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BRIEF. This study examines how to make microgrid scheduling using AI forecasting methods simpler, cheaper, and safer using alternative 
sources of data other than weather data, in order to accelerate the spread of solar power in rural areas. 

ABSTRACT. A number of studies have used various machine 
learning (ML) techniques to forecast the demand (load) and supply 
(power production) of microgrid power in rural areas, using 
weather data as inputs; however, there are many practical problems 
with this data. This includes exorbitant procurement costs and a 
dearth of communication-failure backups with weather data ser-
vices. The current literature has not yet addressed these pragmatic 
concerns. These problems also make the implementation of mi-
crogrids and the widespread deployment of solar power more chal-
lenging, especially in rural areas with low-income levels. As a 
more practical alternative to weather-based models, this study sug-
gests models that instead use historical data of power demand and 
supply. We employ ML techniques using historical data to forecast 
demand and supply over five different time horizons: 15 minutes, 
1-hour, 1-day, 1-week, and 1-month. Demand-side and supply-
side forecasting performs best using the Linear Regression model, 
which also had the best Pearson Correlation Coefficient, Mean Ab-
solute Error and Root Mean Squared Error—comparable to state-
of-the-art weather-based models. Our models are a cheaper and 
safer option—enabling wider deployment of microgrids and solar 
power in rural areas, especially where high costs are an issue. 

INTRODUCTION.  

Access to energy is an essential catalyst for socioeconomic develop-
ment in rural areas. A growing number of people in rural areas now 
have access to electricity thanks to microgrid solutions, where the na-
tional grid often does not provide electricity. Developers of microgrids 
must manage their current locations and extend to new areas (1). On 
the other hand, in certain rural areas, an increasing number of mi-
crogrids have begun to diversify their power supply by including re-
newable energies. The design of a new power management system is 
necessary for the integration and optimization of the various energy 
sources. This system must be able to predict how much electricity the 
community will use and how much electricity will be produced from 
renewable sources in order to manage the fossil fuel-based generators 
and satisfy the community's power needs (2).  

Furthermore, in rural areas in developing countries such as Bangla-
desh, the government is unable to provide enough support for national 
grid extension and distributing energy to remote rural areas due to high 
investment and maintenance costs (3). Hence, microgrids are the only 
way to access electricity. However, the high costs of forecasting (de-
mand and supply) and unreliability of a microgrid, especially when 
run on solar photovoltaic (PV) cells, makes implementing a microgrid 
in rural areas difficult as well (3).  

In the literature, a number of machine learning (ML) and artificial in-
telligence (AI) forecasting models have been proposed for microgrid 
developers, in order to reduce the unreliability of running a microgrid 
and to create a ‘power management system’: the load or consumers’ 

consumption (‘demand-side’) must be predicted; the power produc-
tion by the solar PV cells (‘supply-side’) must be predicted as well (1).  

Otieno et al. successfully forecasted energy demand for microgrids 
over multiple horizons in Sub-Saharan Africa, with the best forecasts 
using an exponential smoothing technique (1). Mcsharry et al. also 
successfully forecasted energy demand, but using a probabilistic ap-
proach, with a key outcome of the paper in identifying the needed 
time-horizons for microgrid developers. They identify three particular 
‘time-horizons’: (1) very short-term forecasting (minutes to hours), (2) 
short-term load forecasting (hours to weeks), and (3) medium-term to 
long-term forecasting (weeks to months to a year) (4). Cenek et al. 
applied long short-term memory (LSTM) and artificial neural net-
works (ANNs) to the problem, working to forecast load in rural areas 
in Alaska, using a relatively small amount of training data to achieve 
a high accuracy (2). 

On the other hand, when it comes to power supply forecasting, various 
studies have also had success in the area. For instance, in the literature 
review of Mosavi et al., various studies with success are identified that 
use a wide array of statistical and ML approaches for forecasting 
power supply (5). Many studies also attempt to predict solar irradia-
tion (which directly correlates with solar power production), such as 
Ahmad et al.’s models in predicting solar radiation one-day-ahead in 
New Zealand using commonly-used time-series models like Multi-
layer Perceptron (MLP), Nonlinear Autoregressive Network with Ex-
ogeneous Inputs (NARX), Autoregressive Integrated Moving Average 
(ARIMA), and persistence methods (6).  

However, other successful state-of-the-art models cited by Mosavi et 
al. all use weather data as inputs (5). Ordiano et al. points out the prob-
lem with using this type of data. They note exorbitant costs associated 
with purchasing weather data on an hourly or even minute-to-minute 
basis to run these forecasting models, as specific types of data—such 
as solar radiation in a specific area of a solar farm—are not available 
free-of-charge to microgrid developers. They also note that in case of 
communication failures with weather data services, the forecasting 
models would fail to run, causing failure of the entire power manage-
ment system (a high risk). Hence, Ordiano et al. proposed using non-
weather-data, such as high-resolution and highly-granular past-power 
production data, to predict future power production data: removing all 
data costs and reducing communication-failure risk, being the cheap-
est and safest option (7). 

Ordiano et al. achieved success with their supply-side forecasting 
models (7). Inspired by their study, the goal of this study is to apply 
their method to both demand-side and supply-side forecasting, but 
more specifically, with microgrid developers in rural areas in mind. 
By increasing the reliability and cost of running a microgrid in rural 
areas, the goal of this study is to help increase access to electricity and 
renewable energies in rural areas. As such, we will be testing our mod-
els on 31 datasets (various locations across the same microgrid) in or-
der to test and ensure model robustness across the board. We hypoth-
esize that if we use the past power supply and demand data to predict 



 

 

 

the future power supply and demand, then we would achieve a high 
accuracy, as the past power supply and demand data are highly corre-
lated with the weather-data, which would make our non-weather-
based models still highly accurate, but cheaper and more reliable. 

MATERIALS AND METHODS.  

Original dataset – UCSD microgrid data. We used the dataset ‘Open-
Source Multi-Year Power Generation, Consumption, and Storage 
Data in a Microgrid’, published by Silwal et al. (8). It consists of 
“open-source, high resolution” data on power consumption and pro-
duction from the University of California, San Diego (UCSD) mi-
crogrid. The microgrid has “several distributed energy resources 
(DERs)”. The resolution of the data was 15-minutes. We only used the 
‘real power’ and omitted the ‘reactive power’ and ‘date and time’ col-
umn. This left the dataset with only one column: ‘real power.’ We used 
data from all five years of the dataset, from 1st January, 2015 to 29th 
February, 2020. We tested our ML techniques on all 16 locations of 
the demand data available in the dataset inside the UCSD campus, and 
all 25 locations of the supply data available also.  

Transformation of the dataset. We transformed the dataset from the 
original based on the resolution. For example, for the 15-minute-reso-
lution, we first duplicated the original ‘real power’ column of the da-
taset. Then, we shifted the second ‘real power’ column up by one row. 
This made the first ‘real power’ column the historical data column (the 
feature), and the second ‘real power’ column the future predicted data 
column (the target). This was done for the other resolutions as well, 
particularly the 1-hour resolution (where the power was predicted for 
every 15 minutes in the predicted hour; hence there were four target 
values in the 1-hour resolution). For the 1-day, 1-week, and 1-month 
resolution, this method was adjusted slightly. For the 1-day prediction, 
we predicted this with 24 targets (hourly resolution); for the 1-week 
prediction, with 7 targets (daily resolution); for the 1-month predic-
tion, with 30 targets (daily resolution). We summed the values in the 
original dataset for these adjusted predictions; for example, for the 1-
day-ahead prediction with 24 targets (hourly resolution), we summed 
every four columns in the original dataset together to form a new da-
taset with hourly resolution. Then, as before, the process of duplicat-
ing the ‘real power’ column (now of hourly resolution) occurred. 
However, it occurred differently for each different prediction set. For 
example, for the 1-day-ahead prediction, the new hourly resolution da-
taset was duplicated 47 times, and shifted 47 times up as well, so that 
the dataset in total would have 48 columns. Of these 48, the first 24 
were the historical data of the past 24 hours (input data), the second 
24 were the future data of the next 24 hours (target data). This is how 
ultimately later the dataset was split as feature and target. 

Shape of the dataset. On average, the original 16 demand datasets had 
141,258 rows and the original 25 supply datasets had 139,290 rows. 

Machine learning algorithms. Due to the large size of each dataset 
(and as we had to run each model on a total of 31 datasets) the size of 
the tasks of this paper were quite computationally intensive. Due to a 
lack of computational resources available, we only test four simple 
models with their default parameters in the sci-kit learn library: Linear 
Regression (LR), K-Nearest Neighbors (KNN), Decision Tree (DT), 
and Random Forest (RF). However, despite trying quite simple mod-
els, the robust dataset meant that a large amount of training data was 
available—which improved the results of the models significantly. 

All four models are quite commonly used throughout machine learn-
ing, and are examples of supervised learning (where labelled data is 
used to predict an outcome, as opposed to unlabeled data in unsuper-
vised learning).  RF utilizes multiple decision trees (a tree-like model 
of event outcomes and their probabilities), combining all their outputs 
to reach a final result. In comparison, DT is simply a graph with all 
the possible outcomes of a decision (one decision tree). The latter (DT) 
is much easier to visualize than the former (RF) and much faster to run 

as well since it only uses one decision tree; while RF, even though 
slower, tends to be more accurate and precise (and has less overfitting) 
as it combines the results of multiple decision trees (and is harder to 
visualize as it has so many trees).   

Meanwhile, LR works by using a linear equation: using the independ-
ent value directly to predict the dependent value. The goal is to opti-
mize the coefficients of the linear equation (minimize the distance be-
tween the predicted and actual value, or the ‘error’), so the ‘best-fit’ 
line predicts the dependent values accurately and without overfitting. 
There may be multiple independent variables (hence multiple coeffi-
cients) in the linear equation. The main advantage of LR is that it is 
fairly simple and easy-to-interpret.  

A KNN model on the other hand works differently from classification 
to regression. The basic assumption in classification is that the out-
come most-represented in the k-nearest neighbors around the point 
(where k is an integer greater than 0) is used to predict that point’s 
outcome. This assumption carries over in regression: an average of the 
k-nearest neighbor points is taken to predict the outcome of the point. 
To find the ‘nearest’ neighbors, different types of distance can be 
measured; but Euclidean distance is the most commonly used. The 
main advantage of KNN is that it has no training time as all the da-
taset’s points are used when making predictions; but, the optimal value 
of k does need to be determined through testing. 

Data splits. The data was split with a ratio of 90-10 between the train-
ing and testing. A validation set was not used as the models were tested 
on not one, but 31 separate datasets, which should indicate model ro-
bustness across a variety of locations’ production and consumption 
patterns. 

Evaluation Metrics. Three key metrics are measured: the Pearson Cor-
relation Coefficient (PCC), the Mean Absolute Error (MAE), and the 
Root Mean Squared Error (RMSE). In essence, PCC measures the 
strength of the relationship between two variables (in our case, be-
tween the predicted value and the actual value). All our correlations 
are positive, so a PCC value of 0 would mean no correlation, and 1 
would mean total positive correlation. MAE and RMSE are different 
measures of the errors (the differences between the predicted value 
and the actual value). MAE and RMSE’s values are often interpretable 
as they as in the same unit as the dataset. RMSE penalizes outliers and 
larger errors more than MAE (as RMSE squares them). For both 
RMSE and MAE, the lower the value, the more accurate the model is 
(and values range from zero to infinity). If MAE is too simplistic to 
understand a dataset (and it is desired to get rid of the larger outliers 
in the data) then RMSE is usually used. 

In our case, we use PCC to compare our results with other state-of-
the-art studies, as PCC does not have any units and can be compared 
across studies. On the other hand, MAE and RMSE are in the units of 
our dataset’s target value (kilowatt-hours), so those metrics can only 
be used to compare the performance of different models within our 
study relative to each other (but no cross-study comparisons). 

Equation 1 indicates the error in forecasting, where 𝑒𝑒𝑓𝑓  represents the 
forecasting error, k represents the time sample, 𝑃𝑃�[𝑘𝑘] represents the 
predicted value, and 𝑃𝑃[𝑘𝑘] represents the actual value: 

𝑒𝑒𝑓𝑓[𝑘𝑘] =  𝑃𝑃� [𝑘𝑘]  −  𝑃𝑃 [𝑘𝑘] (1) 

Equation 2 represents the PCC equation, where 𝑟𝑟𝑃𝑃𝑃𝑃�  is the PCC, K rep-
resents the total number of samples, 𝑃𝑃� and 𝑃𝑃��  represent the averages 
of each respective time series: 

𝑟𝑟𝑃𝑃𝑃𝑃� =  
∑ (𝑃𝑃[𝑘𝑘] − 𝑃𝑃�) (𝑃𝑃�[𝑘𝑘]− 𝑃𝑃��)𝐾𝐾
𝑘𝑘=1

�∑ (𝑃𝑃[𝑘𝑘] − 𝑃𝑃�)2𝐾𝐾
𝑘𝑘=1      �∑ (𝑃𝑃�[𝑘𝑘] − 𝑃𝑃��)2𝐾𝐾

𝑘𝑘=1
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Equation 3 represents the MAE equation: 

𝑀𝑀𝑀𝑀𝑀𝑀 =   
1
𝐾𝐾��𝑒𝑒𝑓𝑓[𝑘𝑘]�

𝐾𝐾

𝑘𝑘=1

 (3) 

Equation 4 represents the RMSE equation:  

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 =   �
1
𝐾𝐾  �(𝑒𝑒𝑓𝑓[𝑘𝑘])2

𝐾𝐾

𝑘𝑘=1

 (4) 

RESULTS. 

Table 1 shows the results for both demand-side and supply-side fore-
casting for all three metrics (PCC, MAE, RMSE).  

Demand-side vs. supply-side forecasting. As per Table 1, between de-
mand-side and supply-side forecasting, the supply-side forecasting 
shows better results. Although the PCC values were mostly within the 
same range for both demand-side and supply-side, the MAE and 
RMSE reveal more insights. Consistently, the demand-side forecast-
ing has a higher MAE and RMSE, indicating higher error. For exam-
ple, for the 1-month-ahead forecasts, the demand-side MAE and 
RMSE values are almost five times higher than the supply-side values. 
A possible reason for this is that while the past power supply (power 
production) data is a highly-correlating substitute to the weather data 
used in weather-based models, the past demand data still may be 
highly volatile. 

Forecasting time horizons. Consistently, the 1-month-ahead forecasts 
performs the worst, with the highest RMSE and MAE. Then, from 
worst to best-performing in terms of RMSE and MAE are 1-hour- 

ahead, 15-min-ahead, 1-day-ahead, then 1-week-ahead (however, be-
tween these four forecasting horizons, the error differences are not ex-
tremely large). These results indicate that while the 15-min ahead, 1-
hour-ahead, 1-day-ahead, and 1-week-ahead forecasts from our mod-
els may be usable, the 1-month may not be due to the large errors. 

Highest-scoring vs. lowest-scoring models (using MAE and RMSE). 
Consistently, the best-performing model for nearly all metrics, espe-
cially the PCC was LR. The worst-performing model for nearly all 
metrics was RF (although the biggest differences between RF and the 
rest of the models was only observed for PCC, not MAE and RMSE). 
On the other hand, DT is much worse than KNN for supply-side fore-
casting (with the worst PCC value of 0.56 in the monthly forecast), 
and KNN is worse than DT for demand-side forecasting (PCC of 0.86 
for KNN, compared to PCC of almost 1 for DT, for the monthly fore-
cast). 

Comparison to state-of-the-art weather-based models (using PCC). 
To make cross-study comparisons, the PCC value is used. In the state-
of-the-art models’ literature review by Mosavi et al., the best and most 
competitive weather-based models have a PCC ranging from 0.96 to 
almost 1 (5). For our best model, LR, for all time-horizons we are 
within that range for the PCC, with the exception of the 1-hour-ahead 
forecast for demand-side forecasting which has a PCC value of 0.95. 
However, the rest of our models are also competitively within or quite 
close to that range of weather-based models, indicating that our ap-
proach, especially using LR, can be a suitable substitute for almost all 
of the time horizon forecasts to weather-based models. 

Example forecast of supply-side forecasting: LR, 15-minutes-ahead. 
Figure 1 shows an example forecast using our best model, LR, for the 
15-minutes-ahead time horizon.  

DISCUSSION. 

We hypothesized that if we use the past power supply and demand 
data to predict the future power supply and demand, then we would 
achieve a high accuracy, as the past power supply and demand data 
are highly correlated with the weather-data, which would make our 
non-weather-based models still highly accurate—but cheaper and 
more reliable. Our hypothesis was shown to be mostly true, especially 
as our accuracies for our best model, LR, were comparable to state-of-
the-art models cited in the literature review by Mosavi et al. (5). 

 

Table 1. Results for both demand-side and supply-side forecasting. Re-
sults are shown for four models (LR, KNN, DT, RF), three metrics (PCC, 
MAE, RMSE), and five time horizons (15 min ahead, 1 hour ahead, 1 day 
ahead, 1 week ahead, and 1 month ahead). 
AI 
Model  

Metric Forecasting Time Horizons 

15 min 
ahead 

1 hour 
ahead 

1 day 
ahead  

1 week 
ahead 

1 
month 
ahead 

Demand-side forecasting 
LR PCC 0.97 0.95 0.97 >0.99 >0.99 

MAE 16.42 17.33 16.75 11.33 1105.55 
RMSE 19.01 20.72 19.23 12.40 1219.49 

KNN PCC 0.95 0.93 0.92 0.91 0.86 
MAE 15.15 14.99 13.15 12.24 1005.52 

RMSE 17.60 18.06 15.76 14.83 1219.27 
DT PCC 0.90 0.90 0.95 >0.99 >0.99 

MAE 16.01 15.79 15.57 11.34 1100.37 
RMSE 18.81 19.49 18.99 12.43 1210.70 

RF PCC 0.92 0.93 0.96 >0.99 >0.99 
MAE 17.61 14.81 14.40 11.34 1104.30 

RMSE 18.26 17.88 16.42 12.42 1216.44 
Supply-side forecasting 

LR PCC 0.98 0.96 >0.99 >0.99 0.99 
MAE 4.09 5.13 3.35 2.62 225.81 

RMSE 6.95 8.45 5.45 4.23 257.42 
KNN PCC 0.98 0.97 0.99 0.98 0.87 

MAE 4.36 5.54 3.05 2.73 343.44 
RMSE 7.12 8.66 5.43 5.41 413.18 

DT PCC 0.97 0.94 0.94 0.90 0.56 
MAE 4.34 5.53 4.15 4.43 226.17 

RMSE 7.22 8.83 7.42 8.74 256.90 
RF PCC 0.97 0.94 0.97 0.95 0.80 

MAE 4.69 6.03 3.34 3.23 224.89 
RMSE 7.65 9.18 5.63 6.07 256.22 

 
Figure 1. 15-minute-ahead forecast example using LR: Predicted vs Ac-
tual Power Output for the First 5 Days of the Year. The figure indicates 
that our model performs relatively well during most hours of the day, except 
for ‘middle of the day’ where more volatility is seen in the dataset. Between 
day 4 and day 5, for example, although actual power output was relatively 
smooth, our model predicts more volatility. Between day 2 and 3, our model 
overestimates the power production, despite catching the volatility. Hence, 
this shows that even though our PCC for this forecast is quite high (0.98), 
our model does not overfit. 



 

 

 

The main limitations of this study will now be addressed. The demand-
side forecasting was shown to be less accurate than the supply-side 
forecasting, and ‘middle of day hours’ (where there was high volatil-
ity) was less accurate as well. Adding ‘time of day’ of ‘time of year’ 
data to our models may improve this, as consumers’ demand and vol-
atility are highly correlated with particular times of the day as well. 
Exploring further avenues of ML, such as feature engineering, or other 
complex time series models such as ARIMA may also help this. Fur-
thermore, the monthly forecasting time horizon also did not perform 
well. In this case, weather-based models such as those of Otieno et al., 
Mcsharry et al., and Cenek et al. can be used, as those only require 
purchasing weather data 12 times a year (which is a low cost, com-
pared to purchasing it every 15 minutes a year) (1, 2, 3).  

However, the comparable PCC values to state-of-the-art models, and 
robustness of results (as these metrics were tested across 31 datasets) 
indicate the strength of these non-weather-based models as cheaper, 
more reliable substitutes—enabling wider deployment of microgrids 
and solar power in rural areas especially, where high costs are an issue. 
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