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BRIEF. This paper displays an alternative approach to proving the Holder Inequality using supersolutions of the Heat Equation for a one-dimen-

sional case.

The Hölder inequality is an inequality in mathematics that states 

that the integral of the product of two function is bounded by the 

product of their integrals raised to a power. In this paper presents 

an interesting proof of this inequality using supersolutions of the 

heat equation. This proof is based on the monotonicity formula for 

the heat equation presented in Tobias Colding’s lecture notes at 

MIT.  

1. INTRODUCTION.  

In mathematics, the heat equation is a partial differential equation that 

models how heat diffuses through a region. A function 𝑢, solves the 

heat equation if 

 
∂𝑢

∂𝑡
(𝑥, 𝑡) = Δ𝑢(𝑥, 𝑡).   (1.1) 

The fundamental solution of the heat equation is called the heat kernel. 

It is defined by 

 𝐻(𝑥, 𝑦, 𝑡) = (4𝜋𝑡)−
𝑛

2𝑒−
|𝑥−𝑦|2

4𝑡 .  (1.2) 

We can prove that this is a solution by substituting in both sides of the 

equation and proving equality. 

Any solution 𝑢: ℝ𝑛 × [0, ∞) → ℝ of the heat equation (1.1) is deter-

mined by it's initial values 𝑢(⋅ ,0) by 

 𝑢(𝑥, 𝑡) = ∫  
ℝ𝑛 𝐻(𝑥, 𝑦, 𝑡)𝑢(𝑦, 0)𝑑𝑦,   (1.3) 

where 𝐻 is the heat kernel (1.2). We define 𝑓 and 𝑔 to be supersolu-

tions of the heat equation when 

 ∂𝑡𝑓 ≥ Δ𝑓, ∂𝑡𝑔 ≥ Δ𝑔  (1.4) 

In general, the heat equation has many applications in physics and 

mathematics. Brownian Motion, Black-Scholes equation, and 

Schrodinger's equation are heat type equations. More recently, the heat 

equation has also been the basis for methods in machine learning. 

Graph Laplacian methods for example are based on the theory behind 

the heat equation [1]. 

The Hölder inequality is an inequality involving integrals named after 

the German mathematician Otto Hölder. It is a tool used in the study 

of Lebesgue spaces and can produce powerful results. Most notably it 

can be used to prove the triangle inequality. The standard 

proof for the Hölder Inequality involves Young's Inequality for for 

Products which states that if 𝑝, 𝑞 ∈ (1, ∞) and 
1

𝑝
+

1

𝑞
= 1 then 

 𝑎𝑏 ≤
𝑎𝑝

𝑝
+

𝑏𝑞

𝑞
   (1.5) 

for non-negative values of 𝑎 and 𝑏. Furthermore, equality is achieved 

when 𝑎𝑝 = 𝑏𝑞. Therefore, if we have positive functions 𝑓(𝑥) and 

𝑔(𝑥) then 

 |𝑓(𝑥)𝑔(𝑥)| ≤
|𝑓(𝑥)|𝑝

𝑝
+

|𝑔(𝑥)|𝑞

𝑞
   (1.6) 

Now let 𝑋 = (∫𝑆  |𝑓|𝑝𝑑𝜇)
1

𝑝 and let 𝑌 = (∫𝑆  |𝑔|𝑞𝑑𝜇)
1

𝑞. We now set 𝑎 =
𝑓(𝑥)

𝑋
 and 𝑏 =

𝑔(𝑥)

𝑌
, therefore we have, 

 
|𝑓(𝑥)𝑔(𝑥)|

𝑋𝑌
≤

|𝑓(𝑥)|𝑝

𝑝𝑋𝑝 +
|𝑔(𝑥)|𝑞

𝑞𝑌𝑞    (1.7) 

Integrating on both sides gives us, 

 
1

𝑋𝑌
∫  |𝑓(𝑥)𝑔(𝑥)|𝑑𝜇 ≤

1

𝑝𝑋𝑝 ∫  |𝑓𝑝|𝑑𝜇 +
1

𝑞𝑌𝑝 ∫  |𝑔𝑞|𝑑𝜇   (1.8) 

𝑋𝑝 and 𝑌𝑞 will be equal to ∫ 𝑓𝑝𝑑𝜇 and ∫ 𝑔𝑞𝑑𝜇 respectively. There-

fore, this inequality reduces to 

 ∫  |𝑓(𝑥)𝑔(𝑥)| ≤ (∫  |𝑓(𝑥)|𝑝)
1

𝑝(∫  |𝑔(𝑥)|𝑞)
1

𝑞   (1.9) 

This is the Hölder Inequality [2]. 

The main motivation behind this paper is to show an alternate proof of 

the Hölder Inequality involving the Heat Equation, and by extension 

will show us the relationship between these two seemingly unrelated 

topics. We will do this by using the supersolutions of the heat equation 

to prove the Hölder inequality. To do this we will start by proving a 

lemma; we will then proceed by defining the Central Limit Theorem, 

and will use both the results of the lemma and the Central Limit The-

orem to prove the Hölder inequality. 

 

2. PROOF OF THE HÖLDER INEQUALITY 

A supersolution, in context of the heat equation, is a function that sat-

isfies the heat equation and is greater than or equal to the actual solu-

tion at every point in the domain of space and time. The Maximum 

Principle states that that any solution of the heat equation is bounded 

by its initial condition. To prove the existence of supersolutions for the 

heat equation, the maximum principle can be applied to show that the 

supersolution bounds the actual solution [3]. 

 

Lemma 2.1. Let 𝑓 and 𝑔 be positive supersolutions of the heat equa-

tion. In other words, (𝜕𝑡 − 𝛥)𝑓 ≥ 0 and (𝜕𝑡 − 𝛥)𝑔 ≥ 0. If 𝑝, 𝑞 ∈

(1, ∞) and 
1

𝑝
+

1

𝑞
= 1 then (𝜕𝑡 − 𝛥) (𝑓

1

𝑝𝑔
1

𝑞) ≥ 0, and equality implies 

𝑓 = 𝑐𝑔 for some 𝑐 ∈ ℝ.  

 

Proof. Let's define 𝑢 to be a function such that 𝑢 = log (𝑓
1

𝑝𝑔
1

𝑞). We 

take the exponential of both sides, thus giving us 𝑒𝑢 = (𝑓
1

𝑝𝑔
1

𝑞). There-

fore (∂𝑡 − Δ) (𝑓
1

𝑝𝑔
1

𝑞) = (∂𝑡 − Δ)𝑒𝑢. Let's now define a function 

𝑒𝑢(𝑥,𝑡). If we take the partial of this function with respect to 𝑡, we get 

∂𝑡𝑒𝑢(𝑥,𝑡) = 𝑒𝑢(𝑥,𝑡) ∂𝑡𝑢(𝑥, 𝑡). Now the Laplacian of this function will 

be given as, Δ𝑒𝑢(𝑥,𝑡) = 
∂2𝑒𝑢(𝑥,𝑡)

∂𝑥2 . We can rewrite this using Chain Rule 

as 
∂

∂𝑥
(𝑒𝑢(𝑥,𝑡) ∂𝑢(𝑥,𝑡)

∂𝑥
). We now apply product rule giving us 



 

(
∂

∂𝑥
𝑒𝑢(𝑥,𝑡)

∂𝑢(𝑥,𝑡)

∂𝑥
+ 𝑒𝑢(𝑥,𝑡) ∂2𝑢(𝑥,𝑡)

∂𝑥2
. This can be simplified to 

𝑒𝑢(𝑥,𝑡) |
∂𝑢(𝑥,𝑡)

∂𝑥
|

2
+ 𝑒𝑢(𝑥,𝑡) ∂2𝑢(𝑥,𝑡)

∂𝑥2 . We now can factor out the term 

𝑒𝑢(𝑥,𝑡) thus giving us that 

 Δ𝑒𝑢(𝑥,𝑡) = 𝑒𝑢(𝑥,𝑡) (Δ𝑢(𝑥, 𝑡) + |
∂𝑢(𝑥,𝑡)

∂𝑥
|

2
)  (2.2) 

Applying this method to our original expression, (∂𝑡 − Δ)𝑒𝑢, where 

𝑢 = log (𝑓
1

𝑝𝑔
1

𝑞), we get 

(∂𝑡 − Δ) (𝑓
1

𝑝𝑔
1

𝑞) = (∂𝑡 − Δ)𝑒𝑢 = 𝑒𝑢 ((∂𝑡 − Δ)𝑢 − |
∂𝑢

∂𝑥
|

2
) (2.3) 

We can expand this as 

∂𝑢

∂𝑥
=

∂

∂𝑥
log (𝑓

1

𝑝𝑔
1

𝑞) =
∂

∂𝑥
(

1

𝑝
log 𝑓 +

1

𝑞
log 𝑔) =

1

𝑝𝑓

∂𝑓

∂𝑥
+

1

𝑞𝑔

∂𝑔

∂𝑥
  (2.4) 

From that we know that 
∂2𝑢

∂𝑥2
=

∂2

∂𝑥2
log (𝑓

1

𝑝𝑔
1

𝑞). From here, we get that 

∂2𝑢

∂𝑥2
=

∂

∂𝑥
(

1

𝑝𝑓

∂𝑓

∂𝑥
+

1

𝑞𝑔

∂𝑔

∂𝑥
). This is equal to 

1

𝑝

∂

∂𝑥
(

∂𝑓

∂𝑥
) +

1

𝑞

∂

∂𝑥
(

∂𝑔

∂𝑥

𝑔
) =

1

𝑝
(

∂2𝑓

∂𝑥2

𝑓
−

(
∂𝑓

∂𝑥
)

2

𝑓2
) +

1

𝑞
(

∂2𝑔

∂𝑥2

𝑔
−

(
∂𝑔

∂𝑥
)

2

𝑔2
). Now we compute ∂𝑡(𝑢) =

∂𝑡 (log 𝑓
1

𝑝𝑔
1

𝑞) =
∂

∂𝑡
(

1

𝑝
log 𝑓 +

1

𝑞
log 𝑔) =

1

𝑝

∂

∂𝑡
[log (𝑓)] +

1

𝑞

∂

∂𝑡
[log (𝑔)] =

1

𝑝

∂

∂𝑡
[𝑓] +

1

𝑞

∂

∂𝑡

𝑔
[𝑔]. Therefore, we have 

 Δ𝑢 =
1

𝑝
(

Δ𝑓

𝑓
−

|∇𝑓|2

𝑓2 ) +
1

𝑞
(

Δ𝑔

𝑔
−

|∇𝑔|2

𝑔2 ) (2.5) 

and 

 ∂𝑡𝑢 =
∂

∂𝑡
[𝑓]

𝑝𝑓
+

∂

∂𝑡
[𝑔]

𝑞𝑔
  (2.6) 

Now that we have ∂𝑡𝑢 and Δ𝑢 by computation of terms we get 

(∂𝑡 − Δ)𝑢 =
1

𝑝
(

(∂𝑡−Δ)𝑓

𝑓
+

|∇𝑓|2

𝑓2
) +

1

𝑞
(

(∂𝑡−Δ)𝑔

𝑔
+

|∇𝑔|2

𝑔2
)  (2.7) 

Therefore, since we know that 𝑓 and 𝑔 are supersolutions of the heat 

equation, we know that (2.7) will be ≥
1

𝑝

|∇𝑓|2

𝑓2 +
1

𝑞

|∇𝑔|2

𝑔2 . Now from 2.3 

we have (∂𝑡 − Δ) (𝑓
1

𝑝𝑔
1

𝑞) = (∂𝑡 − Δ)𝑒𝑢 = 𝑒𝑢 ((∂𝑡 − Δ)𝑢 −

|
∂𝑢

∂𝑥
|

2
) ≥ 𝑒𝑢(∂𝑡 − Δ)𝑢 =

1

𝑝
(

(∂𝑡−Δ)𝑓

𝑓
+

|∇𝑓|2

𝑓2 ) +
1

𝑞
(

(∂𝑡−Δ)𝑔

𝑔
+

|∇𝑔|2

𝑔2 ) ≥

1

𝑝

|∇𝑓|2

𝑓2 + 
1

𝑞

|∇𝑔|2

𝑔2 − |
1

𝑝

∇𝑓

𝑓
+

1

𝑞

∇𝑔

𝑔
| (2.8) Now by (2.3), we have (∂𝑡 −

Δ)𝑒𝑢 = 𝑒𝑢 ((∂𝑡 − Δ)𝑢 − |
∂𝑢

∂𝑥
|

2
)  ≥  𝑒𝑢 1

𝑝
(

(∂𝑡−Δ)𝑓

𝑓
+

|∇𝑓|2

𝑓2 ) +

1

𝑞
(

(∂𝑡−Δ)𝑔

𝑔
+

|∇𝑔|2

𝑔2 ) ≥
1

𝑝

|∇𝑓|2

𝑓2 +
1

𝑞

|∇𝑔|2

𝑔2 − |
1

𝑝

∇𝑓

𝑓
+

1

𝑞

∇𝑔

𝑔
|

2
. Thus, we have, 

𝑒−𝑢(∂𝑡 − Δ)𝑒𝑢 ≥
1

𝑝𝑞
(

|∇𝑓|2

𝑓2 +
|∇𝑔|2

𝑔2 −
2

𝑓𝑔
⟨∇𝑓, ∇𝑔⟩) 

Thus, this expression reduces down to 
1

𝑝𝑞
𝑓

1

𝑝𝑔
1

𝑞 |∇log (
𝑓

𝑔
)|

2
. Since 𝑓 

and 𝑔 are positive supersolutions of the heat equation, this expression 

will be ≥ 0 and when equality does occur that implies that 

|∇log (
𝑓

𝑔
)|

2
= 0. Therefore, log (

𝑓

𝑔
) = 𝑐 so by taking the exponential 

on both sides we arrive to the expression 𝑓 = 𝑒𝑐𝑔 when equality 

holds. 

 

 

3. THE CENTRAL LIMIT THEOREM 

The Central Limit Theorem tells us that if we have a function 𝑢(𝑥, 𝑡) 

which solves the heat equation and we define the function 

 𝑣(𝑥, 𝑡) = 𝑡
𝑛

2𝑢(√𝑡𝑥, 𝑡)  (3.1)  

then 𝑣 converges to the Gaussian function 

 𝑣(𝑥, 𝑡) → (4𝜋)
−𝑛

2 𝑒
−|𝑥|2

4 ∫  𝑢0(𝑦)𝑑𝑦   (3.2) 

as 𝑡 → ∞ [4].  We will use this property and Lemma 2.1 to prove the 

Hölder Inequality. 

 

4. THE HÖLDER INEQUALITY 

Theorem 4.1. Let ℎ1 and ℎ2 be functions with compact support. Let 
1

𝑝
+

1

𝑞
= 1, where (𝑝, 𝑞) ∈ (1, ∞). The Hölder Inequality for integrals 

claims that 

 ∫  
𝑅

|ℎ1ℎ2| ≤ (∫  
𝑅

  |ℎ1|𝑝)
1

𝑝(∫  
𝑅

  |ℎ2|𝑞)
1

𝑞  (4.2) 

and equality implies that ℎ1 = 𝑐ℎ2 for some 𝑐 ∈ ℝ. Notice that the 

Hölder Inequality is a more general form of the Cauchy-Schwartz In-

equality. 

 

Claim 4.3. If 𝑓 and 𝑔 decay rapidly at infinity, in other words the 

functions approach 0 as we approach infinity, then 

 
𝑑

𝑑𝑡
∫  

𝑅
𝑓

1

𝑝𝑔
1

𝑞 ≥ 0  (4.4) 

 

Proof of Claim. Since 𝑓 and 𝑔 decay at infinity, the divergence theo-

rem and differentiation under the integral sign imply 

 
𝑑

𝑑𝑡
∫  

𝑅
𝑓

1

𝑝𝑔
1

𝑞 = ∫  
𝑅

(∂𝑡 − Δ) (𝑓
1

𝑝𝑔
1

𝑞)  (4.5) 

We know that (∂𝑡 − Δ) (𝑓
1

𝑝𝑔
1

𝑞) ≥
1

𝑝𝑞
𝑓

1

𝑝𝑔
1

𝑞 |∇log (
𝑓

𝑔
)|

2
, thus by 

Lemma 2.1 we know that 
1

𝑝𝑞
𝑓

1

𝑝𝑔
1

𝑞 |∇log (
𝑓

𝑔
)|

2
≥ 0, therefore proving 

that 

 
𝑑

𝑑𝑡
∫  

𝑅
𝑓

1

𝑝𝑔
1

𝑞 ≥ 0  (4.6) 

 

Proof of Hölder inequality. Let 𝑓 and 𝑔 be the positive solutions of the 

heat equation starting at |ℎ1|𝑝 and |ℎ2|𝑞, respectively. Then, let 

𝑢(𝑥, 𝑡) = 𝑡
𝑛

2𝑓(√𝑡𝑥, 𝑡) and let 𝑣(𝑥, 𝑡) = 𝑡
𝑛

2𝑔(√𝑡𝑥, 𝑡). By applying the 

Central Limit Theorem, we have that 𝑢(𝑥, 𝑡) converges to 

 (4𝜋)
−𝑛

2 𝑒
−|𝑥|2

4 ∫  |ℎ1|𝑝  (4.7) 

Similarly, 𝑣(𝑥, 𝑡) converges to 

 (4𝜋)
−𝑛

2 𝑒
−|𝑥|2

4 ∫  |ℎ2|𝑞  (4.8) 

Since ∫ 𝑓
1

𝑝𝑔
1

𝑞 = ∫ 𝑢
1

𝑝𝑣
1

𝑞. Then from (4.6) and (4.7) we have as 𝑡 → ∞ 

 ∫  𝑓
1

𝑝𝑔
1

𝑞 = ∫  𝑢
1

𝑝𝑣
1

𝑞 (4.9) 

 → (∫  |ℎ1|𝑝)
1

𝑝(∫  |ℎ2|𝑞)
1

𝑞 (∫  (4𝜋)
−𝑛

2 𝑒
−|𝑥|2

4 )

1

𝑝
+

1

𝑞

  

 



 

We know that 
1

𝑝
+

1

𝑞
= 1, so this simplifies into 

 ∫  𝑓
1

𝑝𝑔
1

𝑞 → (∫  |ℎ1|𝑝)
1

𝑝(∫  |ℎ2|𝑞)
1

𝑞  (4.10) 

From Claim 4.3 we know that 
𝑑

𝑑𝑡
∫𝑅  𝑓

1

𝑝𝑔
1

𝑞 ≥ 0, therefore we have 

 ∫  |ℎ1ℎ2|𝑑𝑥 ≤ (∫  |ℎ1|𝑝)
1

𝑝(∫  |ℎ2|𝑞)
1

𝑞  (4.11) 

thus, proving the Hölder Inequality. 
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