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ABSTRACT. Critical infrastructures are complex systems subject 
to a variety of disruptions that cause disturbances to residential, 
commercial, and industrial users. When power systems are 
disrupted, decision makers want to know who is affected and how 
to quickly restore power as people rely on these systems for daily 
use and economic livelihood. Data from the Energy Information 
Agency (EIA), consisting of power outages in the United States 
and Puerto Rico from 1999 through 2016, is analyzed to assess the 
resilience associated with regional power systems. An outlier and 
correlation analysis are performed to build a regression model to 
estimate the impact of disruptions on the community. Once outliers 
are identified and removed, no linear correlation is found between 
the three quantitative variables: megawatt loss, customers affected, 
and duration. A set of linear regression models are built to measure 
the impact of specific disruption scenarios on the resilience of a 
system quantified here as duration. Results indicate that there is a 
non-linear relationship between the dependent variable duration 
and megawatt loss and customers affected. In addition, extreme 
weather events such as hurricanes and floods increase the duration 
of outages that also varies by region and time of year. 

INTRODUCTION.   
Critical infrastructure systems, such as gas, water, or power systems, 
which are vital to modern society can be disrupted by natural 
disturbances, man-made complications or accidents. Current research 
focuses on measuring the resilience of critical infrastructure systems, 
defined as the ability of a system to withstand and recover from a 
disruptive event [1]. A system is considered more resilient when it is 
less vulnerable to risks and able to regain functionality quickly after a 
disruption [2-4].  

This project focuses on analyzing data from regional power outages to 
quantitatively measure the resilience of critical infrastructure systems. 
The project uses publicly available data from the EIA database on 
national power outages across the United States from 1999 to 2016. 
The data is classified according to the North American Energy 
Reliability Corporation (NERC) regions, start date, end date, duration, 
disturbance type, megawatt loss, and number of customers affected 
[5]. This research explores the relationships between quantitative 
variables such as duration of an event, megawatt loss, and number of 
customers affected, as well as how these variables may be affected by 
specific disturbance types, regions, months, and years. To model the 
resilience of the system, correlations between variables must be 
explored to understand the relationship between key variables. To 
measure the resilience of critical infrastructure systems, a series of 
multiple linear regression models are built using both qualitative and 
quantitative variables to estimate the impact of disruptions to 
consumers. The variable used to describe the resilience of the system 
is duration, which describes the length of the disturbance. The other 
variables recorded can be used to estimate duration, because each 
variable relies on duration for the outcome.  

METHODS.   
For this project, R, an open source, statistical computing programming 
language is used for an in-depth analysis [6]. This analysis is 
performed on power outage data provided by the EIA because it 
contains information on how the system is impacted by a disruption. 
First, an outlier analysis is performed on the number of customers 
affected and megawatt loss. This allows for observations that are not 
consistent with the data set to be removed to avoid discrepancies in 
the model. Second, correlations are evaluated between customers 
affected, megawatt loss, and duration to determine the suitability of a 
linear regression model to estimate duration. Third, a set of linear 
regression models are fitted to test the impact of interaction and 
polynomial terms. This allows us to determine the suitability of 
regression models to estimate the resilience of power systems to 
outages. 

Outlier Analysis.  

Outliers are points that are inconsistent with most of the data set and 
can potentially skew or bias any analysis preformed.  In multiple linear 
regression models, outliers are more difficult to detect via simple 
scatterplots, so residuals from regression models are analyzed to detect 
outliers in both the predictor and response variables. To identify 
extreme values in the data set, Bonferroni’s outlier test is performed, 
which reports the p-values for residuals of the multiple linear 
regression model, and labels inputs as extreme if they are statistically 
different from other values [7]. 

Correlation Analysis. 

While correlation and independence are associated and often used 
interchangeably, these terms represent two different concepts. 
Independence is the statistical relationship between two variables that 
represents that one event occurring has no impact on another event, 
and correlation is the extent to which those two variables have a linear 
relationship with each other [7]. Two events may have no linear 
correlation, but can still be dependent on one another for results. The 
Chi-Square test, a goodness of fit test, is a statistical method of 
determining whether there is dependence in the data based on 
theoretically expected values of the underlying distribution. Results of 
this test can determine whether two variables are independent, but 
there is an underlying assumption that the data follows a normal 
distribution [7]. 

A correlation analysis on the quantitative variables, customers 
affected, kilowatt loss, and duration, is performed using Pearson’s 
correlation coefficient, Spearmen’s rank correlation coefficient, and 
Kendall’s Tau tests. If the relationship between the two variables is 
non- linear, Spearman’s rank correlation and Kendall’s rank 
correlation tests can be used. 

Pearson’s correlation test varies between -1 and +1 with a value of -1 
describing a perfectly negative linear relationship, a value of 0 
describing no linear relationship, and a value of +1 a perfectly positive 
linear relationship [7]. Spearman’s rank correlation test is used to 



determine a non-parametric relationship by measuring the intensity 
and trend of the data [7]. Like Pearson’s test, Spearman’s test is also 
measured on a -1 to +1 scale. Similarly, Kendall’s Tau coefficient tests 
for non-parametric relationship between two variables, but 
Spearman’s is more widely used and has similar interpretations [7]. 

Regression Analysis. 

Linear regression is used for modeling the relationship between a 
dependent variable and multiple independent variables. To estimate 
the dependent variable, model parameters are fitted from the data. The 
fit of the model is related to the strength of the relationship between 
the dependent variable and independent variables. One way to assess 
the strength of the model is to examine the R2 statistic which is also 
known as the coefficient of determination. The value of R2 is between 
zero and one, with zero indicating the model explains none of the 
variability of the data and one indicating the model explains all the 
variability [7]. There are two interpretations of R2 values, a multiple 
R2 and an adjusted R2. The adjusted R2 is modified for the number of 
predictors of the model, and increases only if the new variable 
improves the model fit more than would be expected by chance. For 
this research, the adjusted R2 value is used to prevent overfitting of the 
data that is often caused by an excessive number of predictors. 

Linear regression models are built using the quantitative variables, 
start year, start date (one through thirty-one), start time, customers 
affected and megawatt loss, as well as the qualitative variables NERC 
region, start day of the week (Sunday through Saturday), start month, 
and disturbance type. These variables are used to predict the resilience 
of the system, described here as duration, which is a measure of the 
length of a disruption. The first model tested is a multiple linear 
regression model with all independent variables and no interaction 
terms. Interaction terms allow for the relationship between two 
variables that may be correlated to be represented by the model if those 
two terms impact the dependent variable. The second model tested 
consisted of all variables, plus an interaction term. The third model is 
created with all independent variables, in addition to megawatt loss 
and customers affected squared. Squaring the quantitative terms tests 
if there is a non-linear relationship between the independent and 
dependent variables. The fourth model is created with all independent 
variables, plus the variables megawatt loss and customers affect both 
squared and cubed. The fifth and sixth models replicate the third and 
fourth respectively, but interaction terms are added to each. Models 
seven through twelve used only variables with significant values from 
models one through six. By only fitting significant variables from 
models one through six, models seven through twelve can be 
examined to see if only significant variables improve the fit of the data. 
Model seven contained only significant variables from model one, 
model eight from model two, and so forth. Variables are considered 
significant if the p-value from the initial model (Models 1-6) is less 
than 0.1. 

RESULTS.  
The results of the analysis are discussed below in three sections: 
outlier analysis, correlation analysis, and regression analysis. 
Bonferroni’s test is used to identify outliers in the data set. Once 
outliers are removed, correlation tests and the twelve linear regression 
models discussed previously are analyzed. The correlation analysis is 
performed using three different tests: Pearson’s correlation, 
Spearman’s correlation, and Kendall’s correlation. Next, linear 
models are fitted to estimate duration. 

There are 697 observations out of 1,586 with no unknown values in 
the data provided by the EIA. Megawatt loss and customers affected 
had the most unknown values at 713 (45%) and 389 (25%), 
respectively. Unknown values could be a result of inadequate 
equipment or measurement error. Due to the limited number of 
variables, no additional information could be extracted about the 

unknown values. All data points with unknown fields are removed 
from the data set, which resulted in 44% of the values used for the later 
analyses.   

Outlier Analysis.  

The average duration, megawatt loss, and number of customers 
affected are all below the median of the data, however they do not fall 
outside the range of data. After removing outliers, average values 
decreased. This justified removing outliers because they had an impact 
on the results of the analysis. When examining customers affected and 
megawatt loss, both variables have a wide range of values, however 
these values are predominately under 1.5 million customers affected 
and 50,000 megawatts lost. When examining the impact of 
disturbance type on both variables, severe weather has the widest 
range, while load shed has the shortest. The data from both variables 
are mostly consolidated in the lower range of values, indicating that 
the data might have outliers or an underlying extreme value 
distribution and need further investigation. 

In the outlier analysis, a linear model is created, and Bonferroni’s 
outlier test is performed to identify observations with residuals that are 
statistically different from the model. Three outliers are found to be 
statistically different from the rest of the data set, as shown in Figure 
1. Point number 27, as shown in the upper right corner, is the most 
extreme value, but all three values are identified as extreme and 
removed. There is no common extreme variable value between the 
three outliers identified.  

 
Figure 1. Results of linear model plotting residuals vs fitted results with 
outliers shown in red boxes. 

Correlation Analysis. 

A correlation analysis on the quantitative variables, customers 
affected, kilowatt loss, and duration, is performed, using Pearson’s 
correlation coefficient, Spearmen’s rank correlation coefficient, and 
Kendall’s Tau tests. Results indicate low linear correlation between 
the three variables tested, where the correlation coefficients are all less 
than 0.5. The highest correlation is weakly positive between duration 
and customers affected at 0.302.  Generally, if the number of 
customers affected is larger, the duration of the outage is longer, but 
this relationship might not be linear. Although the correlation 
coefficients are relatively low, the variables still need to be tested for 
independence using a Chi-Square test. A Chi-Square test is used to 
determine independence between dependent variables. Results 
indicate significant p-values which means the variables cannot be 
assumed to be independent of each other. Customers affected and 
megawatt loss, as well as NERC region and disturbance type are not 
assumed to be independent. 

Regression Analysis.  

Multiple linear regression models are considered as discussed 
previously to estimate the resilience of the system with duration as the 
dependent variable. Table 1 shows the adjusted R2 values for each 
model. Models 9 and 11 had the highest R2 values, while models 10  



and 12 had the lowest. It is important to note that all four of these 
models consisted only of significant variables from the initial six 
models. Several models have the same adjusted R2 values. This could 
be a result of only using significant variables for models 7-12, where 
R2 values are repeated, because if a variable is significant in one 
model, it is usually significant in the others as well. In general, all 
models had a relatively low R2 value which indicates that more 
descriptive parameters are needed to accurately estimate the duration 
of an outage event. 

CONCLUSIONS 

This research is conducted to assist decision makers in understanding 
how a disturbance may impact a community. Three outliers are 
identified using linear regressions in R and removed from the data set. 
A correlation analysis is performed with the variables megawatt loss, 
duration, and customers affected.  Finally, multiple linear regression 
models are fitted to estimate the duration of an outage given certain 
parameters. 

Correlations found in the data are not significant, but not irrelevant to 
the research. Though having little correlation, values may have been 
dependent on one another, which would not require correlation. The 
chi-square test validated that there is a relationship between the 
variables being tested. Twelve linear regression models are tested to 
determine if the data provided enough information to create predictive 
models for decision makers and stakeholders. There are several 

variables discovered in the models, such as disturbance type and 
NERC region which offer insight on the duration of an event. 

Removing missing data is necessary because regression models cannot 
comprehend unknown or missing values, however it would be 
beneficial to look more into the missing variables of data to see if 
missing data could be estimated. One way to accomplish this would 
be to average the known values from a specific variable, and input 
them for the unknown. This would also allow for more data to be used 
in testing, but it may be less accurate because the values are estimated.  

The results of the model indicate that the relationship between the 
independent and dependent variables is non-linear due to the low 
adjusted R2 values reported. More data could result in a linear 
relationship between the independent and dependent variables which 
could improve the model fit; however non-linear models should be 
explored to allow more accurate assessment of the resilience of 
regional power systems. This project is expected to provide risk 
managers and decision makers with the necessary information to 
promote preparedness for and recovery from major disasters by 
hardening the infrastructure systems in advance and optimizing 
resource allocation in the aftermath of hazardous events. 
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Table 1. Adjusted. R2 values of all models. 

Model Description Adjusted 
R2 Value 

1 All variables 0.2563 

2 All variables, interaction term 0.2558 

3 All variables, squared, no interaction 
term 0.2574 

4 All variables, squared and cubed, no 
interaction term 0.2590 

5 All variables, squared, interaction term 0.2569 

6 All variables, squared and cubed, 
interaction term 0.2584 

7 Significant variables from model 1 0.2604 

8 Significant variables from model 2 0.2604 

9 Significant variables from model 3 0.2622 

10 Significant variables from model 4 0.2555 

11 Significant variables from model 5 0.2622 

12 Significant variables from model 6 0.2555 

   


