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BRIEF. A machine learning algorithm was programmed and optimized to predict the activity of enhancer regions of DNA. 

ABSTRACT. Machine learning is a computational technique of 
data analysis that has shown rapid growth in use and applicability 
in the last decade. Machine learning is now being applied to a great 
extent within biology, proving to be a useful tool in the study of 
the human genome. This project employed machine learning 
regression techniques to predict the activity of enhancer regions of 
the human genome. The algorithm is trained using enhancer 
regions identified in a massively parallel reporter assay and tested 
using cross-validation methods. Genomic region features such as 
response to transcription factors and chromatin content, as well as 
4-mer sequence data, are used as features for the algorithm. The 
final algorithm can predict enhancer activity almost as effectively 
as more complicated methods, demonstrating the high 
achievement of simple algorithms as well as the ability of machine 
learning techniques to provide insight into biological bases for 
genetic interactions. 

INTRODUCTION.  

Since the first complete sequencing of the human DNA sequence by 
the Human Genome Project in 2001, where it was determined that only 
2% of the genome encodes genes, multiple experiments and studies 
have been conducted in efforts to better understand how genetic code 
translates to phenotypic traits [1,2]. The human genome is of particular 
importance to researchers, as uniquely human genomic regions give 
rise to traits such as heightened intelligence and increased 
susceptibility to certain diseases not found in recent ancestors such as 
chimpanzees or other apes [2]. Many mutations in the human genome 
that affect disease susceptibility are found not protein-coding genes, 
but in non-coding regions, which can affect gene expression [2]. These 
non-coding gene regulatory regions are quite complex, as they can 
exert regulatory function by chromatin looping in three-dimensions, 
allowing non-adjacent and even distant portions of the genome (up to 
1 Mbp apart) to promote or inhibit a target gene’s expression. 
Enhancers are a major type of regulatory region, and are of great 
interest for the study of human biological uniqueness, DNA structure, 
and complex disease [3,4]. Enhancers are known to both evolve 
rapidly as well as remain highly conserved across species, indicating 
opposing implications regarding their function and importance [3]. 

In order to determine the location and strength of an enhancer region, 
experimental assays must be performed on selected sections of the 
genome [5]. These are becoming more efficient and accurate, but 
results obtained from them must be analyzed and synthesized by 
researchers [5]. Massively parallel reporter assays (MPRAs) are one 
such experimental method, which can assay hundreds or thousands of 
sequences simultaneously. Likewise, MPRAs that produce datasets 
with thousands of entries and are difficult to fully analyze; drawing 
conclusions about the nature of enhancers or other gene regulatory 
elements becomes an arduous and expensive task. To combat this issue 
and to expedite the process of determining the strength of an enhancer 
region, machine learning techniques have been implemented [6-8]. 

Machine learning is an algorithmic method of analyzing data and 
making predictions based on the observed patterns [7]. It can be used 
to some degree in nearly every scientific discipline, but has specific 
utility in the field of genetics and genomics [7]. Human genome 

sequence data can be used as input from which the algorithms learn 
patterns, and the resulting models can be analyzed to determine certain 
characteristics of a given sequence, allowing for expedient 
interpretation of results [6,7].  

Machine learning is also applicable within genetics as a tool for 
determining the importance of certain genomic characteristics [9]. A 
myriad of possible features can be generated from genomic sequence 
data, but only a handful of those features contribute any significant 
information about the genomic characteristic being studied. A 
genomic region might, for example, be known to inhibit the expression 
of certain genes, but whether or not that region is highly conserved 
across recent ancestors may not be relevant to the analysis or 
predictability of such a region. Machine learning methods such as 
feature selection allow for the importance of these features to be 
evaluated, providing results for further empirical study [9]. Such 
results can also create the foundation for the discovery of new genetic 
interactions, characterization of less-understood relationships, or new 
insight regarding previously confirmed results [5,6,8]. 

Despite their functionality, machine learning techniques have yet to 
replace standard assays for two main reasons. First, choosing the most 
effective learning algorithm is challenging, as different algorithms will 
predict varying activity levels. Furthermore, most techniques fail to 
produce high levels of accuracy in comparison with actual results [6, 
9]. Though performance is improving, recent gains are not sufficient 
to replace conventional methods. Second, it is difficult to determine 
what DNA sequence information is relevant to its activity. Hundreds 
of characteristics of a genomic sequence can be tabulated and, in order 
to increase speed and efficiency, must be pared down to the minimum 
number of necessary features to analyze and incorporate into a 
prediction model [3,5,6]. 

This project used Python 2.7 Scikit-Learn evaluate the performance of 
a machine learning algorithm research trained on a dataset of enhancer 
regions obtained from Inoue et al. 2017 [6,10]. The algorithm 
employed both ENCODE functional annotations and sequence data as 
feature sets, and when utilizing the best combination of feature sets for 
training, predicted enhancer activity with a level of accuracy that 
suggests applicability on a larger scale. The goals of this research were 
twofold: (1), determine the ability of machine learning techniques to 
be utilized in the study of enhancer activity, and (2) evaluate the 
importance of certain genomic features in the analysis of enhancer 
activity. 

MATERIALS AND METHODS.  

Dataset Generation. 

To create a dataset for training each machine learning algorithm, two 
distinct types of features were incorporated. Firstly, data from Inoue 
et al. 2017 was utilized throughout training and evaluation of all 
machine learning algorithms [6]. This data included ENCODE 
database annotations, namely levels of response to certain 
transcription factors, GC content, and conservation across recent 
ancestors [5,6,8,11]. A total of 327 features were obtained from this 
dataset [6]. The second set of features employed was sequence 4-mer 
counts. These features count the occurrence of each possible substring 
of 4 base pairs (bp) in length within an input sequence, where each of 



 

the 256 possible 4-mers represents a single feature vector. Sequence 
4-mers were generated by counting the occurrence of 4-mers for each 
region listed in Inoue et al. 2017. A portion of the scripts for this 
purpose were written by laboratory collaborators prior to the 
commencement of this research project. An additional feature, the 
length of the input sequence, was also incorporated, as it has been 
observed that the length of a sequence impacts its activity [12]. 

Algorithm Design. 

To accomplish the task of enhancer activity prediction, regression 
analysis was used, as the output data has a continuous range reflecting 
the predicted amount of activity, rather than a set of categories or 
clusters. The regression algorithm utilized was ExtraTrees, a 
randomized decision tree found with the Scikit-Learn module for 
Python 2.7 [10]. The algorithm is trained and evaluated on the total 
feature sample using Pearson’s r coefficient. The majority of this 
work, due to its computational complexity and time requirements, was 
performed on an institutional supercomputer cluster. 

Cross-Validation. 

In order to prevent over-fitting an algorithm to the dataset, the k-fold 
cross-validation feature was used [6,10]. Cross-validation functions by 
withholding a random portion of input data while training an algorithm 
on the remaining data, then evaluating the algorithm’s performance on 
the withheld data [10]. k-fold cross-validation performs this process 
on k subsets of the total input space, then combines each of the k 
algorithms into a single algorithm [10]. This method prevents the 
algorithm from learning to predict only the outputs of its training data, 
allowing it to generalize to other data sets. In this study, k = 10 was 
used as a compromise between cross-validation intricacy and 
computational complexity. 

Finally, the importance of each feature for the final accuracy of the 
algorithm was determined. ExtraTrees was first evaluated by training 
solely on sequence 4-mer data and then solely on ENCODE 
annotations data. Each individual result was then compared to the 
accuracy of the model trained using the total set of features. The 
importance of each feature individually was determined using Scikit-
Learn’s feature selection tools, which ranks each feature in order of 
importance to the accuracy of the algorithm [10]. It is often the case, 
however, that multiple features appear to contribute equally to the 
success of the final algorithm. 

RESULTS. 

Following the training of ExtraTrees on each subset of features, the 
predicted activity was plotted against the known activity. The activity 
level of enhancer regions was measured as the ratio of RNA counts to 
DNA counts in parts per million for specific barcode sequences within 
each region [6]. The barcodes selected have been shown to be 
indicative of enhancer activity [6]. The exclusion of ENCODE data in 
training produces an insufficient prediction algorithm (Figure 1). The 
Pearson’s r coefficient, which measures the linear correlation between 
two data sets, of -0.027 demonstrates poor enhancer activity prediction 
ability for this particular algorithm. The p-value is also greater than 
0.05, indicating that any correlation between the predicted and actual 
activity is product of random chance rather than the predictive ability 
of sequence 4-mers. 

In comparison with sequence features, ENCODE annotations produce 
a more accurate algorithm (Figure 2). The Pearson’s coefficient is 
much greater (0.41 vs -0.027) and the data clusters more centrally 
along the line y=x. This demonstrates the high predictive capability of 
ENCODE annotations for enhancer activity. The p-value (p = 1.6e-93) 
for this plot shows that the correlation is statistically significant.  

The inclusion of all features produces the most effective prediction 
algorithm (Figure 3), with a linear correlation coefficient of 0.42. 

Though this value is only marginally greater than that of Figure 2, it is 
nonetheless an improvement and indicates a slight gain to be had from 
the inclusion of sequence 4-mers as features. Similar to Figure 2, the 
p-value is also statistically significant. 

Though the best algorithm has a correlation less than 0.5, this value is 
still commendable for its goal, as similar methods have only attained 
a Pearson’s r coefficient of 0.6 on the same data [6]. The methods 
employed in this study, however, utilize simpler machine learning 
algorithms and fewer input features, and were still relatively effective. 

 

 
Figure 1. ExtraTreesRegressor trained with sequence features only. 
Activity is given as a ratio of RNA and DNA counts, with frequency 
histogram presented opposite axes. 

 

 
Figure 2. ExtraTreesRegressor trained with ENCODE annotations only. 
Activity is given as a ratio of RNA and DNA counts, with frequency 
histogram presented opposite axes. 

 

 
Figure 3. ExtraTreesRegressor trained with sequence features and 
ENCODE annotations. Activity is given as a ratio of RNA and DNA counts, 
with frequency histogram presented opposite axes. 

 



 

DISCUSSION. 

As previously stated, the two primary goals of this project were to 
evaluate the efficacy of machine learning for the prediction of the 
strength of enhancer regions and to determine the importance of 
certain feature sets, specifically ENCODE functional genomic 
annotations and sequence k-mers, on the accuracy of a prediction 
algorithm. For the latter of these goals, it is concluded that ENCODE 
features for each region are far more important than sequence k-mers 
when each set is considered separately, likely due to the wider breadth 
of information pertaining to genetic structure and chemical 
interactions described by ENCODE features. This result is not entirely 
unexpected, as previous studies have confirmed the ability of such 
features in other contexts [5,7]. It is important to note, however, that 
algorithms trained using sequence k-mers and other data obtained 
purely from the DNA sequence of a region itself, such as gapped k-
mers, have obtained similar accuracies [3]. Though the algorithms 
generated in these previous studies classify regions as enhancers rather 
than assess their activity level, their accuracy contrasts with the 
inability of 4-mers to predict enhancer regions in this study [3].  

When both ENCODE features and sequence 4-mers are incorporated 
for training ExtraTrees, the resulting algorithm outperforms those 
trained on each dataset individually (Figure 3). This is to be expected 
as ENCODE features, unlike sequence data, provide information about 
the configuration and specific chemistry of DNA regions, as well as 
how different portions interact with various enzymes, proteins, and 
other regions. Their overall predictive ability indicates that certain 
chemical qualities, likely related to the 3-dimensional configuration of 
a DNA strand, determine a region’s enhancing ability rather than 
specific sequences of nucleotide bases. 

The success of ENCODE incorporation also reflects a general truth for 
the training and evaluation of machine learning algorithms: that input 
features can never impede an algorithm’s predictions, but can only 
improve the algorithm or have no effect on accuracy. Despite this, the 
goal of determining feature importance is still relevant, as high 
correlation between features and enhancer activity may indicate an 
underlying biological framework for the association and provide a 
point for further experimental study. Certain features are also 
computationally laborious to generate or computer; removal of these 
features which produce minimal algorithm improvements (improving 
the algorithm’s accuracy by an amount less than some threshold) will 
likely decrease the total running time of the algorithm training. 

The accuracy of the regression model trained on all features is 
comparable to other algorithms trained using the same dataset, 
confirming the ability of machine learning to be used in the study of 
enhancers [6, 9]. This study, however, is the first known example of a 
randomized decision forest being employed for the prediction of 
enhancer region strength. Algorithms of this type present great 
potential for further use in genetics, as they are a compromise of 
algorithm complexity and computational effort. 

CONCLUSION. 

Both of the primary goals of this study were accomplished: the 
evaluation of the ability of machine learning methods to be used to 
study enhancers and quantification of the importance of ENCODE 
data and sequence k-mers as training features. However, there are 
multiple possible paths to enhance these results, particularly pertaining 
to the second goal of studying feature importance. There exist multiple 
alternative methods to rate the importance of individual features and 
their contribution to the final algorithm during training. Discerning the 
most important ENCODE features can not only reduce the 
computational time required to generate an algorithm but also lend 
insight toward genetic interactions. Features with high predictive 

ability may possess an underlying biological reason for an increased 
correlation with enhancer activity, which can be solidified through 
experimental analysis. 

Beyond feature selection within currently included datasets, models 
can also be improved with the inclusion of other feature sets, such as 
those used in previous studies [3,5,6,8]. This study’s results display 
the capabilities of machine learning as a tool to study human genetics. 
The use of a randomized decision forest to predict enhancer activity is 
novel, and has comparable accuracy to other algorithms trained using 
the same dataset. Future studies will continue to effectively utilize 
machine learning to learn more about the complexities of the human 
genome and develop a more complete understanding of the regulation 
of gene expression. 
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