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BRIEF. An engineering project to figure out how does the angle of the cable affect its maximum load that the bridge can withstand using trigo-

nometry, Hooke’s Law and Newton’s Laws of Motion. 

ABSTRACT. Bridges are structures that have been built since the 

stone age.[1] Nowadays, they play an essential role in the world of 

fast transportation and trade, in which engineers are trying to find 

solutions to create longer and stronger bridges through different 

perspectives – materially, structurally, and physically. In this 

work, I hypothesized that as the angle of the cables (from the mast 

to the cable) of a harp-shaped cable-stayed bridge increases, it de-

creases its maximum load that it can carry. I recorded the maxi-

mum carried load at an angle of 63.44˚ to be 16.36 N; as the angle 

decreased, the maximum load increased, reaching 28.02 N at an 

angle of 21.17˚. However, there is an unexpected outcome shown 

in the data: the increase rate of the maximum load plateaued as the 

angle further decreased, only reaching to 28.32 g at an angle of 

13.17˚; the maximum tension even decreased to only 26 N at 5.42˚. 

INTRODUCTION.  

In the early days, bridges were usually built by stone or wood due to 

their characteristics of being secure under high pressure but vulnerable 

under tension, they were usually built in the form of arches and were 

short in length. Their appearance would not change until the industrial 

revolution, when factories started to mass manufacture.[2] These ma-

terials can experience more tensile strength, causing them to withstand 

load for a longer distance, influencing them to become longer and ex-

hibit increasingly unique designs.[3] 

Bridges are getting longer to compensate for the long journeys, trying 

to make travelers more convenient. The construction of the Hong 

Kong-Zhuhai-Macau Bridge, the longest open-sea fixed link in the 

world that includes three cable-stayed bridges, finished in 2018,[4] it 

challenged many engineers throughout the world to use physics to 

open new horizons; to build bridges that can withstand the maximum 

load and can send people on their longest adventures. 

Nowadays, there are many types of bridges: suspension bridge, truss 

bridge, and beam bridge just to name a few. One of the most used types 

of bridges is the cable-stayed bridge. Cable-stayed bridges have one 

or more towers, with several cables connecting the mast to the hori-

zontal beam. They can be classified into 4 different types: harp design 

with all the cables lined up parallelly, radial design with all the cables 

attached to one point on the mast, star-shaped design with cables con-

nected to two opposite points of the pier, and fan design being a com-

bination of the harp and radial design.[5] They can look similar to sus-

pension bridges - both using the tension in the cables to compensate 

for the load. However, the main difference is that while suspension 

bridges can be built in longer distances, they are able to carry less load 

than cable-stayed bridges. 

In this research, I will be focusing on cable-stayed bridges. The phys-

ics behind can be explained using trigonometry and Newton’s Laws 

of Motion. In the diagram, we assume that the tensile forces on the 

threads of both sides are equal, it is stationary and is at its equilibrium 

state. 

 
Figure 1. Free body diagram showing the forces and the decomposed vec-

tors of a cable-stayed bridge with 1 cable 

 

According to Newton’s third law, when the thread exerts a tensile 

force measured in Newtons on the horizontal beam, that the horizontal 

beam would exert a force that is equal in magnitude and opposite in 

direction on the thread,[6] hence pulling the mast shown in the dia-

gram above. Using trigonometry functions and Pythagoras theorem, 

both tensile forces can be derived into their vertical and horizontal 

components.[7] Therefore, we can use equation 1 below to explain the 

Newton’s third law experienced in the tensile forces of the thread: 

 𝐹𝐿𝑇−𝑚𝑎𝑠𝑡 = 𝐹𝐿𝑇−𝑏𝑒𝑎𝑚 (1) 

and 

 𝐹𝑅𝑇−𝑚𝑎𝑠𝑡 = 𝐹𝑅𝑇−𝑏𝑒𝑎𝑚 (2) 

where 𝐹𝐿𝑇−𝑚𝑎𝑠𝑡 is the left tensile force acting on the mast (shown in 

yellow in figure 1), 𝐹𝐿𝑇−𝑏𝑒𝑎𝑚 is the left tensile force acting on the 

beam (shown in purple in figure 1), 𝐹𝑅𝑇−𝑚𝑎𝑠𝑡 is the right tensile force 

acting on the mast (shown in yellow in figure 1), and 𝐹𝑅𝑇−𝑏𝑒𝑎𝑚 is the 

right tensile force acting on the beam (shown in purple in figure 1). 

Both vertical tensile forces components are separated from the original 

tensile force vector by an angle of θ, by using Newton’s third law, they 

add up with the downward weight of bridge and exert a force of pres-

sure on the top of the mast downwards, causing the floor to also exert 

a force same in magnitude but opposite in direction towards the mast. 

According to Newton’s first law, it will remain in equilibrium since 

there are no resultant forces acting on the mast,[8] which can be rep-

resented in the following equation: 

 (𝐹𝐿𝑇−𝑚𝑎𝑠𝑡 + 𝐹𝑅𝑇−𝑚𝑎𝑠𝑡) cos 𝜃 + 𝐹𝑊 = 𝐹𝑓𝑙𝑜𝑜𝑟−𝑏𝑒𝑎𝑚 (3) 

where 𝐹𝑊 is the weight of the bridge, 𝐹𝑓𝑙𝑜𝑜𝑟−𝑏𝑒𝑎𝑚 is the force applied 

from the floor acting on the beam, and 𝜃 is the angle between the main 

vector and the decomposed vertical vector component. 

Focusing on the two horizontal components of tension acting on the 

mast bridge. Due to the magnitudes of them being equal but opposite 



 

in direction, it has no resultant forces. Thus, according to Newton’s 

first law, it will remain in equilibrium. 

 𝐹𝐿𝑇−𝑚𝑎𝑠𝑡 sin 𝜃 − 𝐹𝑅𝑇−𝑚𝑎𝑠𝑡 sin 𝜃 = 0 (4) 

On the horizontal beam of the bridge, there are two horizontal compo-

nents of tension of equal magnitude but opposite direction acting on 

it. This causes no resultant forces and hence it will remain in equilib-

rium. 

 𝐹𝐿𝑇−𝑏𝑒𝑎𝑚 sin 𝜃 − 𝐹𝑅𝑇−𝑏𝑒𝑎𝑚 sin 𝜃 = 0 (5) 

Finally, the vertical component of the tension acting on the horizontal 

beam will compensate for the downward weight generated by the load. 

These two forces are equal if the horizontal beam is not moving, thus 

no resultant forces. Therefore, according to Newton’s first law, it will 

remain in equilibrium. 

 𝐹𝐿𝑇−𝑏𝑒𝑎𝑚 cos 𝜃 + 𝐹𝑅𝑇−𝑏𝑒𝑎𝑚 cos 𝜃 = 𝐹𝑊𝑚𝑎𝑠𝑠 (6) 

where 𝐹𝑊𝑚𝑎𝑠𝑠 is the weight of the masses combined. 

The bridge will collapse when the downward weight of the load sur-

passes the maximum tensile force that was held by the thread on the 

horizontal beam available in a vertical component. 

MATERIALS AND METHODS.  

This experiment is carried out partially in the school laboratory and 

partially at home, therefore the materials I have chosen are low-cost 

and easy to find. Due to sustainability reasons, I have used old card-

board boxes for the structure of the bridge model instead of using 

wood. 

Assembly of the mast of the bridge. 

The length of the mast of the bridge does not affect the final results. 

Before the assembly of the mast, I have selected a few cardboard boxes 

that are in good quality (stiff and undamaged), have chosen to cut 6 

pieces of cardboard in the area dimensions of 200cm x 10cm. When 

sticking the pieces together, the folds must be attached with them fac-

ing each other to avoid a buckling effect. Extra tape is used to further 

reinforce the mast by taping around the mast at the bottom and around 

the folds.  

I placed in total 4 eye-hook screws both front and back of the mast, 

with the same separation on both sides. To reinforce the screws, I 

simply applied UHU glue around the tip, thread, and shank of the eye-

hook screw. If the screws start to deform from its original position, I 

translated the 4 eye-hook screws to another position on the mast, keep-

ing a constant separation. 

To make the mast stand up easily, a sturdy platform is made to support 

it. The size and style of the platform does not interfere the final results. 

Assembly of the beam of the bridge. 

The beam of the bridge is also made from cardboard. I cut out 6 pieces 

of rectangular cardboard with area dimensions of 100cm x 10cm with 

a hole in the center of 12cm x 7cm. Then, I stacked them up and at-

tached them together with the method similar to the mast. Use some 

tape to tape around the borders of the beam and around the hole in the 

beam without creases since it acts as a string-like material that is ap-

plying tensile strength onto the beam to avoid bending. 

On the left side of the hole, starting from 3 cm into the beam from the 

width, and 2 cm from each side of the length, place 2 eye hook screws, 

and repeat this step with 6 cm intervals until it reaches the hole. It is 

then repeated again to complete the other side of the hole in the beam. 

In total, the beam should have 28 eye hook screws. UHU glue is ap-

plied around the tip, thread, and shank of the eye-hook screw to further 

reinforce them. 

Finally, measure the weight of the beam. This value will be added to 

the results when carrying the experiment. 

Method of Carrying out the Experiment. 

Place the mast through the hole of the beam. Four pieces of thread, 

with 2 markings of a separation 45cm drawn on each thread, is cut way 

beyond the markings. The ends of the thread is tied on to the outer-

most screws of the beam and the corresponding screw on the mast us-

ing a round-turn-two-half-hitches knot at the marking. Place the fin-

ished bridge section into the platform. Additional reinforcement can 

be further added by using two pieces of big items (e.g. furniture) to 

clamp the bridge. 

Place the masses (100g) two by two (one on each side) quickly on to 

the beam. When it reached towards its range of breaking, switch to 10g 

and 50g masses to achieve precise data. When placing the masses, try 

to even out where they are placed so that the pressure on the whole 

beam is even, and torque and slanting is avoided. 

Since the thread is a natural material and will elongate with weight as 

time passes by, the masses must be placed quickly so that there is min-

imum error in the data. 

Table 1. Results recorded from the experiment investigating how the angle 

between the mast and thread affect the maximum load 

Data 

Set 

No. 

The Angle 

between 

mast and 

thread (˚) 

Maximum Load (N) 

Trial 

1 

Trial 

2 

Trial 

3 

Trial 

4 

Trial 

5 

Avg. 

1 63.44 17.66 16.09 18.05 16.28 13.73 16.36 

2 49.56 18.64 18.87 20.80 18.25 18.05 18.52 

3 38.89 20.60 18.05 20.80 24.53 19.62 20.72 

4 29.63 23.54 25.51 21.58 23.94 22.76 23.47 

5 21.17 29.43 30.61 23.54 29.04 27.47 28.02 

6 13.17 28.45 28.65 28.45 28.45 27.66 28.33 

7 5.42 26.49 25.51 26.09 18.05 13.73 26 

*Trials 4 and 5 of data set 7 (in red) were eliminated due to anomalies. 

RESULTS. 

Analysis of data. 

As the angle between the mast and the string increases, using equation 

(6), it shows that the value of both vertical components of the tensile 

forces acting on the beam of the bridge decreases. The graph records 

the most maximum load of 28.02 N at an angle of 21.17˚. As the angle 

increased to 63.44˚, the maximum load decreased, reaching 16.36 N. 

A line of best fit is plotted against the results, which shows that the 

maximum load of the bridge that it can carry decreases exponentially. 

Nevertheless, the values for data 6 and 7 (13.17˚ and 5.42˚ respec-

tively) were out of my range of prediction; in which the values for data 

set 7 were even below data set 6. The data sets were then plotted 

against the other data sets with a line of best fit; the maximum load 

increased as the angle decreased, but after 13.17˚, the maximum load 

decreased as well. This was not as predicted in my hypothesis. 

After finding out this anomaly, I tested the “stretchiness” of the string 

by hooking the string onto different masses of different weights and 

measuring the extension. Hooke’s law states that if a material obeys 

the law, it must have a directly proportional unit tensile force to unit 

length in the extension.[9] By applying to Hooke’s law equation, I can 

also find out the spring constant of the string: 

𝐹𝑇 = −k𝑥 (7) 



 

 
Figure 2. Graph showing the values (data set 1 – 5) that follow my hypothesis 

(line of best fit shown in blue), and those that do not follow the prediction 

made in the hypothesis due to Hooke’s Law (line of best fit shown in green) 

 

where 𝐹𝑇 is the tensile force of the string and 𝑥 is the extension of the 

string under stretching. 

Since in this investigation, the weight is equal to the tensile force due 

to Newton’s third law, therefore we can use the following expression: 

𝐹𝑊−𝑚𝑎𝑠𝑠 = −k𝑥 (8) 

where 𝐹𝑊−𝑚𝑎𝑠𝑠 is the weight of the mass put on the thread. 

When I tested out the string using Hooke’s Law, I made sure that the 

masses are put as quick as possible, since long-term stretching can 

cause deformation to the string. The results yielded in a pattern that it 

started off every unit of weight added is directly proportional to its 

extension. Nevertheless, after a certain point, the string was much eas-

ier to stretch and lead towards a breakage. This shows that the material, 

after a certain point of tension, does not obey Hooke’s law. 

As the angle of the string between the mast decreases, there will be an 

increase in the ratio of the vertical tension component acting on the 

horizontal beam in comparison to the corresponding horizontal com-

ponent. This causes the Hooke’s law effect to be amplified. Hence, it 

caused the thread to break earlier than predicted.  

DISCUSSION. 

Relating back to hypothesis. 

My hypothesis stated that as the angle from the mast to the cable of a 

harp-shaped cable-stayed bridge increases, it decreases its maximum 

load that it can carry. After the experimental and data analysis process, 

it has proven my hypothesis to be partially correct. From 21.17˚ to 

63.44˚, the results have shown that the maximum load increased as the 

angle decreased. However, if the cable of the bridge was set up at a 

smaller angle, the results yielded differently; instead of continuing to 

increase, it had a lower maximum carried load than expected. 

Optimal angle. 

To calculate the optimal angle, I simply differentiated the Gaussian 

equation shown in figure 2 in green.  

 
𝑦 = 11.5𝑒

−(𝑥−11.5)2

21.822 + 16.83 
(9) 

 
d𝑦

d𝑥
= −

(57500𝑥 − 881475)𝑒−
2500(𝑥−15.33)2

1190281

1190281
 

 

(10) 

where 𝑦 is the maximum load and 𝑥 is the angle of the cable to mast. 

Since I am finding the optimal angle, hence I will need to let the dif-

ferential equation (8) to be 0 to find the turning points. 

 

0 = −
(57500𝑥 − 881475)𝑒−

2500(𝑥−15.33)2

1190281

1190281
 

 

(11) 

 𝑥 = 15.33 (12) 

Therefore, it shows that the bridge will carry the most load at 15.33˚. 

Errors and improvements. 

The main error presented in this project is that I did not account for the 

point that the thread starts to become a non-Hookian material. Alt-

hough this did not cause any effect towards the majority of the results, 

it seriously affected the results of data set 6 and 7 (13.17˚ and 5.42˚ 

respectively) where they involve in smaller angles between the cable 

and the mast. I initially chose thread as my material since it is low-cost 

and easier to break. To improve the experiment, I could have used an 

artificial fiber that obeys Hooke’s law for a larger force, but at the 

same time is easy to break. 

Limitations. 

It is stated in the methodology section that the masses are put evenly 

across the beam to even out pressure and avoid the beam undergoing 

slanting or torque. However, this is impossible due to human error that 

a very slight slanting of the beam can be seen when carrying out the 

experiment. 

The unpredictable outcome. 

Although the anomaly caused unreliable data for the smaller angles, it 

mimics the effect and explains why all harp-shaped cable-stayed 

bridges in real life do not have very small angles between the cables 

and the mast. When engineering, a safety margin is necessary to ensure 

that the structure is safe at all situations, therefore redundancies, such 

as having several cables holding the beam and having a bigger angle 

between the cable and the mast, is made into the designs of the bridge. 

For example, there is an investigation on the cable optimization of the 

long-span cable-stayed bridge in La Coruña which investigates on the 

distribution, number, and angle of cables.[10] 

Extensions. 

An extension towards investigating which types of bridges are the 

most beneficial towards which types of locations can be done to fur-

ther understand the implications of a structural engineers decision pro-

cess. Also, the effect of the wind causing torsional dynamics and an-

gular acceleration can cause drastic effect to a bridge, thus can be in-

vestigated.[11] 
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