

Employing Machine Learning Techniques and Frameworks to
Aid with Automotive Design
Ryan Santosh*

Oberoi International School, Mumbai, India, 400063

KEYWORDS. Machine Learning, Automotive Design, Stack-Gan, Generative Models.

BRIEF. Modifying existing machine learning techniques and architectures to design a new generative model tailored to automotive design.

ABSTRACT. The use of artificial intelligence and machine
learning has seen an exponential rise within the automotive
industry, especially within automobile maintenance, supply chain
optimisation, and autonomous driving technology; however,
machine learning is underexplored within the realm of automotive
design, a section of the automotive industry that will benefit
significantly from rapid design prototyping enabled by machine
learning. We propose a modified stackGAN-based program called
AutoForge that uses machine learning techniques to generate novel
automotive designs that are high-quality, realistic, and feasible.
Our approach enables new design generation at low computational
expense with high-quality output.

INTRODUCTION.

The conception of a new automobile model takes around three to five
years on average, with newer designs converging upon similar lines
[1]. Automobile manufacturers are driven to create a design process
that is as swift and efficient as possible while simultaneously
improving the quality and creativity of output. However, today's
conceptualisation and design process is far too time-consuming,
resource-intensive and inefficient [1]. We propose a program that
produces high-quality designs by combining image processing
techniques to generate designs and natural language processing to
increase the output quality by tailoring the design to user-set
specifications [2]. Previously, this combination of techniques has
proved highly beneficial to creative image generation, with programs
such as DALL-E 2 (specialising in image generation from user-made
prompt) [3] having used a similar process.

DALL-E 2 is a neural network-based image generation model that
creates images from textual descriptions. The model is based on a
Transformer architecture, a neural network specialising in processing
data sequences, such as text [4]. The process begins with CLIP,
Contrastive Language-Image Pre-training, a neural network model that
generates image and text encodings for each image-text pair, which
captures the meaning of the text. Next, CLIP evaluates the similarity
between each image-text pair and iteratively increases the similarity
between correct image-text pairs until a suitable output is received [5].
DALL-E 2 then uses a diffusioner before generating image
embeddings. Lastly, GLIDE, Guided Language to Image Diffusion for
Generation and Editing, takes this information from the generator and
produces a low-resolution version of the image. This low-resolution
image is then upscaled and run through a series of convolutional layers
(upsampling), which increases dimensionality and resolution by
increasing pixel count through kernels which filter and refine the
image to produce the final product [5].

AutoForge follows a similar approach to a StackGAN Stage- II model
[6], trained solely on target designs since it is far less resource
intensive, quicker and more feasible. Unlike programs like DALL-E 2,
AutoForge will not iteratively update images or use large databases, as
seen with the programs above. Nonetheless, the approach used in
AutoForge allows for efficient image generation without retraining
while consuming relatively limited computational resources [7]. This

approach requires minor modifications besides training for the
generative image model to provide specific results based on brand
identity and distinct design.

To generate high-quality automotive designs, we used modified Stack
generative adversarial networks (GANs), initially proposed by Han
Zhang et al. [11]. AutoForge uses this approach for high-quality image
synthesis due to its efficient and novel training approach, allowing it
to produce unique output corresponding to the data it was trained on.
GANs were initially proposed in 2014 by Ian Goodfellow et al. [10]
and are used within a semi-supervised context. GANs are broken up
into two adversarial models, a generative model, which produces
plausible data instances and a discriminator model, which learns to
effectively distinguish the data produced by the generator from the real
training dataset. The generator can only learn through interactions with
the discriminator as it cannot access the "real images," while the
discriminator can interact with the real and generated images.

To successfully generate new automobile designs, AutoForge must
generate high-quality designs that maintain brand design and remain
distinct from the training set. Additionally, AutoForge must be
versatile and able to produce any form of image based on the text
prompt.

METHODOLOGY.

1. Data Set Description. The primary data set used to train AutoForge
was entirely custom-made and was gathered from free-use databases
published online on platforms such as Kaggle. It includes several
images of automobiles, specifically sports cars and their corresponding
text pairs. The images are made to be as unique and different in
comparison to each other as possible to train the model on multiple
designs, shapes, and colours to gain a more versatile and adaptable
model. The images in the training database can be altered and made
more specific based on the individual styles that a designer or
manufacturer may want to be produced. The goal is to generate images
similar to the general shape, design and colour of the sports cars in this
database but distinct enough to be considered novel. Only images that
fit the particular quality and aspect ratio requirements, 1080 x 720 px,
were included for training. All images were used for the training of
AutoForge. We compiled various types of images into our dataset:
concept designs, digital art, photographs, models, and sketches.
Various image styles enabled the generative model to produce more
diverse designs using a combination of images. Each image from the
database is then run through a semantic segmentation algorithm based
on DeepLabv3 architecture [8], a convolutional neural network (CNN)
architecture used for semantic image segmentation to differentiate
between the vehicles and the backgrounds. This particular CNN was
chosen since it is the simplest and most efficient model for this task.
AutoForge will use pre-trained models exposed to multiple large
databases. These models will be further conditioned on automobile
designs since this is their primary purpose. While this approach is less
efficient regarding zero-shot learning (situations where AutoForge has
to adapt to situations it has never been trained for before) than
alternative methods; however, it performs well when generating
designs.

2. Approach

2.1. The Loss Function and Conditioning. As described previously,
GANs contain two adversarial networks; the generator (G) is trained
to generate plausible or convincing high-quality images that are
difficult for the discriminator to differentiate from the authentic
images. On the other hand, discriminator (D) is trained to distinguish
between the generated and database images, working directly against
the generator's objective.

Loss functions reflect the difference between the images generated by
the generator and the real data distribution. For example, equation 1
illustrates a loss function (1), which the generator tries to minimise
while the discriminator attempts to maximise:

 𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝑉𝑉(𝐷𝐷,𝐺𝐺) = 𝐸𝐸𝑥𝑥∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷(𝑥𝑥|𝑦𝑦)] +

 𝐸𝐸𝑧𝑧∼𝑝𝑝𝑧𝑧(𝑧𝑧)[𝑙𝑙𝑙𝑙𝑙𝑙(1 −𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦)))]
(1)

where 𝐸𝐸𝑥𝑥 is the expected value over all real data instances, x is a real
image from the real data distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, z is a noise vector sampled
from distribution pz, D(x) is the discriminator’s estimate of the
probability that x is a real instance, G(z) is the generator’s output when
given noise z, D(G(z)) is the discriminator’s estimate of the probability
that the fake instance is real, and 𝐸𝐸𝑧𝑧 is the expected value over all
random inputs to the generator. Furthermore, since we will provide
additional training information, y, to both the discriminator and the
generator as an additional input layer, in a process known as
conditioning, D(x|y) and G(z|y) are the new inputs. Subsequently,
conditioning augmentation techniques are used to generate latent
conditioning variables denoted as 𝑐̂𝑐. Conditioning latent variables are
input variables incorporated into the generator's network during
training to control the generated output. First, the user inputs the text
description t, which is encoded through the encoder, producing the text
embedding denoted by φt as the input for the generator. Through this
technique, latent variables 𝑐̂𝑐 are sampled from the Gaussian
distribution:

𝑁𝑁(𝜇𝜇(𝜑𝜑𝜑𝜑), 𝑙𝑙𝑙𝑙𝑙𝑙(𝜑𝜑𝜑𝜑)) (2)

where the mean μ(𝜑𝜑t) and the covariance matrix log(φt) are functions
of the text embedding 𝜑𝜑t [12]. From the gaussian distribution (2), a
random vector z is drawn. Then the generator network transforms the
vector by multiplying it with a learned matrix and adding a learned
bias vector, giving us a new vector x = G(z). Varying values of z allow
GANs to generate diverse outputs with different features and
characteristics. Furthermore, the loss function also ensures that the
generated images are not too similar to the training batch by using a
maximum mean discrepancy loss that compares the similarity between
the images produced and those within the database, which the
generator attempts to minimise.

2.2. StackGAN Stage-I. As mentioned earlier, the image generation
process is split into two parts. In the first stage of the StackGAN
approach, AutoForge focuses on producing a low-resolution image,
which outlines the basic shape and design of the automobile and
colours in the primary colours. In the first stage, AutoForge omits most
of the details given in the text prompt since they are not required to
make the basic shape of the design.

The first stage of the stackGAN approach trains the discriminator 𝐷𝐷1
and the generator 𝐺𝐺1 in such a way that it attempts to maximise 𝐿𝐿𝐷𝐷1
and minimise 𝐿𝐿𝐺𝐺1 .

𝐿𝐿𝐺𝐺1 = 𝐸𝐸𝑧𝑧∼𝑝𝑝𝑧𝑧,𝑡𝑡∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝐷𝐷1(𝐺𝐺1(𝑧𝑧, 𝑐̂𝑐1),𝜑𝜑𝜑𝜑))]

+ 𝜆𝜆𝐷𝐷𝐾𝐾𝐾𝐾(𝑁𝑁(𝜇𝜇(𝜑𝜑𝜑𝜑),�(𝜑𝜑𝜑𝜑))||𝑁𝑁(0,1)) (4)

Here 𝐼𝐼1 is the real image, t is the text description from the real data
set/distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, and z is a random noise vector sampled from the
Gaussian distribution. In this model detailed in work by Han Zhang et
al. [24], in the generator, the text embedding 𝜑𝜑𝜑𝜑 is run through a
conditioning augmentation layer which outputs 𝜇𝜇1 which are necessary
values for the Gaussian distribution. The conditioning variables are
then sampled from the distribution and are concatenated with a 𝑁𝑁𝑧𝑧
dimensional noise vector to generate an image after being run through
upsampling blocks. Upsampling and downsampling involve the
increase and decrease of dimensionality and size of the input by
reducing its spatial resolution.

On the other hand, for the discriminator, the text embedding (generated
from the text input) is first compressed and spatially replicated to give
us a three-dimensional tensor. At the same time, the image that is
generated with the generator is downsampled and analysed, where the
discriminator differentiates between the synthetic image and the real
image. It then outputs a value, where "1" means the discriminator has
identified the synthetic image as a real image and "0" means the
discriminator has identified the synthetic image as a synthetic image.
If the discriminator cannot identify the synthetic image as fake, the
generator has produced good-quality images, while the discriminator
must be trained further. The opposite is true if the discriminator could
identify the synthetic image as synthetic.

2.3. StackGAN Stage-II. The Stage II GAN works with the results
procured from Stage-I, which are used to create higher-quality images.
This stage is conditioned on low-resolution images and uses the text
prompt inputted by the user to add missing details and correct errors in
the image. It uses the information given to add more features and create
a complete whole.

The second stage trains the discriminator 𝐷𝐷2 and the generator 𝐺𝐺2 in
such a way that it attempts to maximise 𝐿𝐿𝐷𝐷2 and minimise 𝐿𝐿𝐺𝐺2 .

𝐿𝐿𝐷𝐷2 = 𝐸𝐸(𝐼𝐼2,𝑡𝑡)∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[log𝐷𝐷2(𝐼𝐼2,𝜑𝜑𝜑𝜑)] +
 𝐸𝐸𝑠𝑠1∼𝑃𝑃𝑃𝑃1,𝑡𝑡∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝐷𝐷2(𝐺𝐺2(𝑠𝑠1, 𝑐̂𝑐2),𝜑𝜑𝜑𝜑))]

(5)

𝐿𝐿𝐺𝐺2 = 𝐸𝐸𝑠𝑠1∼𝑃𝑃𝑃𝑃1,𝑡𝑡∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�log�1 − 𝐷𝐷2(𝐺𝐺2(𝑠𝑠1, 𝑐̂𝑐2),𝜑𝜑𝜑𝜑)�� +

 𝜆𝜆𝐷𝐷𝐾𝐾𝐾𝐾(𝑁𝑁(𝜇𝜇(𝜑𝜑𝜑𝜑),�(𝜑𝜑𝜑𝜑))||𝑁𝑁(0,1))]
(6)

The Stage-II GAN follows a different set of formulas compared to the
first stage, with slight but significant changes. Firstly, z, the random
noise vector, is not used anymore since it is not required, as it is still
preserved in the output of stage I. Moreover, the conditioning
augmentation layers are also different since the second stage works
with low-resolution images as an input and the specific details found
in the text prompt. The generator from this stage operates similarly to
that of the first one. The first step, relating to text prompt encoding, is
kept mainly the same. Differences can be noticed in the second half,
where the image result produced by stage-I generator is first run
through downsampling blocks. Text and image features are encoded
and put through residual blocks, pre-trained to learn multimodal
representations. Finally, a high-resolution image is produced after the
result is run through upsampling blocks. The discriminator from stage
two follows the same structure as that from stage one, except with more
downsampling blocks since the image produced during stage two has
a larger size and, thus, quality.

𝐿𝐿𝐷𝐷1 = 𝐸𝐸(𝐼𝐼1,𝑡𝑡)∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[log𝐷𝐷1(𝐼𝐼1,𝜑𝜑𝜑𝜑)] +
 𝐸𝐸𝑧𝑧∼𝑝𝑝𝑧𝑧,𝑡𝑡∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑙𝑙𝑙𝑙𝑙𝑙(1 −𝐷𝐷1(𝐺𝐺1(𝑧𝑧, 𝑐̂𝑐1),𝜑𝜑𝜑𝜑))] (3)

RESULTS AND DISCUSSION.

AutoForge has undergone qualitative evaluations to ensure that this
approach can indeed be applied to the automobile industry. We
generated eight text prompts to input into these programs to generate
the images and then used the samples generated as the baseline for the
evaluation and analysis. Comparative tests conducted by human
evaluators were used to evaluate the programs and determine the
success and quality of their output.

Eight similar types of vehicles from three programs were generated for
the primary form of evaluation. The three programs used were DALL-
E 2, AutoForge, and the CLIP-VQGAN approach. Our approach is
similar to the evaluations detailed in previous papers, where
individuals rated each image based on several pre-decided metrics
[13]. For the evaluation, generator images were rated by over a
hundred participants to determine the applicability of different
approaches.

We found that all three methods produce similar images for a given
text prompt (Figure 1). For our evaluation, about a hundred human
evaluators are selected at random, along with a few professionals from
the automotive design industry, to evaluate images produced by these
programs based on photorealism, prompt text similarity, consistency,
and feasibility. Each image is rated on a scale from zero to one hundred
for each given metric. Here zero is the worst a program could perform
at a metric, and one hundred is the best. For example: if a user rated an
image as seventy per cent for the text prompt similarity metric, the
image is considered seventy percent similar to the text prompt. While
this method of evaluation may not be objective, it provides a good
evaluation of the performance of our program and how it compares
with other programs. There are two exceptions in the metrics, however,
which will be rated differently. Firstly, for feasibility, experts will rate
the designs on how realistic they are. Since a layman cannot make
credible evaluations here, we will use professionals from the automo-
bile industry to evaluate the potential designs and their feasibility.

Table 2. A continuation of the results found from the qualitative tests.

Name Consistency Feasibility

Dall-E 2 76.7% ± 6.20% 95.0% ± 9.70%

Our Approach 80.7% ± 15.7% 85.0% ± 12.2%

Clip+VQGAN 78.6% ± 21.7% 76.6% ± 14.7%

Overall, DALL-E 2 generates the most photorealistic, and feasible
images with a higher overall impression. In aesthetic quality and
photorealism, OpenAI’s DALL-E 2 is second to none and has
produced stunning automobile designs, which could potentially be
used to generate concept images. Based on the evaluations, it has a
mean photorealistic value of 98.8% ± 3.10% and a text-prompt
similarity of 84.4% ± 7.40% (Table 1). The VQGAN-CLIP approach
also produces good-quality automobile images and designs. This
approach is worse than the DALL-E 2s program due to the different
resources available to both programs. Autoforge performs similarly to
CLIP, however holds a slight advantage.

AutoForge had highly successful results; although run with far inferior
computational resources (a single quadcore CPU), it has produced
relatively high-quality designs. It has been able to compare with other
advanced image-generative programs. It is also seen to be more
consistent in terms of the shape of the automobile and camera angle
(Table 2), allowing it to specialise in the side view design of an
automobile, with precise details and a plain background. Autoforge
had a mean photorealistic value of 73.8% ± 22.1% and a text-prompt
similarity of 80.7% ± 15.7% (Table 1). Finally, based on the overall
impression category, wherein evaluators gave their overall perception
of the model's design, we find that evaluators liked most designs
produced by AutoForge, with an overall impression of 83.2% ± 8.2%.
While this is slightly worse than DALL-E 2s results, it performs better
than the CLIP model (Table 1).

CONCLUSION AND FUTURE WORKS.

The primary purpose of this research paper was to use machine
learning techniques to design a generative model. AutoForge created
high-quality automobile designs with low computational costs. This
could significantly impact the automobile design process by making it
clearer and quicker, producing higher quality and more unique designs.
Designers may find it hard to come up with novel designs and express
them. Machine learning techniques allow designers to have an open
mind, create more diverse and unique automobile designs, and
prototype rapidly. The first step toward extending this project would
be to introduce more computational resources to engage in further
training for the models, including exposing AutoForge to more training
images with a wide variety of designs. These changes would make
AutoForge far more versatile and capable of producing stunning

Figure 1. First, three samples were generated by the programs. The first
column is full of images generated by DALL-E 2, AutoForge generated the
second column, and CLIP-VQGAN generated the third column. The prompts
for the first four samples were, “A black sports car with a glossy finish, with
a red stripe and spoilers” (Row 1), “A deep blue Lamborghini-style sports
car” (Row 2), and “A completely golden coupe with spoilers” (Row 3).

Table 1. A tabular representation of the results from the qualitative
evaluations conducted. Refer to supporting information for the other metrics.

Name Photo-Realism Prompt
Similarity

Overall
Impression

DALL-E 2 98.8% ± 3.1% 84.4% ± 7.4% 98.9% ± 2.4%

AutoForge 73.8% ± 22.1% 80.7% ± 15.7% 83.2% ± 8.2%

CLIP+
VQGAN

69.6% ± 18.3% 78.6% ± 21.7% 74.8% ± 7.5%

designs that are realistic and feasible. Further, AutoForge’s
architecture can be optimised to decrease the time taken to generate
images while maintaining or improving the quality of images
generated. This is one of the model’s weaknesses which ideally should
be tackled before moving further.

Finally, AutoForge only produces 2D designs; however, 3D designs
could be created to further simplify the design process. The
introduction of CAD 3D models in automotive design was
revolutionary for the industry and gave designers far more control over
their designs, allowing them to create better cars. Now, it is possible to
automate this as well, as suggested by the recent research conducted
by Saito et al. [14], which has made significant advances in 2D to 3D
modelling, as seen in figure 4. The research proposes a multi-level
architecture for three-dimensional human digitisation, which can
produce highly detailed three-dimensional models of humans. High-
quality designs, possibly generated by ML generative models, could
be converted into three-dimensional models, which can be used for
conceptualisation with some external refining from designers. These
approaches will enable streamlined design protocols, wherein design
concepts are created by ML programs and refined by professional
designers.
REFERENCES
1. C. Bouchard, A. Aoussat, Modelisation of the car design process.

International Journal of Vehicle Design 31, 1-5 (2003)
2. K. Crowson, S. Biderman, D. Kornis, D. Stander, E. Hallahan, L.

Castricato, E. Raff, Vqgan-clip: Open domain image generation and
editing with natural language guidance. arXiv:2204.08583 [Computer
Science] (2022)

3. A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, M. Chen, Hierarchical text-
conditional image generation with clip latents. arXiv:2204.06125
[Computer Science] (2022)

4. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A.
Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S.
Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I.
Sutskever, D. Amodei, Language Models are Few-Shot Learners.
arXiv:2005.14165 [Computer Science] (2020)

5. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G.
Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, I. Sutskever,
Learning transferable visual models from natural language
supervision. arXiv:2103.00020 [Computer Science] (2021)

6. H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, D. Metaxes,
Stackgan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. arXiv:1612.03242 [Computer
Science] (2016)

7. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-
resolution image synthesis with latent diffusion models.
arXiv:2112.10752 [Computer Science] (2021)

8. L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-
decoder with atrous separable convolution for semantic image
segmentation. arXiv:1802.02611 [Computer Science] (2018)

9. L. Cai, Y. Chen, N. Cai, W. Cheng, H. Wang, Utilizing amarialpha
divergence to stabilise the training of generative adversarial networks.
Entropy 22, 410 (2020)

10. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Vengio, Generative adversarial networks.
arXiv:1406.2661 [Computer Science] (2014)

11. H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, D. Metaxes,
Stackgan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. arXiv:1612.03242 [Computer
Science] (2016)

12. S. Reed, Z. Akata, X. Yan, L, Logeswaran, B. Schiele, H. Lee,
Generative adversarial text to image synthesis. arXiv:1605.05396
[Computer Science] (2016)

13. A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, M. Chen, Hierarchical
text-conditional image generation with clip latents. arXiv:2204.06125
[Computer Science] (2022)

14. S. Saito, T. Simon, J. Saragih, H. Joo, PIFuHD: Multi-Level Pixel-
Aligned Implicit Function for High-Resolution 3D Human
Digitization. arXiv:2004.00452 [Computer Science] (2020)

Ryan Santosh is a student at
Oberoi International School in
Mumbai, Maharashtra, India.

https://arxiv.org/abs/2204.08583
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1612.03242
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/1802.02611
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1612.03242
https://arxiv.org/abs/1605.05396
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2004.00452

	INTRODUCTION.
	RESULTS AND DISCUSSION.

	CONCLUSION AND FUTURE WORKS.
	REFERENCES

