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BRIEFS. This research project utilized a Discrete Hidden Markov Model to design an algorithm capable of completing human sleep staging anal-

ysis without the need for a human technician.

ABSTRACT. The identification of sleep stages is a necessary step 

in any sleep study. Previous attempts to conduct this identification 

using manual methods were tedious and inefficient. More recent 

methods have come to rely on automatic identification conducted 

through several different means. One of these is Hidden Markov 

Model (HMM) based sleep staging. This method was a definite 

improvement, but the accuracy of the results was still poor, possi-

bly because the transition conditions were not included in the 

HMM modeling process.  In sleep staging, the sleep stage transi-

tion highly depends on the current stage. In this paper, transition 

probabilities were incorporated into the HMM leading to an im-

provement in the accuracy of the model. This project proposes an 

automatic sleep stage scoring approach from polysomnographic 

recordings with a Discrete Hidden Markov Predictive Model 

(DHMM). The Polysomnographic (PSG) dataset from PhysioNet 

Sleep EDF-Database was used which contained whole-night poly-

somnographic sleep recordings containing electroencephalo-

graphic (EEG), electrooculographic (EOG), chin electromyo-

graphic (EMG), and event markers. Eighty percent of the data was 

used for training the DHMM, and the remaining twenty percent of 

the data was tested by the trained DHMM. The features were ex-

tracted from the frequency-domain (spectral) representation of the 

EEG, EOG, and EMG signals by signal transformation from time 

domain to frequency domain. The primary metric for measuring 

the model success was accuracy. Compared with the gold standard 

of manual scoring using Rechtschaffen and Kales criterion, the 

overall average accuracy applied on 50 PSG records reached 

80.20%, proving that it is a promising start in the venture to auto-

mate sleep analysis for the future. 

INTRODUCTION.  

50-70 million Americans suffer from sleep or wakefulness disorders. 

Since patients experience symptoms during sleep, they are not easily 

detectable, and therefore most sleep disorders remain undiagnosed. 

Sleep deficiency and anomalies in sleep architecture are linked to 

many chronic health problems, including sleep apnea, diabetes, stroke, 

brain injury, Parkinson’s disease, depression, and Alzheimer’s dis-

ease. Diagnosing sleep disorders leads to the early detection of other 

health conditions [1]. Patterns in sleep architecture can be used for re-

liable clinical diagnosis on individuals as well as to track disease pro-

gression over time.  Clinical sleep diagnosis requires a polysomnogra-

phy (PSG) study to measure overnight electroencephalogram (EEG), 

electrooculogram (EOG), electrocardiogram (ECG), airflow, and 

other signals.  After data is collected, an expert currently must spend 

up to 2 hours to score and manually annotate the sleep stages observed 

throughout the night by following the Rechtschaffen & Kales (R&K) 

rules presented in 1968. Therefore, PSG studies are expensive and of-

ten only used after significant progression of a patient’s symptoms. 

Each epoch (i.e. 30 s of data) is classified into one of the sleep stages 

including wakefulness (Wake), non-rapid eye movement (stages 1–4, 

from light to deep sleep) and rapid eye movement (REM). Recently, 

stages 3 and 4 were combined and are now known as the slow wave 

sleep stage (SWS) or deep sleep [2]. Manually scoring on PSG data by 

experts is labor intensive. Therefore, sleep automatic sleep stage scor-

ing approaches have been developed. They include a knowledge-based 

approach to sleep EEG analysis [3], time domain analysis [4], [5], Ar-

tificial Neural Network [6], [7] and HMMs [8-10]. 

HMMs are a class of probabilistic graphical models that enable the 

prediction of a sequence of unknown (hidden) variables from a set of 

observed variables. HMMs are sequence models in which a discrete 

stochastic process moves through a series of states that are ‘hidden’ 

from the observer. In an HMM, the result of the previous state influ-

ences the result of the next state. Therefore, an HMM is ideal for sleep 

based on the principle that the result of one stage influences the result 

of the next stage and was selected for the study. 

HMM-based sleep staging has been researched during previous stud-

ies; however, the sleep stage transition probabilities were not included 

in the HMM [8-10]. In this work using the HMM sleep model, the 

transition probabilities in the HMM were considered. This resulted in 

improvements in the accuracy of the HMM and thus the accuracy of 

sleep staging. The proposed DHMM allows Sleep Staging Analysis to 

be automated, making it more efficient and cost effective.  

 MATERIALS AND METHODS.  

Polysomnography. Polysomnography is another term for a sleep study 

and is a comprehensive test used to diagnose sleep disorders. Poly-

somnography records one’s brain waves (EEG), blood oxygen level, 

heart rate (ECG) and breathing, as well as eye (EOG) and leg move-

ments (EMG). A PSG dataset from PhysioNet was acquired, [11] 

which contains whole-night polysomnographic sleep recordings con-

 

Figure 1. Visualization of EEG waveform with EEG Fpz-Cz, EEG Pz-Oz, 

EOG horizontal, Resp oro-nasal, EMG submental, and Temp rectal event 

markers. 



 

taining EEG, EOG, chin EMG, and event markers. In the dataset re-

cordings were obtained from 83 Caucasian males and females (21–101 

years old) without any medication. The data contains horizontal EOG, 

Fpz-Cz and Pz-Oz EEG, each sampled at 100 Hz. The sc* recordings 

also contain the submental-EMG envelope, oro-nasal airflow, rectal 

body temperature and an event marker, all sampled at 1 Hz. The st* 

recordings contain submental EMG sampled at 100 Hz and an event 

marker sampled at 1 Hz. 

Hypnograms were manually scored according to the R&K rules based 

on Fpz-Cz / Pz-Oz EEG instead of C4-A1 / C3-A2 EEGs. Figure 1 

depicts what each PSG file looks like. 

Pre-processing of Data. In this stage of data processing, annotations 

which had long sequences of the awake stage were removed from the 

beginning and the end. Epochs, or specific time-windows, were ex-

tracted from the continuous EEG signal. The duration of fixed length 

epochs of 30 seconds was selected in order to achieve better frequency 

resolution in the frequency domain. 

Feature Extraction from EEG Signal. The features from the EEG sig-

nal of each sleep stage were extracted in the frequency domain. 6 fea-

tures in the frequency domain were used. The different brain waves, 

namely delta, theta, alpha, and beta reside in specific frequency ranges. 

First, a Fast Fourier Transform (FFT) was applied to the epochs. Fol-

lowing the FFT, the power spectrum was calculated for the sleep stage 

for the band 0-30 Hz for the EEG, EOG and EMG, also referred to as 

the total power. The mean of the total power was then computed along 

with the delta, theta, alpha, and beta band power ratios. 

DHMM for Sleep Staging. In this step, codebook generation and vector 

quantization were performed for sleep stage classification. In the 

DHMM, the transition probabilities or state transition matrix is used 

to improve the accuracy of the model and sleep staging. The next sleep 

stage is also highly dependent on the current stage, which means that 

the probability of a sleep stage transition is dependent on the current 

sleep stage as well. 

Vector Quantization and Codebook Generation. Vector quantization 

is a technique to quantize signal vectors in order to determine the cen-

ter points that best represent the data by partitioning it into regions. 

The mean of the points within each region is then taken which be-

comes its new center point. With each iteration, the center points be-

come more characteristic of all the points. This is repeated until the 

center points stabilize. The feature vectors are real number vectors in 

real space with 6 dimensions. Vector quantization of these feature vec-

tors is necessary in order to reduce the computational overhead. Fol-

lowing the steps outlined above, a codebook was created during the 

step of feature vector quantization so that the result of the vector quan-

tization was a set of observation or epoch codes for the DHMM im-

plementation. 20 feature groups were selected and center points from 

the data from which the regions were designed. This process returned 

the code book and epoch codes, or observation codes used in DHMM. 

DHMM and Sleep Stages. In DHMM the outputs of each state are ob-

served, rather than the states themselves. There is a probability distri-

bution for each state over the possible output. The sequence of outputs 

generated by the DHMM thus provides data regarding the sequence of 

hidden states. The following algorithm was adapted from [12]. 

The 5 parameters to DHMM were 

𝜆: DHMM, 𝜆 = {𝐴, 𝐵, 𝜋, 𝑁, 𝑀} 

A: transition probability or state transition matrix 

B: observation or emission probabilities or probability distribution 

when at a given state 

𝜋: initial state distribution 

N: number of possible states 

M: number of observations  

𝑂 = {𝑂1, 𝑂2, 𝑂3, … 𝑂𝑇} where the 𝑂𝑖 element is part of the vocabulary 

of observations with M elements. 

In sleep staging the states which are hidden behind the DHMM can be 

estimated by observation which is measured for each of the states in 

the DHMM. The DHMM was built using the Viterbi Algorithm. This 

algorithm determines what sequence of states most accurately de-

scribes the sequence of observations, where 𝑂1, 𝑂2, 𝑂3, … 𝑂𝑇 are the 

observations and 𝑞1, 𝑞2, 𝑞3, … 𝑞𝑇 are the states as below 

𝑂 = {𝑂1, 𝑂2, 𝑂3, … 𝑂𝑇} (1) 

Q = {𝑞1, 𝑞2, 𝑞3, … 𝑞𝑇} (2) 

In this approach, the sequence of states is the sleep data which is 

passed as an input to the model and the number of observations was 

20. Therefore, one way of solving for the best fit can be completed by 

choosing states that are individually most likely at a time t given the 

observation 𝑂 and the 𝜆. This leverages γ as below:  

γ𝑡(𝑖) = 𝑃(𝑞𝑡 = 𝑆𝑖|𝑂, λ)        

(3) 

In Eq. 3, γ𝑡 is a probability that one is in state 𝑖 at a time 𝑞𝑡 with the 

observation 𝑂 and the λ. 

Eq. 3 can be answered using α and β components as below: 

γ𝑡(𝑖) =
α𝑡(𝑖)β𝑡(𝑖)

𝑃(𝑂/λ)
=

α𝑡(𝑖)β𝑡(𝑖)

∑ α𝑡(𝑗)β𝑡(𝑗)𝑁
𝑗=1

 
(4) 

∑ γ𝑡(𝑖)

𝑁

𝑖=1

= 1 

(5) 

Eq. 5 of γ therefore ensures that γ𝑡(𝑖) is thus a probability and α𝑡(𝑖) 

is the probability that regardless of the path, it ends up in state 𝑖 at time 

𝑡, after seeing all the observations up until time t. The α term is called 

the forward term. 

βt(i) is the probability that starting in state 𝑖 one would see all the 

remainder of the observations up until time T. The β term is the back-

ward term.  They together form the basis of the Forward-Backward 

algorithm. States 1 through 𝑁 are the states that the model goes 

through.  

In Eq. 4, the numerator  α and β can be calculated efficiently and the 

sum in the denominator can also be calculated. Thus, by combining 

α𝑡(𝑖) and β𝑡(𝑖) it is ensured that the sum over all states of γ𝑡(𝑖) = 1 

 

Figure 2. Lattice diagram depicting alpha and beta terms spanning states 1 

to N over a time period of observation 1 to T. 



 

or γ𝑡(𝑖) is thus a probability and visually looks as in the lattice diagram 

(Fig. 2). This helps discern the probability of being in state 𝑖 at a mo-

ment of time 𝑡 to the final time 𝑇. Also, by joining α𝑡(𝑖) and β𝑡(𝑖) the 

probability of getting to a state and leaving from the state is obtained.  

𝑞𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
1≤𝑖≤𝑁

γ𝑡(𝑖) , 1 ≤ 𝑡 ≤ 𝑇 (6) 

This helps solve for γ𝑡(𝑖). The expected number of correct states is 

maximized; however, the result may not make sense as DHMM is a 

dependent model which handles sequential data. 

There is a second way of solving for the best fit by choosing a path 

sequence that maximizes a complete sequence of states that are possi-

ble given the observations and the model. 

𝑃(𝑄|𝑂, λ) where P is the Probability, Q is the sequence of states, O is 

the sequence of observations, and  λ is the model.  

This is equivalent to maximizing the state sequence and the observa-

tion sequence in a coherent pattern with the given model as given be-

low. 

𝑃({𝑞1, 𝑞2, ⋯ 𝑞T}, {𝑂1, 𝑂2, ⋯ , 𝑂T}|λ) 

This is solved by Viterbi’s algorithm as below 

δ𝑡(𝑖) = max
𝑞1,𝑞2,⋯𝑞𝑡−1

𝑃 ({𝑞1, 𝑞2, 𝑞3, 𝑞𝑡 = 𝑖}, {𝑂1, 𝑂2, 𝑂3, 𝑂𝑡}|λ) (7) 

Eq. 7 comes down to the best sequence of states that maximizes the 

probability of seeing the states and observations, given the model it-

self. 

The above is solved using Induction. The basic inductive step is de-

fined as below: 

δ𝑡+1(𝑗) = [max
𝑖

δ𝑡(𝑖)𝑎𝑖𝑗] ⋅ 𝑏𝑗(𝑂𝑡+1) (8) 

Eq. 8 helps with getting the state that maximized 𝛿 at a previous time 

step 𝑖, and then helped in getting from state 𝑖 to state 𝑗.  In this one, 

therefore, there is a need to keep track of where one comes from and 

the value of i which maximizes the result at each of time step so that 

the path can be recreated. In order to keep track of this, a new variable 

is required which records the state that one came from.  

Initialization Step. In the first time-step, Viterbi initializes δ1(𝑖) as the 

probability of starting in state 𝑖. Observing the first observation and 

ψ1(𝑖) helps in getting which state the path came from, given the cur-

rent state. This is initialized to 0 since this is the start of the path. 

δ1(𝑖) = π𝑖𝑏𝑖(𝑂1),  ψ1(𝑖) = 0 (9) 

Inductive Step. The inductive step helps with getting the probability of 

the best sequence of states that gets to state 𝑗 consisting of an achiev-

able sequence of states. The states that the path can come from are 1 

to 𝑁. 

 

δ𝑡(𝑗) = max
1≤𝑖≤𝑁

[δ𝑡−1(𝑗)𝑎𝑖𝑗] ⋅ 𝑏𝑗(𝑂𝑡) (10) 

ψ𝑡(𝑗) = argmax
1≤i≤N

[δ𝑡−1(𝑗)𝑎𝑖𝑗] (11) 

2 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑗 ≤ 𝑁 

Termination Step. The termination step is defined by a valid sequence 

of states and is the sequence of state that has the highest δ𝑇(𝑖)  at the 

final time step. The state that the model will be in is the state for the 

corresponding δ. If it is needed to figure out recursively which state 

the path came from, the ψ variable can be used to track the way back. 

𝑃∗ = max
1≤𝑖≤𝑁

𝛿𝑇(𝑖)  (12) 

 

𝑞𝑇
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥

1≤𝑖≤𝑁
[δ𝑇(𝑖)]  (13) 

𝑞𝑡
∗ = ψ𝑡+1(𝑞𝑡+1)  (14) 

 Sleep Staging Procedure. First, the sleep annotations or Hypno-

gram.edf file was read. This sleep annotations file contained the anno-

tations of the sleep patterns that correspond to the PSG. Next, the sleep 

stages read from the annotations file were preprocessed to remove the 

long sequences of the awake state at the beginning and the end. After-

wards, the sleep data or PSG.edf file was read which contained whole-

night polysomnographic sleep recordings. Then, the epochs from the 

PSG.edf files were loaded by selecting an epoch length of 30 seconds 

and sampling frequency of 100Hz. Following this, the features in the 

frequency domain were extracted by taking the loaded epochs in the 

previous step as an input. After, these features were converted to a 

codebook by taking the features extracted in the previous step. The 

output of this process was the epoch codes. Subsequently, the output 

of epoch codes was split into test and training sets by using a training 

percentage of 0.8. The sleep annotations or sleep stages were also split 

into test and training sets by using a training percentage of 0.8. Next, 

a DHMM was created by passing the finite states from the sleep EDF 

annotations file and finite number of observations. The DHMM was 

trained by taking the training sleep data and the epoch codes training 

data. After, the Viterbi algorithm was executed to calculate the hidden 

states by taking the epoch codes test data as an input. Then, the sleep 

stages were predicted using the sleep staging model. Finally, the accu-

racy of the model was calculated by comparing the actual sleep stages 

against the predicted sleep stages. Figure 3 illustrates the sleep staging 

procedure. 

RESULTS. 

The above sleep model described in the sleep staging procedure was 

tested against 50 records. The overall average accuracy was 80.20% 

against the 50 PSG records the model was tested on. The top 10 rec-

ords are shown in Table 1. 

Table 1. Accuracy of Top 10 records including annotations and data files. 

Annotations File Data File Accuracy (%) 

SC4011EH-Hypnogram.edf SC4011E0-PSG.edf 93.4 

SC4081EC-Hypnogram.edf SC4081E0-PSG.edf 89.7 

SC4082EC-Hypnogram.edf SC4082E0-PSG.edf 87.2 

SC4171EU-Hypnogram.edf SC4171E0-PSG.edf 89.3 

SC4432EM-Hypnogram.edf SC4432E0-PSG.edf 94.0 

SC4482FJ-Hypnogram.edf SC4482F0-PSG.edf 93.0 

SC4651EP-Hypnogram.edf SC4651E0-PSG.edf 97.2 

SC4662EJ-Hypnogram.edf SC4662E0-PSG.edf 98.1 

SC4002EC-Hypnogram.edf SC4002E0-PSG.edf 86.6 

SC4601EC-Hypnogram.edf SC4601E0-PSG.edf 87.8 
 

 

Figure 3. Design Flow Diagram showing the steps from raw PSG data to 
sleep stage predictions using the DHMM. 

 



 

The model was most effective at predicting Sleep Stage 3 (Slow wave 

sleep or deep sleep) and Sleep Stage 4 (Rapid-eye movement sleep). 

However, it was least effective at predicting Sleep Stage 1 (the transi-

tion period between wake and sleep). This is hypothesized to be due 

to humans spending far less time in Sleep Stage 1 (<10 mins) as com-

pared to Sleep Stages 3 (20 - 40 mins) and 4 (10 - 60 mins) [13]. As a 

result, there are fewer annotations for Sleep Stage 1 and the model is 

not trained as thoroughly as it is for the other sleep stages. 

DISCUSSION. 

In this paper, an automatic human sleep staging analysis from poly-

somnographic recordings with a Discrete Hidden Markov Predictive 

Model was proposed. 6 features were selected for the work and the 

model developed helped in classifying sleep stages with great accu-

racy. The model was most effective at predicting Sleep Stage 3 (Slow 

wave sleep or deep sleep) and Sleep Stage 4 (Rapid-eye movement 

sleep), and it was least effective at predicting Sleep Stage 1 (the tran-

sition period between wake and sleep).  

Although previous work in Sleep Stage Identification has used HMM 

based sleep staging, the transition conditions were not included in the 

HMM. Including the transition conditions improved the accuracy of 

the model. The overall average accuracy applied on 50 PSG records 

reached 80.20%. 

In the future, the accuracy can be measured for each individual sleep 

stage by enhancing the algorithm. The difficulty of making predictions 

for sleep stage 1 can be addressed by training the model to recognize 

the high amplitude theta waves that it is characterized by. The results 

prove the viability of automation of Sleep Staging Analysis. Sleep 

Analysis is important in diagnosing conditions like hypersomnia, in-

somnia, narcolepsy, obstructive sleep apnea (OSA) and periodic limb 

movement disorder (PLMD). The automation of sleep analysis is 

meaningful in the reduction of human involvement and as a result the 

cost associated for such analysis. This would help improve the quality 

of life for patients as well as the early detection of many diseases. The 

model can be easily applied to aspects of EEG analysis other than sleep 

such as identifying seizures and epilepsy, leaving direction for this re-

search to expand in the future.   
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