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BRIEF. Automated diagnosis of retinal disease with convolutional neural networks achieving a validation F1-score accuracy of 96% and 95% on 

cataracts and pathological myopia respectively. 

ABSTRACT. Ophthalmologists are critical for diagnosis of retinal 

diseases, however with a training period of 12 years there is an acute 

shortage of ophthalmologists in many communities. Diagnosis of 

retinal disease with machine learning has been widely studied as an 

approach to alleviate the shortage of ophthalmologists. However, 

prior studies often focus on just a single retinal disease and do not 

consider the multiple retinal diseases which occur in patients. In this 

study, we utilize a dataset including eight retinal disease outcomes 

and train five residual network models corresponding to each of the 

disease outcomes in the training set. We find the highest predictive 

performance with cataract and pathological myopia obtaining an F1 

score of 96% and 94% respectively. Furthermore, we utilize a 

transfer learning approach training a model on a model on an initial 

retinal disease and transferring the insights of the trained model for 

further training on a second disease outcome despite no further 

increase in sample size. Finally, we train a model which can 

simultaneously detect two retinal disease outcomes at the same time. 

In the future, this approach could enable a single neural network to 

be utilized for diagnosis across multiple patient groups. 

INTRODUCTION.  

Currently, to get an accurate diagnosis of a retinal disease, a patient has 

to consult an ophthalmologist. Ophthalmologists, however, may not 

be accessible to everyone and with the American Association of Medical 

Colleges predicting a shortage of ophthalmologists by 2025 (1) the 

demand for an alternate method of diagnosis is increasing. One such 

alternate method of diagnosis is automation. The challenge with 

automation is that model performance is variable across different retinal 

disease categories and parameters. 

Previous work has focused on generating models to diagnose specific 

retinal diseases including dry age related macular degeneration (2), 

diabetic retinopathy (3), pathological myopia (4), glaucoma (5), and 

cataract (6). However, this work is limited because a comparison of 

performance of supervised training methodology across multiple disease 

areas has not been performed. Therefore, in this study we extend on prior 

work by comparing the performance of multiple supervised training 

methodologies on seven retinal diseases (Fig. 1). 

Model generation is dependent on training data and other studies have 

shown that greater training set size results in superior model 

performance. Across the seven disease categories sample size varies 

between 144 and 745, I hypothesized that models trained to detect 

disease categories with the greatest sample size including mild and 

moderate diabetic retinopathy will have the greatest predictive accuracy. 

To address these limitations, I also utilized transfer learning enabling a 

trained model to apply insights gained from training o a previous disease 

category to test if this approach results in increased performance 

compared to the traditional training. 

MATERIALS AND METHODS.  

Dataset. Our ophthalmic dataset of 5,000 fundus images were collected 

by Canon, Zeiss, and Kowa cameras from medical centers in China by 

Shanggong Medical Technology Co., Ltd. (7). Each image is 512 x 512 

pixels in size. Images were annotated with keywords for the left and right 

eye to diagnose each of seven diagnostic criteria (Fig. 1). This reduced 

the number of images to 2,234 eye images. Retinal disease images were 

compared with a healthy fundus image for classification.  

Convolutional Neural Network. For the purpose of our experiment of 

image classification, the ResNet (8) model was chosen. In a regular 

neural network each layer (a structure which takes input from previous 

layers and passes it on to other layers) directly feeds into the next, while 

in a ResNet model a layer feeds into the next and also a layer 

approximately 2-3 layers away. Skipping around 2-3 blocks helps 

prevent accuracy degradation. The ResNet models used in the 

experiments were ResNet 18, 34, 101, and 152. Each number was the 

number of layers in the model. The architecture of the ResNet model 

begins with a convolutional layer (7x7 kernel, with a stride of 2),  

followed by max pooling (3x3 kernel with a stride of 2), and a number 

of residual learning blocks which consistent of convolutional layers 

connected by shortcut connections. Residual networks are further 

explained in the manuscript by He et al., 2015 (8). The models were 

trained on a MacBook Air 2022 with an 8-core CPU and 10-core GPU 

M2 chip, with roughly 2,500 iterations of training taking 8 hours of 

runtime. 

Cost Function. Supervised learning depends on optimizing models to 

minimize the cost function which measures model performance. The 

cost function used was cross entropy loss. The equation for cross entropy 

is 𝐶𝐸 = − ∑ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ∗ 𝑙𝑜𝑔(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑀
1  in which M is the number 

of output categories, observed is the actual value of the output category 

for the specific retinal image, and predicted is the values predicted by 

the machine learning model for the specific retinal image. The observed 

values of images are formatted such that a disease gets the value 1 if it 

is applicable to the image and 0 if it isn’t. The machine learning model’s 

predicted images are formatted through probabilities, in which each 

output category contains what percent chance the image has to be that 

specific disease. The resulting output of the cross entropy equation tells 

us how closely fitted the model is to the dataset. This is done in image 

batch sizes of 8. 

 

Figure 1. Disease image examples and counts for each of the seven diseases. 
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Figure 2. Trained model on each of the seven disease outcomes (described in Table 1) for the testing data. Measured F1-Score for every iteration of the 
testing process. The highest F1 score was for Cataract with 90.1% and second for pathological myopia with 84.3%. 

Optimization Algorithms. Optimizing model performance depends on 

modifying parameters to minimize the cost function; the gradient 

descent algorithm iteratively updates each parameter using the slope of 

the cost function. The amount by which each parameter is updated is the 

learning rate. We utilized the Adam gradient descent algorithm (9). The 

equation for Adams gradient descent is 𝑊𝑡 = 𝑊𝑡−1 − 𝑛
𝑚𝑡

√𝑣𝑡+𝜖
 . This is 

where m and v are moving averages, W is model weights, and n is the 

step size. The Adam optimizer updates each parameter by changing the 

learning rate, informed by previous cost function values. 

How we reduced bias in the dataset: Weighting Categories. When 

classifying each disease individually, we compared two categories: 

normal fundus and the disease itself. The problem is that there are more 

normal fundus images than disease images, resulting in uneven batch 

sizes and a biased trained model. To fix this problem the proportion of 

images in each batch was weighted to be equal across both categories. 

Performance metrics. Model performance was evaluated using the F1 

score which combines precision and recall into a metric bounded 

between 0 and 1. Precision and recall are defined as 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 and 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 … 𝐹1 =

2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
. This is where 

TP is true positives and FN is false negatives. Model performance was 

evaluated during the training iterations using both training and 

validation data, although validation data was not utilized to optimize 

model parameters. 

RESULTS. 

Testing F1 performance of over 84% in distinguishing between cataract 

or pathological myopia and healthy retinal fundus. We compared the 

predictive performance of a residual network (ResNet) 18 model using 

a cross-entropy loss function trained with an Adam optimizer with a 

learning rate of 0.001 for each of seven retinal disease outcomes (Fig. 

1). Data was randomly split into training and testing containing 80% and 

20% of the images respectively with each iteration of training including 

a batch of eight images and a total of two epochs of training. F1 score 

was calculated from precision and recall (Methods) to assess model 

performance with a focus on testing performance as the best predictor of 

model generalization. ResNet 18 performance showed substantially 

better performance on cataracts and pathological myopia with an F1 

score of 90.1% and 84.3% respectively (Table 1 and Figure 2), a 17.5% 

higher F1 score than predictive performance on the next highest disease 

category. This may be because of the drastic difference between normal 

fundus and these diseases, leading to easier classification. 

Test F1 score of over 84% in distinguishing cataract or pathological 

myopia to healthy retinal fundus using ResNet 18 model (Table S1, 

Figure S1, and Figure S2). The two retinal diseases with the highest F1 

score (Cataract and Pathological Myopia), previously, were chosen for 

the experiment of trying different models. The models used for this 

experiment were Resnet with 18 to 152 layers in the model. In all cases 

a cross-entropy loss function with Adam optimizer (learning rate = 

0.001) was utilized. 

Learning rate of 0.0001 resulted in over 10% improvement in testing F1 

score with a performance of 94% (Table S2, Figure S3, Figure S4). The 

model used was the model found to be the best previously (ResNet 18) 

and the diseases remained the same. 

Transfer learning resulted in a 2% decrease in testing F1 score for 

pathological myopia and a 2% increase in testing F1 score for cataract 

(Figure S5, and Figure S6). Transfer learning is the process of 

transferring the parameters that the model has after running one process, 

and using it in order to train the model for another process. In our case 

transfer learning was used for transferring the parameters that the model 

had after running for cataracts to train the model for pathological myopia 

and vice versa. The learning rate was changed to 0.0001 as informed by 

the previous experiment. 

Diagnosis of pathological myopia and cataract simultaneously resulted 

in F1 scores of 94% and 86%, respectively (Figure S7, and Figure S8). 

Table 1. Model performance on each of the seven retinal disease outcomes. 

Sample # Disease 
Total Sample 

Size 

Testing F1 

Score 

1 Cataract 262 90.1% 

2 Pathological Myopia 227 84.3% 

3 
Dry Age-related Macular 

Degeneration 
196 66.8% 

4 
Severe Diabetic 

Retinopathy 
144 58.5% 

5 Glaucoma 200 54.8% 

6 
Moderate Diabetic 

Retinopathy 
745 44.8% 

7 Mild Diabetic Retinopathy 460 37.8% 

    

https://paperpile.com/c/DmviXb/qGkr7
https://paperpile.com/c/DmviXb/qGkr7
https://paperpile.com/c/DmviXb/qGkr7


 

Training multiple categories at the same time is when, instead of having 

only two outputs (normal fundus and the disease), the model can have 

three or more outputs (ex. Normal Fundus and two diseases). Having a 

model with the ability to be trained on multiple disease categories would 

make it so a patient wouldn’t have to go through multiple processes just 

to get a proper diagnosis.  

DISCUSSION.  

We performed an analysis of automated diagnosis across seven retinal 

diseases individually. Our study showed that convolutional neural 

networks most confidently diagnose cataracts and pathological myopia 

with testing F1 scores 96% and 94% respectively. Transferring 

knowledge by pre-training models on a related but distinct outcome lead 

to further improvements in performance from 94% to 96% testing F1 

score in the diagnosis of cataract, without collecting further data. The 

standard approach of training on a disease outcome, one at a time, limits 

model application, therefore, we generated a modified model 

architecture that was able to diagnose cataract and pathological myopia 

retinal diseases simultaneously with F1 scores of 94% and 86%. 

The findings from our experiments can help with two main things. First 

off, the findings from the experiment have helped leverage the fact that 

cataract and pathological myopia are two of the diseases best diagnosed 

by machine learning. This could lead to more potential studies being led 

on those two diseases which can in turn lead into more machine learning 

models being deployed in these two areas. Secondly, the findings from 

the experiments on different models and model parameters can help 

leverage which models are the best for diagnosing retinal diseases. By 

figuring this out, it can lead to future research being done on what makes 

these models better than others in diagnosing retinal diseases and can 

also lead to a better F1 score and accuracy when it comes to future 

endeavors. 

Limitations and Future Work. A few improvements that could be done 

to my experiment would be increasing the number of retinal diseases, 

data points for each disease, and not using pre-trained models and adding 

augmentations to the data.  
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SUPPORTING INFORMATION.  

The supporting information section includes additional tables which 

display the results of experiments with model layers and learning rates. 

In addition to the tables, supplemental graphs are shown which show the 

results of experiments with model layers, learning rates, transfer 

learning, and training on multiple diseases at the same time.  
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