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BRIEF. Define metrics to evaluate medical imaging datasets to improve the accuracy and reliability of model results. 

ABSTRACT. Computer vision (CV) is an application of deep 
learning that has been gaining increasing significance. CV in 
healthcare focuses on using medical imaging datasets to train mod-
els that help early diagnosis of medical conditions. The model per-
formance relies on the quality of the dataset used. However, there 
are several limitations of these datasets that hinder their reliability 
including their availability and size, compromising model perfor-
mance. This paper defines metrics to evaluate medical imaging da-
tasets to determine a reliable dataset and discusses methods to im-
prove and create such a dataset. The metrics will be implemented 
and used to evaluate the reliability of three datasets. 

INTRODUCTION.  

Computer vision (CV), a field under Artificial Intelligence, focuses on 
enabling computers to identify, classify and segment objects in visual 
content. CV tasks often rely on neural networks, which can be catego-
rized under supervised and unsupervised learning. Supervised learning 
refers to networks trained on labelled datasets. 

The application of CV in medical imaging, computer-aided diagnosis 
(CAD), ensures a much faster and accurate diagnosis, early disease 
recognition, prevents human error, and prevent injuries. CV models in 
healthcare must have good performance to avoid misclassification and 
incorrect diagnosis. However, large high quality medical imaging da-
tasets that are needed aren't easily available. This paper will address 
the following aspects: (a) Defining metrics to evaluate dataset reliabil-
ity (b) Methods to improve and create a reliable dataset (c) Evaluation 
of the reliability of three datasets using the defined metrics 

DATA.  

This paper uses three medical imaging datasets. ‘ChestX-ray14’(1) is 
provided by the National Institute of Health (NIH) Clinical Center. 
This dataset expands on ‘ChestX-ray8’ (2) with the inclusion of 6 
more disease categories. Figure 1 depicts sample images from 8 of the 
disease classes: Atelectasis, Cardiomegaly, Consolidation, Edema, Ef-
fusion, Emphysema, Fibrosis, Hernia, Infiltration, Mass, Nodule, 
Pleural Thickening, Pneumonia, Pneumothorax. 

‘MURA (musculoskeletal radiographs)’ (3),  is the largest public radi-
ographic image dataset. It was manually labeled by radiologists as ei-
ther “normal” or “abnormal”. These multi-view radiographic images 
belong to seven standard study types: elbow, finger, forearm, hand, 
humerus, shoulder, and wrist, as depicted in Figure 2. 

CheXpert (4) is a dataset created by a team at Stanford University that 
includes X-ray images with uncertainty labels. The images represent 
the following classes: no finding, enlarged cardiom, cariomegaly, lung 
lesion, lung opacity, edema, consolidation, pneumonia, atelectasis, 
pneumothorax, pleural effusion, pleural other, fracture and support de-
vices.  

METHODS. 

1. Definition of the metrics. This section defines metrics to evaluate 
medical imaging datasets. These five metrics consider various aspects 
of medical imaging datasets to present criteria that will help select a 
reliable dataset. 

1.1. Dataset size. The size of a medical imaging dataset plays a crucial 
role in the performance of a machine learning model. The size of the 
data required to train machine learning algorithms varies depending 
on the use case, the performance level desired, the input features, the 
algorithm type and architecture, the number of algorithm parameters, 
and the quality of the training data, including the annotation quality, 
feature distribution, and noise in the extracted features (5). The rule of 
10 is an effective way to determine the dataset size required which 
states that the sample size needed to train a model should be 10 times 
the number of parameters. Furthermore, an estimated 150-500 images 
per class is adequate to prevent both oversampling and under sampling 
(6). 

1.2. Bias. Medical imaging datasets are inherently biased as they don't 
reflect the targeted medical condition entirely. As a result, models that 
perform well on medical imaging datasets often perform poorly when 
applied to real-world scenarios. Studies (7, 8) have shown that human 
biases have been both inherited and amplified by artificial intelligence. 
For instance, facial recognition systems have been proven to perform 
poorly on underrepresented populations in the datasets based on as-
pects such as race and gender. A study (9) of the Fitzpatrick Skin Type 
classification system showed that the datasets (IJB-A and Adience) 
mainly comprised light-skinned subjects, 79.6% and 86.2% respec-
tively. Furthermore, an analysis and evaluation of gender classifica-
tion systems revealed that darker-skinned females were the most mis-
classified group with an error rate of approximately 34.7%. In addi-
tion, labeling and annotation error may also lead to dataset bias. Med-
ical imaging datasets are usually labeled by human annotators which 
may lead to systemic bias in the assigning of labels (10). 

1.3. Reliability and annotations. The application of computer vision in 
healthcare requires high-quality, annotated datasets. Oftentimes, the 
help of non-experts or automated systems with inadequate supervision 
are used which increases the unreliability of the dataset (11) Radiolo-
gists’, surgical and pathology reports are the ground truth annotation 

 
Figure 1. Sample images from ChestX-ray14 that represent each class (2) 
 

 
Figure 2. Sample images from MURA that represent each class (3) 
 



 

 

process, other than crowdsourcing annotation, followed. However, 
these processes aren’t definite depictions of the ground truth (12). For 
instance, a Mayo Clinic study reported that a major diagnosis was 
missed clinically in 26% of patients when comparing clinical diagno-
ses with postmortem autopsies (13). 

1.4. Type of data and pixel size. The type of medical imaging data in-
cluded in the dataset plays a significant role in the computation time. 
Machine learning models are usually trained on images that have a 
small matrix size to reduce computation time. However, medical im-
ages have a higher dimensionality, ranging from 64 ✕ 64 to 4000 ✕ 
5000. A higher image size indicates a higher number of features that 
must be extracted which increases computation time. 

1.5. Availability of datasets. Private datasets are those that are re-
stricted to only selected individuals or groups of people. Public da-
tasets are those that are freely available. Restricted access to large da-
tasets and high is a major obstacle. In recent years, several large med-
ical imaging datasets such as ChestX-ray14 and MURA have been 
made available to the public. Computer vision with medical imaging 
requires large datasets. However, restricted access to these large da-
tasets and high costs are a major obstacle. Datasets made available are 
often unreliable as they are unstructured with vague usage require-
ments and incorrect annotations. A study (14) of large medical imag-
ing datasets explored the discrepancies between these datasets and 
found that the ChestXray14 labels did not adequately reflect the visual 
content of the pictures, with positive predictive values ranging from 
10% to 30% lower than the original documentation values.  

2. Preprocessing medical images. Data processing is a crucial step that 
must be undertaken before training a model on a given dataset. In med-
ical imaging preprocessing is mainly followed to enhance image qual-
ity and remove noise from the dataset. Preprocessing mainly depends 
on the use case and the type of images involved. 

The use of large medical imaging datasets usually leads to better 
model performance. These large datasets are not publicly available for 
all use cases. Preprocessing is usually applied to small datasets of the 
same use case to increase the dataset size. This is done by applying 
techniques such as data augmentation that duplicate various versions 
of each image in a smaller dataset (15) 

Medical images are impacted by blurriness, noise, poor contrast, and 
sharpness that often leads to false diagnosis. Image enhancement tech-
niques (spatial domain enhancement method and frequency domain 
enhancement method) are applied to improve the quality of medical 
images and remove noise from the dataset. These methods of image 
enhancement vary based on the type of medical imaging (16) 

3. Creating a medical imaging dataset. Large medical imaging da-
tasets are often restricted, have small sample sizes and lack coverage 
of diverse populations and geographic areas which hinders model per-
formance. Hence, it is important to know how to prepare a reliable 
medical imaging. 

The consent of the respective authorities and subjects must be taken 
before using any medical data for the development of a dataset. Deter-
mining the sampling size and technique by considering its feasibility 
is a crucial step. The most effective sampling techniques are simple 
random, systematic, stratified and cluster sampling. In case a large 
sample size is not feasible, preprocessing techniques such as data aug-
mentation can be implemented to increase the size of the dataset. 

After ethical approval and determining the sample size and technique 
data needs to be accessed and properly de-identified (removal of sen-
sitive/personal data (17). The data must then be transferred to either 
an external data storage or local data storage. 

One of the most crucial aspects of creating a medical imaging dataset 
is choosing appropriate labels and ground truth definition as most  

medical image classification models are based on supervised learning 
approaches. Extracting labels from reports using NLP after obtaining 
surgical, genomic, pathologic and or clinical outcome data is one of 
the most scalable approaches to labelling. 

EXPERIMENTS & RESULTS. 

Table 1 summarizes the results obtained when implementing the met-
rics defined to the three selected datasets. 

The ChestX-ray14 dataset consists of 112,120 frontal chest X-ray 
scans from 30,805 unique patients, as represented by sample images 
in Figure 1. This dataset was labeled using NLP and collected from a 
clinical archive. The number of “normal” or “no finding” images ac-
count for approximately 75% of the dataset. A study (14) found that 
there wasn’t an adequate sample size selected to represent each label 
in the dataset. The labels of the dataset were evaluated by calculating 
their positive predictive value (PPV). The labels used to represent im-
age classes were ambiguous, through a visual inspection by a board-
certified radiologist. For instance, in the emphysema class most of the 
cases (86%) had subcutaneous emphysema instead of pulmonary em-
physema which resulted in a low PPV value for the class. Another 
study (18) found that abnormal cases are underrepresented in this da-
taset (25%). A study (19) of the dataset confirmed that 56.5% of the 
images (63,340) were of male patients while 43.5% (48,780) were of 
female patients 

The MURA dataset consists of 40,561 images from 14,863 studies and 
was labeled by board-certified radiologists at the time of clinical inter-
pretation as either ‘normal’ or ‘abnormal’. A study of 100 ‘abnormal’ 
images found that they consisted of 53 with fractures, 48 with im-
pacted hardware, 35 with degenerative joint disease, and 29 with other 
abnormalities. The ratio of abnormal to normal cases is 45:55. 

The CheXpert dataset consists of 224,316 images from 65,240 patients 
and was labeled using an automatic rule-based labeler that extracted 
observations from radiology reports. The tool assigned labels based on 
the following values: confidence present, absent and uncertainty. The 
14 labels of the dataset include “no finding” which refers to images 
where no pathologies were identified (4). 60% of the images are of 
male subjects while 40% are of female subjects. 

DISCUSSION. 

ChestX-ray14 has the highest number of images and subjects included. 
However, 75% of the images represent normal cases making it biased. 
As it was labelled with NLP, the error rates of the tool will affect the 
reliability of the labels (20, 21). To improve the dataset reliability, 
there should be an equal balance of images in each category. Further-
more, the male to female subject ratio is relatively better than CheX-
pert resulting in a lower gender bias. MURA has the lowest number of 
images and subjects included. Techniques such as data augmentation 
can be applied to increase the dataset size. 55% of the dataset repre-
sents normal cases which indicates an equal distribution, avoiding bias 
in predictions. CheXpert has the highest number of images and sub-
jects included and was labelled using a rule-based automated labeler. 
One of the main limitations of the CheXpert labeler is that it doesn’t 
yield probabilistic outputs (22). It has a high gender bias, with a male-

Table 1. Results obtained when using the metrics to evaluate the reliability 
of the datasets 

 No. of 
images 

No. of 
patients 

Pixel 
size 

% 
Normal 
cases 

% 
Male 

subjects 

% 
Female 
subjects 

Chest- 
Xray14 

112120 30805 3000x 
2000 

75 56.5 43.5 

MURA 40561 12173 512x 
300 

55 NA NA 

CheX-
pert 

224316 65240 390x 
320 

NA 60 40 

       



 

 

female ratio of 60:40. Having an equal balance between male and fe-
male subjects will help reduce the gender bias. The datasets are public 
datasets which often affects the reliability of annotations. For instance, 
ChestXray14 labels have positive predictive values ranging from 10% 
to 30% lower than the original documentation values. Figure 3 sum-
marizes the results while also depicting which datasets are the best for 
each situation based on the metrics. 

 
Figure 3. Summary of results obtained from using the metrics to evaluate 
the datasets and conclusion. 

CONCLUSION. 

This paper defined metrics to select a reliable medical imaging dataset 
and discussed two techniques that can be followed if the criteria are 
not met. The valuation of the chosen datasets using the metrics defined 
showed that certain datasets are more ideal for specific use cases. The 
metrics defined and the suggestions provided to select and create a 
medical imaging dataset will help improve the accuracy of CAD. One 
of the main limitations of the metrics defined is that it doesn’t consider 
anomalies. For instance, models for specific use cases perform better 
when trained on smaller medical imaging datasets (23). Hence, the de-
fined metrics must consider certain exceptions to the criteria sug-
gested. Furthermore, an extension of this paper can be to investigate 
the impact of the reliability of a dataset on model performance. 
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