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BRIEF. This study evaluates the performance of prostate cancer detection algorithms and architectures for optimal clinical application. 

ABSTRACT. Segmentation for prostate cancer, the most diag-

nosed cancer among American men, has become increasingly im-

portant for treatment planning. Ground truth, radiologist-annotated 

data is scarce and thus calls for a viable alternative to costly man-

ual segmentation using deep learning networks. Given the rise in 

variability and diversity in machine learning models, it is neces-

sary to holistically assess the performance of the three mainstream 

method groups: supervised, unsupervised, and semi-supervised 

learning. The survey provides a synopsis of deep learning frame-

works and their best-fit image processing applications by compar-

atively analyzing the efficacy of nine deep learning algorithms for 

prostate cancer segmentation. While all three algorithm groups 

could effectively be employed to complete segmentation, it was 

found that supervised learning is optimal for small-scale classifi-

cation problems with a plethora of annotated data, and unsuper-

vised learning is optimal for feature extraction prior to diagnosis. 

Semi-supervised learning, a middle ground between the two, has 

been found to be versatile and conducive to a lack of annotated 

data, making it the most viable solution for prostate cancer seg-

mentation. 

INTRODUCTION.  

Prostate cancer (PCa) segmentation is the identification of spatial lo-

cations of prostate tumors in a slice-by-slice manner. As PCa has risen 

to become the most commonly diagnosed cancer among American 

men [1], it has become vital to identify tumor regions accurately in 

early stages to prevent further aggravation and facilitate early treat-

ment planning. While manual segmentation is appealing to achieve re-

liable diagnoses for disease prediction, its viability is limited by the 

high cost of ground truth labels. 

The increasing cost of carrying out manual diagnosis has effected an 

increase in deep learning algorithms that aid the diagnosis process of 

clinicians. To transition these various deep learning algorithms into 

practice, their efficacy and reliability must first be evaluated. Deep 

learning is an alternative to manual data analysis and image processing 

that relies on a multi-layered architecture to train on input data and 

provide predictions without a large compromise in accuracy. DL in-

volves learning from multiple layers of data to achieve meaningful in-

sights in data and make intelligent decisions, which renders it one of 

the most successful tools for automating tasks requiring human critical 

thinking, such as prostate cancer diagnosis [2]. The variety of emerg-

ing deep learning frameworks brings about the query: Which deep 

learning approach for prostate cancer segmentation (supervised, unsu-

pervised, and semi-supervised) can best mimic the accuracy of 

ground-truth annotations? The survey assesses diverse prostate cancer 

detection algorithms to gauge their effectiveness for clinical applica-

tions.  

Deep Learning. Machine learning is a subset of artificial intelligence 

where computers learn from data to perform intuitive tasks. Deep 

learning, a subset of machine learning, is composed of a series of hid-

den layers that detect connections in data by emulating the behavior of 

human neurons [3]. Deep learning can be implemented in settings that 

involve complex predictions or the classification of distinct groups. 

Deep learning algorithms have been implemented to address a wide 

range of medical problem areas. For instance, one study trains a model 

using deep learning to analyze and identify hidden trends in skin can-

cer images and achieved an AUC of 99.77% in detecting cancer cells 

from input images [4]. Thus, deep learning has proved itself as an ex-

tremely potent tool within the medical diagnosis realm. 

Ground Truth Annotations. A ground truth serves as a comparison 

source for new mechanisms that aim to complete the same task [5]. 

Ground truth data for PCa comprises diagnoses prepared by human 

clinicians and is costly due to the manual labor involved. Ground truth 

samples may include prostate image scans annotated to indicate re-

gions of abnormalities or a clinical diagnosis given a set of patient risk 

factors. Medical professionals must spend extensive time manually 

verifying diagnoses to provide accurate suggestions for further clinical 

treatment for patients. Also, specialized medical professionals are lim-

ited in availability, which contributes to the scarcity of ground truth 

data. Segmentation networks should reproduce clinical diagnoses on 

scarce training data to mitigate heavy ground truth costs [6]. 

Automated Segmentation. Segmentation consists of dividing an input 

into unlabeled or pre-categorized labels [7]. Threshold-based segmen-

tation assigns a threshold value to each individual pixel used to create 

a binary mask of the original image [8]. Edge-based segmentation ex-

amines regions of discontinuities in gray levels and vibrancies in an 

image to determine preliminary borders; then, these disconnected bor-

ders undergo another layer of segmentation to create a more seamless 

segmentation result [9]. Medical image segmentation can be applied 

on several image modalities, the two most prominent being magnetic 

resonance (MR) imaging and computed tomography (CT) imaging 

[10]. MR imaging is conducive to segmentation as it features a high 

resolution and high signal to noise ratio. Models that achieve high-

accuracy segmentation with minimal false positive and false negative 

classifications may be considered for clinical implementation as an al-

ternative to cost-heavy manual diagnosis approaches. 

Learning Techniques. Supervised learning is a subset of machine 

learning which learns from labeled pairs in ground truth data [11]. One 

technique, binary classification, can produce a value between 0 and 1 

for each pixel to indicate the probability of the pixel being cancerous. 

A common supervised framework splits the data into training, test, and 

validation sets. The algorithm learns from input-output pairs and cre-

ates a hierarchy of learned information through feedback from a loss 

function [12]. Unsupervised learning embodies a free-form approach 

to pattern recognition. It is more receptive to subtler, hidden trends in 

data and has the capability to draw predictions or identify clusters 

without the limitations of output bounding boxes [13]. Unsupervised 

models place emphasis on finding deep-level trends in data and thus 

employ dimension reduction techniques such as principal component 

analysis to keep sight of the most relevant key features [14]. Semi-

supervised learning draws upon both supervised and unsupervised 

techniques, by training a model upon subsets of labeled and unlabeled 

data, and it has increased in popularity for its versatility [15]. Semi-

supervised models rely one or more assumptions. The continuity as-

sumption states that points close in proximity are likely to share a la-

bel. The manifold assumption states that the data points lie on a low 

dimensional manifold within a higher dimensional space. The cluster 



 

 

assumption states that data usually form distinct clusters that share a 

common label [16]. 

Overview of Efficiency Metrics. F-measure metrics measure the accu-

racy of the prediction with regard to its overlap with the ground truth. 

The Jaccard index, also known as the Intersection-over-Union (IoU) 

measures the area of overlap between the target bounding box and the 

prediction. The Dice similarity coefficient (DSC) is the harmonic 

mean between sensitivity and specificity. Sensitivity is the number of 

true positives over the total number of true positives and false nega-

tives. Specificity is the total number of true negatives over the total 

number of true negatives and false positives. Accuracy is a commonly 

used metric for general use but may produce misleading results for 

medical image segmentation: if the area of interest is small but the 

algorithm labels all pixels as background pixels, accuracy would be 

high regardless of the number of incorrect pixels. The Receiver Oper-

ating Characteristic (ROC) curve graphs the true positive rate against 

the false positive rate. It is a performance indicator of a single-value 

binary classifier that provides a value from 0.5 to 1, where 0.5 is the 

performance of a random classifier, and 1 is the performance of a per-

fect classifier [17][18]. 

MATERIALS AND METHODS.  

Table 1. Summary of nine methods used for comparative analysis, including 

method name, method structure, efficiency metric used for testing, and modality 
of dataset images. 

Method Structure Metric Modality 

Logistic Regression 

[19] 
Supervised F1 Scoring; 

Accuracy 
CV 

SPCNet [20] Supervised AUC ROC MRI 

Deep Learning Seg-
mentation [21] 

Supervised AUC ROC Multi-parametric 
MRI 

UATS [22] Semi- Supervised DSC Multi-parametric 

MRI 

Deep Learning with 

End-to-end Stream-
ing [23] 

Semi- Supervised AUC ROC Prostate Biopsy 

Dual Architecture 

Model [24] 
Semi- Supervised AUC ROC Biparametric MRI 

SCO-SSL [25] Semi- Supervised DSC Transrectal Ultra-

sound (TRUC) 

DeepT2Vec [26] Unsupervised F1 Scoring; 

Accuracy 
Transcriptomic 

tissue and tumor 

data 

AI-Biopsy [27] Unsupervised AUC ROC; 

Accuracy 
MRI 

 

Supervised Methods. 

(i) Logistic Regression [19]: A study conducted by Mahamudul Ha-

san et al., assesses various supervised machine learning techniques for 

binary prostate cancer classification. The study compares six super-

vised machine learning techniques to predict a patient’s diagnosis for 

prostate cancer (0 or 1) based on 100 patient records on 10 distinct 

quantitative risk factors, including radius, texture, perimeter, area, and 

smoothness. The dataset, from a Kaggle repository, includes 62 can-

cer-positive records and 38 non-cancerous records. The model used a 

train-test split of 80-20 and was built on a simple framework of pre-

processing, data analysis, splitting, inputting into a classifier model, 

and finally prediction.  

(ii) Convolutional Neural Network Architecture [20]: A study con-

ducted by Arun Seetharaman et al., features a custom-built neural net-

work architecture called the Stanford Prostate Cancer Network 

(SPCNet), which is trained to differentiate between aggressive, indo-

lent, and normal tissues on a pixel-by-pixel basis on a prostate cancer 

MRI image. The model architecture features four convolution layers, 

with a final SoftMax layer, followed by two ReLU activation layers. 

The final result is upsampled and annotated on a mask with key colors 

representing different output classes.  

(iii) Retina U-Net Framework Deep Learning Model [21]: Oscar 

Pellicer-Valero et al. proposes a deep learning pipeline based on the 

Retina U-Net model for the segmentation and Gleason grade stratifi-

cation of prostate cancer lesions from multiparametric MRI images. 

The model was trained on a series of five cascading CNNs. These 

CNNs make up a broader U-Net architecture that produce a prostate 

segmentation mask from a T2 scan, produce a Central Gland (CG) 

mask from the T2 scan and the previous output, and compute the Pe-

ripheral Zone (PZ) mask, respectively. A Bounding Box regressor and 

classifier are layered on top and extract a feature map from the decoder 

portion to perform classification.  

Semi-Supervised Methods 

(i) Uncertainty-Guided Self Learning Model [22]: A deep learning 

semi-supervised architecture created by Anneke Meyer et al., com-

bines temporal ensembling and self-learning to create an uncertainty-

aware temporal self-learning model (UATS). The architecture is built 

around two premises: self-training and self-ensembling. A self-train-

ing model generally relies on the cluster assumption, and that confi-

dent predictions are correct. As the model progresses, training data is 

accumulated. However, self-learning does not include a verifying 

mechanism for early mistakes which may be detrimental to the long-

term performance of the model.  

(ii) End-to-End Convolution Streaming Architecture [23]: Hans 

Pinckaers et al., propose an end-to-end deep learning CNN implemen-

tation based in ResNet-34 that extracts meaningful features while de-

livering high-resolution images to work around the scarcity of ground 

truth data. The model utilized ImageNet-trained weights and SGD as 

a learning optimizer. A memory-efficient technique of streaming re-

constructed a feature map mid-network to optimize GPU memory 

space and proceed through the neural network.  

(iii) DA-UNet and nnU-Net Deep Learning Framework [24]: A 

study conducted by Joeran Bosma et al., proposes a semi-supervised 

approach that pairs unlabeled data with clinical reports to optimize 

data. The model utilizes two distinct architectures based in nnU-Net 

and Dual-Attention U-Net which are self-selected according to the in-

put dataset. The nnU-Net architecture was trained using a combination 

as cross-entropy and soft Dice as losses, while the latter was trained 

using Focal Loss. During segmentation, the number of csPCa lesions 

and the PI-RADS score were extracted.  

(iv) Novel Shadow-Consistent Deep Learning Mechanism [25]: 

Research conducted by Xuanang Xu et al., focuses on the importance 

of efficient prostate segmentation in the transrectal ultrasound (TRUS) 

modality. The algorithm implements shadow augmentation and 

shadow dropout that involves training samples with augmented 

shadow patterns to make the algorithm more robust and less sensitive 

to such added effects. The model was trained in both semi-supervised 

and supervised settings on large TRUS clinical data.  

Unsupervised Methods 



 

 

(i) Deep Learning Autoencoder [26]: The lack of similar features or 

correlation between transcriptions led Bo Yuan et al. to construct a 

deep unsupervised network to extract high-level features from human 

tissue and tumor samples. Five layers with successively decreasing 

neurons were trained in an unsupervised manner for feature extraction 

and conversion into low dimensional vector data known as a tran-

scriptomic feature vector (TFV). The researchers trained the model on 

Pan-Cancer samples with both grading and staging information and 

analyzed each sample and its TFV on a class-level. A semi-supervised 

architecture was created to differentiate Pan-Cancer and regular clas-

sification with a SoftMax classifier.  

(ii) Deep Neural Network Using Class Activation Maps (CAM) 

[27]: The authors of the study, Pegah Khosravi et al., use a Prostate 

Imaging Reporting and Data System (PI-RADS) for the interpretation 

of prostate images and to facilitate detection, treatment suggestion, 

and risk stratification. A novel unsupervised deep learning algorithm 

using ResNet-152 was trained on ImageNet to first reduce the dimen-

sionality of feature vectors and then extract uninformative and in-

formative feature vectors to isolate the main cluster. A Gaussian Mix-

ture Model (GMM) was then applied for optimal conservation.  

DISCUSSION. 

Figure 1 indicates model performance across the three method groups. 

The logistic regression model [19] achieved an accuracy of 95%, pre-

cision of 96%, recall of 95%, and F1 score of 95%. However, the train-

ing dataset featured only 100 population samples, which is not repre-

sentative. The model was trained on CV data rather than 2D MRI im-

ages, which does provide output as comprehensive as segmentation 

programs. The SPCNet Convolutional Neural Network Model [20] 

was able to catch missed lesions by radiologists and segment aggres-

sive and indolent cancers, which is a notable given the lack of ground 

truth data. SPCNet can further fine-tune its capability for insight if 

trained on data that includes additional biometric factors, such as gland 

size and biopsy status, to more closely tailor its predictions to real-

world radiologist decision-making. The Deep Learning Segmentation 

model [21] achieved an overall AUC ROC of 0.96. The algorithm’s 

compatibility with mpMRI prostate scans puts it at a slight disad-

vantage because these lesions are small with ill-defined margins, thus 

leading to a high variability for interpretation. The structure of all three 

algorithms have room for improvement; SPCNet can benefit from the 

incorporation of clinical factors into decision making, and the deep 

learning segmentation algorithm’s structure could be optimized to be 

competitive with the mentioned simpler ROI classification systems. 

Supervised learning is a tool best suited for classification problems. 

The uncertainty-aware self-learning architecture [22] achieved an av-

erage DSC score of 73% across all prostate zones. While this score 

cannot be directly compared with the scores of other algorithms tested 

with different metrics in this study, the algorithm can be compared to 

other algorithms in the ISIC2018 skin lesion segmentation challenge 

using the same dataset. Under these testing conditions, it achieved a 

DSC of 86%, which was 6.2% below the leading algorithm. However, 

this may have been attributed to discrepancies in training data size and 

intent of the algorithm structure. Semi-supervision significantly im-

proves output quality when there is a lack of viable training data, but 

the gap in quality diminishes as availability of training material in-

creases. The end-to-end CNN model [23] achieved an AUC ROC of 

0.992 through streaming and 0.990 through multiple instance learning. 

The streaming process made it possible for convolutional neural net-

works to be rapidly trained with high-resolution labeled images, mak-

ing it competitive with patch-based deep learning techniques.  The 

self-training dual architecture model [24] performed well for both 

UNet variations, with a 0.894 AUC ROC for nnU-Net and a 0.873 

AUC ROC for DA-UNet. Semi-supervised learning displayed a sig-

nificant improvement in AUROC performance compared to super-

vised training on a test set of 2,440 manual exams. The semi-super-

vised nature of the model allowed for rapid automatic labeling for new 

cases. The model was drastically improved by applying semi-super-

vised learning to training but exhibits model-specific limitations such 

as narrow training data. The shadow-consistent deep learning model 

[25], achieved a DSC of 92.44% for one population dataset and a score 

of 87.98% for a second population, with both models implementing 

UNet. It showed significant improvement as the number of labeled 

samples decreased, and thus proves to be applicable in the prostate 

cancer segmentation realm where ground truth data is highly limited. 

The unsupervised deep autoencoder for feature extraction [26] could 

pull key features into TFVs of transcriptomic data. The portion of the 

algorithm involving unsupervised learning was responsible for the 

identification of biological features in the data; when connected to the 

supervised, cancer diagnosis portion of the model, it yielded better re-

sults. The AI Biopsy model [27] was evaluated on both AUC ROC and 

accuracy; it was able to achieve an AUROC of 0.855 and an accuracy 

of 79.02%. The algorithm utilizes holistic analysis of the MRI image 

and thus leverages all available data; also, the algorithm does not rely 

on preprocessing augmentations for new images [28]. However, the 

histopathologic data used for this algorithm still has its limitations re-

garding mislabeling. 

CONCLUSION. 

Supervised learning is a viable option to achieve high accuracy for 

classification problems with a plethora of labeled data; however, 

ground truth data for prostate cancer segmentation is scarce. Super-

vised algorithm performance due to a low signal to noise ratio can be 

ameliorated by employing a technique such as Principal Component 

Analysis to discriminate a lesion more effectively from background 

noise. Moreover, to address the scarcity of available data, data aug-

mentation and auto encoders can be utilized to increase training data 

by generating similar data points. Semi-supervised learning is argua-

bly the most effective technique for prostate cancer segmentation, as 

it is conducive to a lack of annotated training data and versatile algo-

rithm structures, which are optimal for this area of image processing. 

Unsupervised learning may not be the most effective solution for PCa 

segmentation, which benefits from a classification mechanism training 

on a structured, supervised regimen. Future study may include review-

ing a broader range of existing deep learning techniques and architec-

tures to seek out which general approaches are best suited to prostate 

cancer diagnosis and paint a more complete picture of the efficacy of 

 
Figure 1. Performance of nine methods across three method categories 

(supervised, semi-supervised, unsupervised), measured in the indicated ef-

ficiency metric 



 

 

current algorithms. In addition, a study can hone in on individual al-

gorithms and remedy their shortcomings by using techniques - namely 

Principal Component Analysis and Independent Component Analysis 

- to segregate ill-defined lesions more accurately. Certain models, 

when training on limited data, may also be prone to overfitting (overly 

specific model) or underfitting (inadequately trained), which can be 

explored more in-depth. Also, while deep learning for PCa has gar-

nered popularity, machine learning algorithms, including gradient 

boosted trees, should be evaluated for their performance against DL 

algorithms. The study can be taken to a more universal context by ex-

panding its domain to other carcinomas and image modalities. 
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