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BRIEF. This study used deep neural networks to remove dark region artifacts in order to create clearer ultrasound images.

ABSTRACT. This study aims to use machine learning in the form 
of Deep Neural Networks (DNN) to remove unwanted off-axis sig-
nals that causes dark region artifacts (DRAs) to appear on ultra-
sound images of dense, bright bodies, such as kidney stones. DRAs 
cause dark areas to appear around the bodies in ultrasound images 
formed through beamforming. This was done by creating 27 dif-
ferent DNNs with varied parameterization of drop out, hidden lay-
ers, and batch size in order to see whether the DNNs were effective 
at removing the DRAs and if so, what parameters were the most 
effective. After data analysis using MATLAB Excel to calculate 
and analyze both image contrast and contrast to noise ratio, it was 
concluded that the all 27 DNNs were successful at removing at 
least some of the DRAs while having low dropout was the most 
conducive to creating the best image. This is important as ultra-
sounds are a inexpensive non-invasive way to examine tissue, and 
more complete and accurate images are vital for proper diagnosis 
and understanding of that tissue. 

INTRODUCTION.  

Ultrasound uses reflection of sound waves to produce images. This is 
commonly used in imaging tissue as a non-invasive way to examine 
growths, such as tumors or kidney stones. The sound signals are made 
into images through a process known as beamforming, in which an 
ultrasound probe with several different sensors combines their 
individual information to form one coherent image through an 
equation that waits for the data from each sensor and adds it up (delay 
and sum). However, the sound does not always reach the channels 
after being reflected off the tissue flawlessly. The sound often returns 
with extra data known as clutter, commonly caused by off-axis signals, 
distortion of the sound, or reverberation, the sound echoing off the 
tissue. This clutter makes the image blurry after assembling, known as 
image-degradation. To combat the degradation and improve image 
quality, adaptive beamforming, which changes the equation 
depending on the characteristics of the image, is beginning to replace 
traditional delay and sum beamforming [1]. 

Currently, one major result of using an adaptive beamformer is strong 
off-axis signals in the regions surrounding a region of interest, 
resulting in lowered coherence, or lack of information [2].  Dark 
region artifacts (DRAs) are a very common phenomenon resulted 
from off-axis signals in adaptive beamformers, and which limit 
adaptive beamformers from being used in real world settings [3]. 
DRAs are a phenomenon created by some adaptive beamformers 
wherein dense objects, such as kidney stones, reflect sound much 
better than the surrounding soft tissue. As a result, measures used to 
weight the image are degraded which results in dark spots, which 
typically suggest an absence of tissue as shown in Figure 1. This 
makes it extremely difficult for healthcare providers to fully assess the 
condition of the surrounding tissue.  

Recently, initial research has demonstrated the benefit of using deep 
neural networks (DNNs) to reconstruct ultrasound images, but the 
DNN training is still a big challenge [1]. DNNs work by learning what 
data is good data and learning what is bad data. It compares its results 
for filtering to idealized simulated removals to learn what it can do 

better. Previous studies have shown that using linear ultrasound 
simulation tools to generate training data for reconstructing ultrasound 
images is helpful, but limited image quality is one concern of this 
approach. Surprisingly, previous studies have shown that assignment 
of different settings for the adaptive beamformers known as 
hyperparameters for DNN beamformers significantly improved image 
quality [1]. Furthermore, pilot experiments suggested that 3 
parameters were found to be crucial for the quality of  images created 
by the DNNs: hidden layers (the number of steps that the DNN takes), 
dropout (what percentage of the data is being dropped to prevent 
overfitting) and batch size (how many examples the DNN is being 
trained with). The current study aims to broaden the use of DNNs to 
reduce DRAs by first removing off-axis data before using an adaptive 
beamformer to avoid the signals from being used to create the image. 
Additionally, this study attempts to determine which parameter was 
the most critical in removing off-axis signals while still preserving the 
speckling, or pattern around the cyst. 

MATERIALS AND METHODS.  

27 DNNs were designed in Python using Anaconda and PyTorch 
packages. Each DNN had different parameters. Three parameters were 
adjusted in this study: hidden layers (1, 4, or 8); dropout (0, 0.25, or 
0.5) and batch size (32, 128, or 512). A fully connected neural network 
architecture with a rectified linear unit (ReLU activation function), a 
way for the DNN to know if it is successful) will be used. The learning 
rate was adaptively tuned using the adaptive moment estimation 
method, with a learning rate (α) of 10-3, and averaging coefficients of 
β1=0.9 and β2=0.999.  

The DNN was then trained using simulated data. Ten simulated 
ultrasonic phantoms were generated using Field II simulation software 
in Matlab. Eight were used for training and another two were used to 
assess error after training. These phantoms mimic a region of tissue 
with a bright cyst with a darker background. The cysts were scaled to 
be 30 dB larger in amplitude than the tissue, allowing the cysts to be a 
lot brighter. Additional noise was added at -10 dB relative to the tissue 
to simulate reverberation that would occur naturally.  

Simulated data with the cysts were modelled after a linear L7-4 that 
was acting as a transducer, or the ultrasound probe that would usually 
be put against the body. The data was simulated in an environment 

 
Figure 1. Example of a cyst with dark region artifacts surrounding the cyst 
on the horizontal. (Units in mm). 



 

 

similar to a human body. The probe was designed to have 65 
individual sensors, or elements with a size of 0.25 mm.  The speed of 
sound was assumed to be 1540 m/s, which is the approximate speed 
of sound as it travels through soft tissue.  

Training is performed by exposing the DNN to curated pairs of 
channel data (input) and manually-corrected channel data (output). 
The manually-corrected channel data was formed by excluding the 
strong off-axis signal signals produced by the cyst that are normally 
superimposed on the background. This correction can only be 
performed in simulation, where the cyst and background data are 
generated separately. In clinical imaging, these contributions are not 
easily separable, which motivates using simulated data for the 
development of a DNN correction methodology. 

During training, the DNN develops an algorithm that accurately 
recreates an image of the cyst without DRA from the original data. 
The final algorithm is optimized through a series of epochs, cycles 
where a DNN makes a slight adjustment to the algorithm. A successful 
change is determined through mean square error by comparing the 
resulting image with the actual image of the cyst without DRA. The 
training was terminated if the mean square error did not improve after 
20 consecutive epochs, and the last successful epoch is used. This 
training model has been previously used by Luchies and Byram. [1] 

Whether the DNN successfully removed, the DRA was determined by 
a measurement of contrast. Final images were formed from the post-
processed channel data using the coherence factor adaptive 
beamformer, which suffers from DRAs. Coherence factor images are 
formed by multiplying the delay-and-summed image by a weight 
determined by the signal coherence. This is performed as 
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�∑ 𝑆𝑆(𝑖𝑖)𝑁𝑁−1

𝑖𝑖=0 �2

𝑁𝑁 ∑ |𝑆𝑆(𝑖𝑖)|2𝑁𝑁−1
𝑖𝑖=0

� 𝑆𝑆(𝑖𝑖)
𝑁𝑁−1

𝑖𝑖=0

 (1) 

where S(i) is the signal on channel i after focusing delays are applied 
and N is the total number of channels available [4].  

Contrast was calculated by comparing the area that previously 
contained a DRA with an area of the background without a DRA, 
using the following formula 

Contrast = 10 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙10�  
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where μ indicates the mean image intensity. If the contrast is very low 
and close to 0, the DNN is defined as successful removal of the off-
axis signals, suggesting a uniform tissue pattern is achieved. Another 
metric, contrast to noise ratio (CNR) was used as a backup for contrast, 
as sometimes contrast can end up being infinity if the background is 
completely black [5]. CNR is calculated according to the following 
formula 
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where σ indicates the standard deviation. 

RESULTS. 

DNNs effectively removed contrast between DRA and other 
background. 

Removal of these dark regions in ultrasound images will provide more 
detailed information for clinical doctors. To determine whether 
utilizing DNNs will improve the image contrast, the algorithms 
obtained through training were tested with 5 new images with DRAs. 
Unlike in training, it was not exposed to what the images were 
supposed to look like without the DRAs. Then, the contrast and 
contrast to noise ratio of both the original images and the images after 
being processed by the DNN were made into a box and whiskers plot 
(Fig. 2), which shows how the DNNs had metrics closers to 0 than the 
original, suggesting improvement. The contrast measures were then 
log compressed and averaged between each DNN to be analyzed.  
Compared to the average contrast of the original images (which is 
0.977), the average contrast of all 27 different DNN conditions was 
significantly increased. In contrast, the Contrast-Noise Ratio (CNR) 
of all 27 different DNN conditions were significantly decreased as 
shown in figure 2. These data suggest that using DNNs to reconstruct 
a ultrasound image may improves image contrast. Of note, the three 
top CNNs conditions are 21st, 20th, and 3rd when analyzed for 
contrast.  

 

 

 
Figure 2.  Contrast and CNR of each of the DNNs, with the best DNNs are boxed in red. 



 

 

Table 1. Average contrast of 27 DNNs, measured utilizing Matlab after adjustment of three parameters. Lower contrast indicates the most improvement. 

 

DNNs effectively limited dark region artifacts. 

One drawback of most adaptive beamformers is dark region artifacts 
(DRA), which may mislead clinical doctors. Often, these metrics do 
not tell the whole story and the images still have to be hand selected. 
It is important that the human brain can see the same improvement that 
the numbers do. Figure 3 shows the difference between the original 
cyst, the cyst after being processed by the best DNN and the same cyst 
after being processed by the worst DNN. When compared with the 
original image, which had prominent dark region artifacts, even the 
worst DNN improved the imaging of the area around it. However, 
there was still a visible darker patch in the DRA. This was changed in 
the best DNN. It preserved the speckling the best while being able to 
completely fill out the dark region artifacts. 

 
Figure 3. The original cyst and compared to the same cyst after being pro-
cessed by the best and worst DNNs. Both DNNs show removal of the 
black area that surrounds the cysts in the original image. 

Parameter Effects. 

The 27 DNNs were created with different combinations of three 
parameters (Hidden layers, Dropout and Batch size), and contrast of 
the images was quantified by Matlab.  

The parameters of each of the DNNs were lined up with the ranking 
of the DNNs by contrast, and a correlation coefficient was found 
between each of the 3 alters parameters (hidden layers, dropout, batch 
size) and the contrast. There was a weak correlation between both the 
batch size and the hidden layers, with correlation coefficients of -0.200 
and -0.343 respectively. However, the dropout had a higher correlation 
coefficient at 0.569, showing a possible correlation between lower 
dropout and improved artifact removal. This possibility is supported 
by how 6/7 of the best DNNs in respect to contrast had the same 
dropout of 0. Table 1 shows the parameters for each of the DNNs and 
the subsequent contrast. 

DISCUSSION.  

Overall, when tested on new data that it had not been previously ex-
posed to, the DNNs were very effective in reducing the DRAs that 
resulted from the off-axis signals resulting from the beamforming 
techniques. Passing the channel data first through the DNNs before 
beamforming resulted in a similar contrast and CNR between the area 
that previously had the DRA and an unaffected part of the background. 
This process improved coherence and created better and more accurate 
images. This study also showed that the dropout could be the most 
important parameter for removing DRA, as low dropout had the 
strongest correlation with the contrast as well in addition to 6/7 of the 
best DNNs having no dropout. This should be tested in the future to 
show whether the dropout itself is what creates a DNN that is the best 
at removing DRA as well as testing low dropout, a measure meant to 
prevent overfitting, with large training sets to see if that affects the 
results as well. Finally, now that it is clear that a DNN can successfully 

remove DRA from the images, it is important to see how well this 
DNN works with DNNs that serve other purposes for ultrasound 
beamforming, as the ultimate goal is to have a DNN that can work real 
time to solve a multitude of issues common in ultrasound imaging. 
This would allow the DNN to be applied in real time would help doc-
tors and healthcare workers around the world gain better understand-
ing the tissue and surrounding area of dense bodies, such as kidney 
stones. This is especially useful because ultrasounds are one of the 
least expensive, non-invasive imaging techniques, as it does not re-
quire dyes or special facilities and ultrasound machines are relatively 
portable. 
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