glycerol, D-glucosamine, and N-acetyl-D-glucosamine. Nitrogen treatment

plates contained a minimal media base with either potassium nitrate or sodium nitrite as the nitrogen source and 2% glucose (Kurtz-

man et al., 2011). Nitrogen treatment plates required two rounds of growth to accurately measure growth of species; therefore, after a

week of growth, we pinned the yeast species into a second round of the respective nitrogen source. After a week of growth, we visu-

ally scored yeast species for growth on each carbon or nitrogen source.We then compared growth across replicates for each species

and treatment; a species was determined to grow on a carbon source if it showed growthR 50% of the time across replicates. Our

results show that the average consistency of the character states shared between the compilation of available metabolic trait data

and our experimental measurements was 94% (Table S4), suggesting that our inferences are based on accurate data.

Trait and gene association network analyses
Calculations of positive associations among carbon and nitrogen assimilation traits were obtained from a recently published study

(Opulente et al., 2018). A positive association network was created in the R package igraph v. 1.0.1 (Csárdi and Nepusz, 2006), and

trait communities in these networks were determined through the Clauset-Newman-Moore algorithm (fast.greedy community), an

approach that determines communities by maximizing the total network’s modularity.

The input data matrix consisted of species-specific presence and absence data for functional annotations of genes, together with

the species-specific qualitative information about their capabilities to grow in the conditions used in the ancestral trait reconstruction

analyses. The functional annotations were Kyoto Encyclopedia of Genes and Genomes (KEGG) database entries or annotations (Ka-

nehisa et al., 2016b) obtained throughGhostKOALA (Kanehisa et al., 2016a). Mutual information coefficients were calculated for each

pairwise combination of KEGG annotation and trait using the R packages infotheo, minet (Meyer, 2008; Meyer et al., 2008), and

WCGNA (Langfelder and Horvath, 2008), and the resulting association network was trimmed with the ARACNE algorithm (Margolin

et al., 2006). Strong associations were defined by a cutoff of 0.15 nats or higher, and weak associations were considered between

0.10 and 0.15 nats. The positive or negative character of the associations was determined by calculating the Jaccard index for each

pairwise combination, with a cutoff at 0.25.

Data tracks shown on Figure 5 were subject to the following adjustments: (1) the nitrite growth track contained exclusively data

from validation experiments performed in this study (Table S4), due to limited data in the literature (Table S4); (2) for the nitrate growth

track, positive growth was imputed in cases of disagreement between the validation and literature; and (3) due to partial annotation

redundancy for specific steps of the Moco biosynthesis pathway, MOCS1 and MOCS2 data tracks were collated from multiple an-

notations, with MOCS1 activity being considered present if either the K03637, K03639, or K20967 KEGG annotation was found in a

genome andwithMOCS2 activity being considered present if either the K03635, K03636, or K21232 KEGG annotation was found in a

genome.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses and quantification approaches associated with genome sequencing, accuracy and completeness of assembly,

accuracy and completeness of annotation, phylogenetic data matrix reconstruction, horizontal gene transfer (HGT) inference, and

metabolic trait evolution can be found in the relevant sections of the Method Details.

The Fisher’s exact tests were conducted in R version 3.4.0.
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DATA AND SOFTWARE AVAILABILITY

Raw sequence read and genome assembly data for all 220 new genomes have been deposited at DDBJ/ENA/GenBank and their

accession numbers are provided in Table S1. All budding yeast genome assemblies and annotations, phylogenetic data matrices,

multiple sequence alignments, phylogenetic trees, the metabolic trait data matrix, trait ancestral character state reconstructions,

additional figures and tables, R codes, and the custom Perl scripts used in this study are available on the Figshare data repository

(10.6084/m9.figshare.5854692; https://figshare.com/articles/Tempo_and_mode_of_genome_evolution_in_the_budding_yeast_

subphylum/5854692). All sequenced strains have been publicly deposited in the NRRL, CBS, and/or JCM strain collections.
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Figure S1. Distribution of 332 Budding Yeast Species with Sequenced Genomes across the 12 Major Clades of the Subphylum Saccha-

romycotina, Related to Figure 2

In each clade, the size of the lightly colored triangle is proportional to number of budding yeast species sampled; the size of the darkly colored triangle is

proportional to number of yeast species whose genomes were newly sequenced by the Y1000+ Project (http://www.y1000plus.org) and RIKEN (unpublished but

publicly available at http://www.jcm.riken.jp/cgi-bin/nbrp/nbrp_list.cgi). The percentage of (number of newly sequenced species) / (number of all sequenced

species) for each clade is shown in parentheses. The cartoon phylogeny is based on Figure 2.
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Figure S2. The Degree of Topological Similarity among 27 Phylogenies Reconstructed from Analyses of 9 Different Data Matrices, Related

to Figure 2

(A) Heatmap of topological similarities for all pairwise comparisons among the 27 phylogenies reconstructed from analyses of 9 different data matrices (2408OG,

1292BUSCO, and the 7 data matrices constructed from subsamples of the 2408OG data matrix) using three different approaches (concatenation under a single
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partition, concatenation under gene-based partitioning, and coalescence). The topological similarity between each pair of phylogenies was calculated using

RAxML with the option ‘-f r’.

(B) The multidimensional-scaled visualization of tree space based on the pairwise Robinson-Foulds distances among the 27 phylogenies was built with R 3.4.0

(see https://www.r-bloggers.com/multidimensional-scaling-mds-with-r/). Most topological disagreements are between concatenation-based and coalescence-

based analyses.
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Figure S3. The Effect of Taxon Sampling onGene-Wise Phylogenetic Signal for the CUG-Ser2 Clade Branch in TwoDataMatrices (Left Panel:

2408OG Data Matrix; Right Panel: 1292BUSCO Data Matrix), Related to Figure 2

We previously showed that removal of a single gene (named DPM1 in S. cerevisiae), which has the strongest gene-wise phylogenetic signal in a 1,233-gene,

86-taxon yeast data matrix, switched the ML tree’s support from T1 (CUG-Ser2 as sister to a clade consisting of Phaffomycetaceae + Saccharomycodaceae +

Saccharomycetaceae) to T2 (CUG-Ser2 as sister to a clade consisting of Pichiaceae + CUG-Ala clade + CUG-Ser1 clade + Phaffomycetaceae + Saccha-

romycodaceae + Saccharomycetaceae) for the CUG-Ser2 clade branch. In that data matrix, Ascoidea rubescens is the single representative of the CUG-Ser2

clade.We tested whether inclusion of three additional representatives (Ascoidea asiatica, Saccharomycopsis malanga, and Saccharomycopsis capsularis) for the

CUG-Ser2 clade in the 2408OG and 1292BUSCO data matrices influenced estimates of the phylogenetic signal of the DPM1 OG. For each of the two data

matrices, we calculated the gene-wise phylogenetic signal by measuring the difference in gene-wise log-likelihood scores (DGLS) for T1 versus T2 across all

genes with and without these three additional CUG-Ser2 clade representatives (Ascoidea asiatica, Saccharomycopsis malanga, and Saccharomycopsis cap-

sularis). The x axis shows the gene-wise phylogenetic signal when all 4 CUG-Ser2 clade representatives are included, and the y axis shows the signal when only a

single CUG-Ser2 clade representative (A. rubescens) is included. Pink dots denote genes supporting T1 in the full data matrix, whereas green dots denote genes

supporting T2 in the full data matrix. The two dotsmarked OG3902 (in 2408OG data matrix) and EOG09343FGH (in 1292BUSCO datamatrix) denote the twoOGs

containing the DPM1 gene. Although the gene-wise phylogenetic signal values between the two analyses are highly concordant, the DPM1 gene has very strong

phylogenetic signal when only a single CUG-Ser2 clade representative is included; addition of 3 more CUG-Ser2 clade representatives dramatically reduces the

gene’s phylogenetic signal. This behavior is consistent with our previous analyses suggesting that the DPM1 gene’s phylogenetic signal in favor of T1 over T2

when only a single CUG-Ser2 clade representative is used stems from a poor fit between the models of sequence evolution employed and the gene’s observed

sequence variation.



Figure S4. Distribution of 365 HGT Events on the Budding Yeasts Phylogeny, Related to Figure 3 and Table S3

Examination of the phylogenetic trees of the 878 HGT-acquired genes showed that they stem from 365 distinct transfer events. 230 of these transfer events

appear to be species-specific, whereas the remaining 135 involve two or more species. Bars next to species names denote numbers of species-specific HGT

events. Numbers near internodes denote numbers of HGT events that led to HGT-acquired genes found in two or more species. The budding yeast phylogeny is

from Figure 2. The multiple sequence alignments and gene trees of the 878 HGT-acquired genes are provided in the Figshare depository.



Figure S5. Gene Ontology Term Enrichment Analysis of the 878 HGT-Acquired Genes, Related to Figure 3 and Table S3

Only significantly enriched GO terms (adjusted P-value% 0.01) are shown. The GeneRatio value corresponds to the ratio of the number of genes assigned to the

respective GO term to the total number of genes examined. GO terms are arranged along the x axis in ascending order of the adjusted P-values.
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Figure S6. Posterior Distribution of Rates of Trait Gain and Loss for 45 Metabolic Traits across the Budding Yeast Phylogeny, Related

to Table 1

q01: rate of trait gain or rate of change from state 0 (absence of metabolic trait) to state 1 (presence of metabolic trait). q10: rate of trait loss or rate of change from

state 1 to state 0. Each of the panels corresponds to a different metabolic trait. Trait evolution was reconstructed on the budding yeast species phylogeny

(Figure 2) after it was pruned down to the 274 budding yeast species for which there aremetabolic trait data. Traits that exhibited significantly different rates of trait

gain and loss measured by log Bayes Factors (lnBF) are indicated by asterisks (*).
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Figure S7. Distribution of 45 Metabolic Traits on the Budding Yeast Phylogeny, Related to Figure 6

There are 547 dots in the scatterplot, which correspond to the 273 internodes and 274 tips on the 274-budding yeast phylogeny. The x axis is the posterior mean

of the node age, and the y axis is the number of traits with posterior probabilities of > 0.5 for being present at the node.
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