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BRIEF. Modifying existing machine learning techniques and architectures to design a new generative model tailored to automotive design.

ABSTRACT. The use of artificial intelligence and machine 
learning has seen an exponential rise within the automotive 
industry, especially within automobile maintenance, supply chain 
optimisation, and autonomous driving technology; however, 
machine learning is underexplored within the realm of automotive 
design, a section of the automotive industry that will benefit 
significantly from rapid design prototyping enabled by machine 
learning. We propose a modified stackGAN-based program called 
AutoForge that uses machine learning techniques to generate novel 
automotive designs that are high-quality, realistic, and feasible. 
Our approach enables new design generation at low computational 
expense with high-quality output. 

INTRODUCTION. 

The conception of a new automobile model takes around three to five 
years on average, with newer designs converging upon similar lines 
[1]. Automobile manufacturers are driven to create a design process 
that is as swift and efficient as possible while simultaneously 
improving the quality and creativity of output. However, today's 
conceptualisation and design process is far too time-consuming, 
resource-intensive and inefficient [1]. We propose a program that 
produces high-quality designs by combining image processing 
techniques to generate designs and natural language processing to 
increase the output quality by tailoring the design to user-set 
specifications [2]. Previously, this combination of techniques has 
proved highly beneficial to creative image generation, with programs 
such as DALL-E 2 (specialising in image generation from user-made 
prompt) [3] having used a similar process. 

DALL-E 2 is a neural network-based image generation model that 
creates images from textual descriptions. The model is based on a 
Transformer architecture, a neural network specialising in processing 
data sequences, such as text [4]. The process begins with CLIP, 
Contrastive Language-Image Pre-training, a neural network model that 
generates image and text encodings for each image-text pair, which 
captures the meaning of the text. Next, CLIP evaluates the similarity 
between each image-text pair and iteratively increases the similarity 
between correct image-text pairs until a suitable output is received [5]. 
DALL-E 2 then uses a diffusioner before generating image 
embeddings. Lastly, GLIDE, Guided Language to Image Diffusion for 
Generation and Editing, takes this information from the generator and 
produces a low-resolution version of the image. This low-resolution 
image is then upscaled and run through a series of convolutional layers 
(upsampling), which increases dimensionality and resolution by 
increasing pixel count through kernels which filter and refine the 
image to produce the final product [5].  

AutoForge follows a similar approach to a StackGAN Stage- II model 
[6], trained solely on target designs since it is far less resource 
intensive, quicker and more feasible. Unlike programs like DALL-E 2, 
AutoForge will not iteratively update images or use large databases, as 
seen with the programs above. Nonetheless, the approach used in 
AutoForge allows for efficient image generation without retraining 
while consuming relatively limited computational resources [7]. This 

approach requires minor modifications besides training for the 
generative image model to provide specific results based on brand 
identity and distinct design. 

To generate high-quality automotive designs, we used modified Stack 
generative adversarial networks (GANs), initially proposed by Han 
Zhang et al. [11]. AutoForge uses this approach for high-quality image 
synthesis due to its efficient and novel training approach, allowing it 
to produce unique output corresponding to the data it was trained on. 
GANs were initially proposed in 2014 by Ian Goodfellow et al. [10] 
and are used within a semi-supervised context. GANs are broken up 
into two adversarial models, a generative model, which produces 
plausible data instances and a discriminator model, which learns to 
effectively distinguish the data produced by the generator from the real 
training dataset. The generator can only learn through interactions with 
the discriminator as it cannot access the "real images," while the 
discriminator can interact with the real and generated images.  

To successfully generate new automobile designs, AutoForge must 
generate high-quality designs that maintain brand design and remain 
distinct from the training set. Additionally, AutoForge must be 
versatile and able to produce any form of image based on the text 
prompt.  

METHODOLOGY. 

1. Data Set Description. The primary data set used to train AutoForge 
was entirely custom-made and was gathered from free-use databases 
published online on platforms such as Kaggle. It includes several 
images of automobiles, specifically sports cars and their corresponding 
text pairs. The images are made to be as unique and different in 
comparison to each other as possible to train the model on multiple 
designs, shapes, and colours to gain a more versatile and adaptable 
model. The images in the training database can be altered and made 
more specific based on the individual styles that a designer or 
manufacturer may want to be produced. The goal is to generate images 
similar to the general shape, design and colour of the sports cars in this 
database but distinct enough to be considered novel. Only images that 
fit the particular quality and aspect ratio requirements, 1080 x 720 px, 
were included for training. All images were used for the training of 
AutoForge. We compiled various types of images into our dataset: 
concept designs, digital art, photographs, models, and sketches. 
Various image styles enabled the generative model to produce more 
diverse designs using a combination of images. Each image from the 
database is then run through a semantic segmentation algorithm based 
on DeepLabv3 architecture [8], a convolutional neural network (CNN) 
architecture used for semantic image segmentation to differentiate 
between the vehicles and the backgrounds. This particular CNN was 
chosen since it is the simplest and most efficient model for this task. 
AutoForge will use pre-trained models exposed to multiple large 
databases. These models will be further conditioned on automobile 
designs since this is their primary purpose. While this approach is less 
efficient regarding zero-shot learning (situations where AutoForge has 
to adapt to situations it has never been trained for before) than 
alternative methods; however, it performs well when generating 
designs. 



2. Approach 

2.1. The Loss Function and Conditioning. As described previously, 
GANs contain two adversarial networks; the generator (G) is trained 
to generate plausible or convincing high-quality images that are 
difficult for the discriminator to differentiate from the authentic 
images. On the other hand, discriminator (D) is trained to distinguish 
between the generated and database images, working directly against 
the generator's objective.  

Loss functions reflect the difference between the images generated by 
the generator and the real data distribution. For example, equation 1 
illustrates a loss function (1), which the generator tries to minimise 
while the discriminator attempts to maximise: 

 𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝑉𝑉(𝐷𝐷,𝐺𝐺)  =  𝐸𝐸𝑥𝑥∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷(𝑥𝑥|𝑦𝑦)] +                          

                                             𝐸𝐸𝑧𝑧∼𝑝𝑝𝑧𝑧(𝑧𝑧)[𝑙𝑙𝑙𝑙𝑙𝑙(1 −𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑦𝑦)))] 
(1) 

where 𝐸𝐸𝑥𝑥 is the expected value over all real data instances, x is a real 
image from the real data distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, z is a noise vector sampled 
from distribution pz, D(x) is the discriminator’s estimate of the 
probability that x is a real instance, G(z) is the generator’s output when 
given noise z, D(G(z)) is the discriminator’s estimate of the probability 
that the fake instance is real, and 𝐸𝐸𝑧𝑧 is the expected value over all 
random inputs to the generator. Furthermore, since we will provide 
additional training information, y, to both the discriminator and the 
generator as an additional input layer, in a process known as 
conditioning, D(x|y) and G(z|y) are the new inputs. Subsequently, 
conditioning augmentation techniques are used to generate latent 
conditioning variables denoted as 𝑐̂𝑐. Conditioning latent variables are 
input variables incorporated into the generator's network during 
training to control the generated output. First, the user inputs the text 
description t, which is encoded through the encoder, producing the text 
embedding denoted by φt as the input for the generator. Through this 
technique, latent variables 𝑐̂𝑐 are sampled from the Gaussian 
distribution: 

𝑁𝑁(𝜇𝜇(𝜑𝜑𝜑𝜑), 𝑙𝑙𝑙𝑙𝑙𝑙(𝜑𝜑𝜑𝜑)) (2) 

where the mean μ(𝜑𝜑t) and the covariance matrix log(φt) are functions 
of the text embedding 𝜑𝜑t [12]. From the gaussian distribution (2), a 
random vector z is drawn. Then the generator network transforms the 
vector by multiplying it with a learned matrix and adding a learned 
bias vector, giving us a new vector x = G(z). Varying values of z allow 
GANs to generate diverse outputs with different features and 
characteristics. Furthermore, the loss function also ensures that the 
generated images are not too similar to the training batch by using a 
maximum mean discrepancy loss that compares the similarity between 
the images produced and those within the database, which the 
generator attempts to minimise.  

2.2. StackGAN Stage-I. As mentioned earlier, the image generation 
process is split into two parts. In the first stage of the StackGAN 
approach, AutoForge focuses on producing a low-resolution image, 
which outlines the basic shape and design of the automobile and 
colours in the primary colours. In the first stage, AutoForge omits most 
of the details given in the text prompt since they are not required to 
make the basic shape of the design.  

The first stage of the stackGAN approach trains the discriminator 𝐷𝐷1 
and the generator 𝐺𝐺1 in such a way that it attempts to maximise 𝐿𝐿𝐷𝐷1 
and minimise 𝐿𝐿𝐺𝐺1  .  

𝐿𝐿𝐺𝐺1 = 𝐸𝐸𝑧𝑧∼𝑝𝑝𝑧𝑧,𝑡𝑡∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝐷𝐷1(𝐺𝐺1(𝑧𝑧, 𝑐̂𝑐1),𝜑𝜑𝜑𝜑 ))]  

+  𝜆𝜆𝐷𝐷𝐾𝐾𝐾𝐾(𝑁𝑁(𝜇𝜇(𝜑𝜑𝜑𝜑),�(𝜑𝜑𝜑𝜑))||𝑁𝑁(0,1)) (4) 

Here 𝐼𝐼1 is the real image, t is the text description from the real data 
set/distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, and z is a random noise vector sampled from the 
Gaussian distribution. In this model detailed in work by Han Zhang et 
al. [24], in the generator, the text embedding 𝜑𝜑𝜑𝜑 is run through a 
conditioning augmentation layer which outputs 𝜇𝜇1 which are necessary 
values for the Gaussian distribution. The conditioning variables are 
then sampled from the distribution and are concatenated with a 𝑁𝑁𝑧𝑧 
dimensional noise vector to generate an image after being run through 
upsampling blocks. Upsampling and downsampling involve the 
increase and decrease of dimensionality and size of the input by 
reducing its spatial resolution. 

On the other hand, for the discriminator, the text embedding (generated 
from the text input) is first compressed and spatially replicated to give 
us a three-dimensional tensor. At the same time, the image that is 
generated with the generator is downsampled and analysed, where the 
discriminator differentiates between the synthetic image and the real 
image. It then outputs a value, where "1" means the discriminator has 
identified the synthetic image as a real image and "0" means the 
discriminator has identified the synthetic image as a synthetic image. 
If the discriminator cannot identify the synthetic image as fake, the 
generator has produced good-quality images, while the discriminator 
must be trained further. The opposite is true if the discriminator could 
identify the synthetic image as synthetic. 

2.3. StackGAN Stage-II. The Stage II GAN works with the results 
procured from Stage-I, which are used to create higher-quality images. 
This stage is conditioned on low-resolution images and uses the text 
prompt inputted by the user to add missing details and correct errors in 
the image. It uses the information given to add more features and create 
a complete whole. 

The second stage trains the discriminator 𝐷𝐷2 and the generator 𝐺𝐺2 in 
such a way that it attempts to maximise 𝐿𝐿𝐷𝐷2 and minimise 𝐿𝐿𝐺𝐺2 . 

𝐿𝐿𝐷𝐷2 = 𝐸𝐸(𝐼𝐼2,𝑡𝑡)∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[log𝐷𝐷2(𝐼𝐼2,𝜑𝜑𝜑𝜑)] + 
                            𝐸𝐸𝑠𝑠1∼𝑃𝑃𝑃𝑃1,𝑡𝑡∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝐷𝐷2(𝐺𝐺2(𝑠𝑠1, 𝑐̂𝑐2),𝜑𝜑𝜑𝜑 ))] 

(5) 

 

𝐿𝐿𝐺𝐺2 =  𝐸𝐸𝑠𝑠1∼𝑃𝑃𝑃𝑃1,𝑡𝑡∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�log�1 − 𝐷𝐷2(𝐺𝐺2(𝑠𝑠1, 𝑐̂𝑐2),𝜑𝜑𝜑𝜑 )�� + 

                                 𝜆𝜆𝐷𝐷𝐾𝐾𝐾𝐾(𝑁𝑁(𝜇𝜇(𝜑𝜑𝜑𝜑),�(𝜑𝜑𝜑𝜑))||𝑁𝑁(0,1))] 
(6) 

The Stage-II GAN follows a different set of formulas compared to the 
first stage, with slight but significant changes. Firstly, z, the random 
noise vector, is not used anymore since it is not required, as it is still 
preserved in the output of stage I. Moreover, the conditioning 
augmentation layers are also different since the second stage works 
with low-resolution images as an input and the specific details found 
in the text prompt. The generator from this stage operates similarly to 
that of the first one. The first step, relating to text prompt encoding, is 
kept mainly the same. Differences can be noticed in the second half, 
where the image result produced by stage-I generator is first run 
through downsampling blocks. Text and image features are encoded 
and put through residual blocks, pre-trained to learn multimodal 
representations. Finally, a high-resolution image is produced after the 
result is run through upsampling blocks. The discriminator from stage 
two follows the same structure as that from stage one, except with more 
downsampling blocks since the image produced during stage two has 
a larger size and, thus, quality. 

𝐿𝐿𝐷𝐷1 = 𝐸𝐸(𝐼𝐼1,𝑡𝑡)∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[log𝐷𝐷1(𝐼𝐼1,𝜑𝜑𝜑𝜑)] + 
                         𝐸𝐸𝑧𝑧∼𝑝𝑝𝑧𝑧,𝑡𝑡∼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑙𝑙𝑙𝑙𝑙𝑙(1 −𝐷𝐷1(𝐺𝐺1(𝑧𝑧, 𝑐̂𝑐1),𝜑𝜑𝜑𝜑 ))] (3) 



RESULTS AND DISCUSSION. 

AutoForge has undergone qualitative evaluations to ensure that this 
approach can indeed be applied to the automobile industry. We 
generated eight text prompts to input into these programs to generate 
the images and then used the samples generated as the baseline for the 
evaluation and analysis. Comparative tests conducted by human 
evaluators were used to evaluate the programs and determine the 
success and quality of their output.  

Eight similar types of vehicles from three programs were generated for 
the primary form of evaluation. The three programs used were DALL-
E 2, AutoForge, and the CLIP-VQGAN approach. Our approach is 
similar to the evaluations detailed in previous papers, where 
individuals rated each image based on several pre-decided metrics 
[13]. For the evaluation, generator images were rated by over a 
hundred participants to determine the applicability of different 
approaches.  

We found that all three methods produce similar images for a given 
text prompt (Figure 1). For our evaluation, about a hundred human 
evaluators are selected at random, along with a few professionals from 
the automotive design industry, to evaluate images produced by these 
programs based on photorealism, prompt text similarity, consistency, 
and feasibility. Each image is rated on a scale from zero to one hundred 
for each given metric. Here zero is the worst a program could perform 
at a metric, and one hundred is the best. For example: if a user rated an 
image as seventy per cent for the text prompt similarity metric, the 
image is considered seventy percent similar to the text prompt. While 
this method of evaluation may not be objective, it provides a good 
evaluation of the performance of our program and how it compares 
with other programs. There are two exceptions in the metrics, however, 
which will be rated differently. Firstly, for feasibility, experts will rate 
the designs on how realistic they are. Since a layman cannot make 
credible evaluations here, we will use professionals from the automo-
bile industry to evaluate the potential designs and their feasibility. 

Table 2. A continuation of the results found from the qualitative tests.  

Name Consistency Feasibility 

Dall-E 2 76.7% ± 6.20% 95.0% ± 9.70% 

Our Approach 80.7% ± 15.7% 85.0% ± 12.2% 

Clip+VQGAN 78.6% ± 21.7% 76.6% ± 14.7% 

 

Overall, DALL-E 2 generates the most photorealistic, and feasible 
images with a higher overall impression. In aesthetic quality and 
photorealism, OpenAI’s DALL-E 2 is second to none and has 
produced stunning automobile designs, which could potentially be 
used to generate concept images. Based on the evaluations, it has a 
mean photorealistic value of 98.8% ± 3.10% and a text-prompt 
similarity of 84.4% ± 7.40% (Table 1). The VQGAN-CLIP approach 
also produces good-quality automobile images and designs. This 
approach is worse than the DALL-E 2s program due to the different 
resources available to both programs. Autoforge performs similarly to 
CLIP, however holds a slight advantage.  

AutoForge had highly successful results; although run with far inferior 
computational resources (a single quadcore CPU), it has produced 
relatively high-quality designs. It has been able to compare with other 
advanced image-generative programs. It is also seen to be more 
consistent in terms of the shape of the automobile and camera angle 
(Table 2), allowing it to specialise in the side view design of an 
automobile, with precise details and a plain background. Autoforge 
had a mean photorealistic value of 73.8% ± 22.1% and a text-prompt 
similarity of 80.7% ± 15.7% (Table 1). Finally, based on the overall 
impression category, wherein evaluators gave their overall perception 
of the model's design, we find that evaluators liked most designs 
produced by AutoForge, with an overall impression of 83.2% ± 8.2%. 
While this is slightly worse than DALL-E 2s results, it performs better 
than the CLIP model (Table 1).  

CONCLUSION AND FUTURE WORKS. 

The primary purpose of this research paper was to use machine 
learning techniques to design a generative model. AutoForge created 
high-quality automobile designs with low computational costs. This 
could significantly impact the automobile design process by making it 
clearer and quicker, producing higher quality and more unique designs. 
Designers may find it hard to come up with novel designs and express 
them. Machine learning techniques allow designers to have an open 
mind, create more diverse and unique automobile designs, and 
prototype rapidly. The first step toward extending this project would 
be to introduce more computational resources to engage in further 
training for the models, including exposing AutoForge to more training 
images with a wide variety of designs. These changes would make 
AutoForge far more versatile and capable of producing stunning 

 

Figure 1. First, three samples were generated by the programs. The first 
column is full of images generated by DALL-E 2, AutoForge generated the 
second column, and CLIP-VQGAN generated the third column. The prompts 
for the first four samples were, “A black sports car with a glossy finish, with 
a red stripe and spoilers” (Row 1), “A deep blue Lamborghini-style sports 
car” (Row 2), and “A completely golden coupe with spoilers” (Row 3). 

Table 1. A tabular representation of the results from the qualitative 
evaluations conducted. Refer to supporting information for the other metrics.  

Name Photo-Realism Prompt 
Similarity 

Overall 
Impression 

DALL-E 2 98.8% ± 3.1% 84.4% ± 7.4% 98.9% ± 2.4% 

AutoForge 73.8% ± 22.1% 80.7% ± 15.7% 83.2% ± 8.2% 

CLIP+ 
VQGAN 

69.6% ± 18.3% 78.6% ± 21.7% 74.8% ± 7.5% 

 



designs that are realistic and feasible. Further, AutoForge’s 
architecture can be optimised to decrease the time taken to generate 
images while maintaining or improving the quality of images 
generated. This is one of the model’s weaknesses which ideally should 
be tackled before moving further. 

Finally, AutoForge only produces 2D designs; however, 3D designs 
could be created to further simplify the design process. The 
introduction of CAD 3D models in automotive design was 
revolutionary for the industry and gave designers far more control over 
their designs, allowing them to create better cars. Now, it is possible to 
automate this as well, as suggested by the recent research conducted 
by Saito et al. [14], which has made significant advances in 2D to 3D 
modelling, as seen in figure 4. The research proposes a multi-level 
architecture for three-dimensional human digitisation, which can 
produce highly detailed three-dimensional models of humans. High-
quality designs, possibly generated by ML generative models, could 
be converted into three-dimensional models, which can be used for 
conceptualisation with some external refining from designers. These 
approaches will enable streamlined design protocols, wherein design 
concepts are created by ML programs and refined by professional 
designers.  
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