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BRIEFS. We demonstrated the functionality of a novel drug discovery technique in a proof-of-concept study. 

ABSTRACT. In computer-aided drug discovery (CADD), ma-

chine learning algorithms, especially artificial neural networks 

(ANNs), are frequently employed to approximate nonlinear func-

tions relating chemical descriptors to biological activity. The 

standard process in CADD is a quantitative structure-activity rela-

tionship (QSAR) model or another ligand-based technique fol-

lowed by a structure-based method. This process faces temporal 

constraints as structure-based methods are orders of magnitude 

slower. Here, we try to improve activity prediction of traditional 

QSAR models by utilizing deep neural networks (DNNs) that in-

tegrate descriptors of both the ligand and the protein binding-

pocket. This hybrid approach of both the ligand and the binding-

pocket was benchmarked against ligand-based QSAR models us-

ing the logarithmically scaled AUC (logAUC) of receiver operat-

ing characteristic curves. DNNs appeared to outperform their shal-

low counterparts. The hybrid DNN with two hidden layers had a 

logAUC value 0.040 higher than the hybrid shallow ANN. Hybrid 

models also generally outperformed the ligand-based benchmark 

models. The hybrid two-hidden-layered DNN produced a signifi-

cantly higher logAUC value than all ligand-based models. These 

results act as a proof-of-concept for the potential of hybrid QSAR 

modeling as an effective CADD technique. From here, the hybrid 

DNN can be tested against a ligand-based multitasking model or 

in a more realistic CADD application. 

INTRODUCTION.  

Within the biomedical sciences, the term “drug discovery” describes 

the process by which potential drugs and medications are found. Con-

ventionally, high-throughput screening (HTS) serves as the first step 

in drug discovery [1]. The goal of HTS is to identify potential lead 

compounds. The technique involves measuring the activity of thou-

sands of small molecules on a specific protein target in a biochemical 

assay. The best molecules are derivatized and tested in vitro [1]. Deri-

vatization is a process where molecules are chemically altered to try 

to optimize activity [2]. Derivatization and in vitro testing form an it-

erative process until select molecules with optimized activity are iden-

tified [1]. Frequently, the binding pose of the new ligand is subse-

quently determined in the protein using X-ray crystallography [3, 4].  

The traditional pathway for drug discovery, however, faces both ma-

terial and temporal constraints [3]. Equipment is expensive, and the 

process requires a substantial amount of time to complete. To improve 

the efficiency of the drug discovery process, researchers have adopted 

a virtual approach to these techniques often referred to as computer-

aided drug discovery (CADD) [3, 5-7]. Computational methods can 

be used to lower both the monetary and temporal costs of drug discov-

ery. CADD facilitates HTS by allowing for prioritization of specific 

molecules [5]. It narrows the chemical space included in any iteration 

of HTS. In addition, CADD can provide insight into how to change 

ligand structure during derivatization [3]. For example, one can per-

form chemical property-based alignment of ligands and observe which 

chemical elements successful molecules share [8]. CADD improves 

the overall efficiency of designing drugs with high levels of activity 

on a receptor. 

There are traditionally two broad categories of CADD [3]: structure-

based drug discovery (SBDD) and ligand-based drug discovery 

(LBDD). In SBDD, knowledge of the protein binding-pocket is used 

to predict how the ligand binds its receptor. [3]. Docking is the most 

common SBDD technique. LBDD exists as the primary alternative to 

SBDD. LBDD is frequently employed when the target structure is un-

known or when large quantities of ligand activity data are available. 

Three primary methods for LBDD are similarity searches, pharmaco-

phore modeling and quantitative structure-activity relationship 

(QSAR) modeling [3]. QSAR modeling mathematically relates the ac-

tivity of the ligand on its target with defined molecular descriptors, 

often through a machine learning algorithm [3]. Most CADD projects 

consist of an initial LBDD-based virtual HTS (vHTS) followed by 

SBDD-based docking of the most promising compounds [3]. 

ML algorithms are frequently used in a handful of steps in CADD due 

to their ability to express nonlinear relationships between descriptors 

[3]. Over the past decade, ANN algorithms have increased in popular-

ity in the field of drug discovery. This change came about as a result 

of technological hardware advancements, new methods to reduce 

overfitting, and improvements in algorithm efficiency [9]. Overfitting 

refers to when a training algorithm memorizes input data. ANNs have 

layers of artificial “neurons” which learn through repeated examples. 

ANNs have demonstrated a wide variety of uses such as designing 

completely novel compounds or predicting activity of inhibitors in 

drug discovery [3, 10-12].  

The objective of this study is to improve activity prediction of a QSAR 

model by incorporating chemical descriptors of both the receptor bind-

ing-pocket and the ligand. This hybrid QSAR model is designed to 

curb the computational cost of SBDD while still outperforming effec-

tive ligand-based models. We hypothesized that QSAR modeling 

could be improved combining descriptors of the ligand with de-

scriptors of the binding pocket during training. Our results support the 

hypothesis, but suggest that neural networks with multiple hidden lay-

ers, or deep neural networks (DNNs) are necessary to improve QSAR 

model performance with hybrid descriptors. 

MATERIALS AND METHODS.  

Residue Identification Using CASTp 

In order to calculate descriptors of protein binding-pockets, the resi-

dues of each pocket were located through the Computed Atlas of Sur-

face Topography of proteins (CASTp) from the University of Illinois 

at Chicago’s Liang Lab [14].  CASTp is an online tool that locates and 

calculates information on concave surfaces of proteins, including the 

binding-pocket [14]. Protein binding-pocket residues identified with 

CASTp were used to generate binding-pocket-specific descriptors. We 

wrote post-processing scripts to convert the CASTp output into a for-

mat compatible with the Bio Chemical Library (BCL).  

Dataset Preparation 

All QSAR models were trained and tested on 10 select datasets from 

the directory of useful decoys, enhanced (DUD-E) [15] using the free 



 

 

and publicly accessible BCL::ChemInfo Suite [14]. The DUD-E is an 

updated version of the directory of useful decoys (DUD), a collection 

of small molecule datasets commonly used to benchmark structure-

based methods in CADD [15]. Each dataset was cleaned to assign ap-

propriate atom types, assign hydrogen atom coordinates, neutralize 

formal charges, and remove duplicate compounds. Properties were 

added to the SDF file of each molecule indicating the activity of the 

molecule on its target receptor, where a value of 1 represents “active” 

and 0 represents “inactive”. All DUD-E datasets were conglomerated 

into one combined dataset. 

Descriptor Generation, Model Training, and Validation 

Both shallow and deep neural networks were constructed using both 

ligand-based descriptors and protein binding-pocket descriptors. De-

scriptors were generated for protein binding-pocket residues and small 

molecules separately. 

Information was taken on all residues in the binding-pocket. Usually, 

a binding-pocket’s residues are not all directly connected to one an-

other. A few instead may be bonded to other atoms within the protein, 

and these were disconnected from the others when binding-pocket res-

idues were mapped. As a result, 2-dimensional autocorrelation de-

scriptors were removed for binding-pocket data since they rely on 

bond connectivity. In addition, for the protein binding-pocket, de-

scriptors were modified to calculate out to 50 angstroms (Å) as op-

posed to ligand-based descriptors, which were calculated out to 6 Å. 

For each test case in the benchmark, a crystallographic structure of the 

protein was available. Therefore, we can approximate the shape of the 

binding-pocket with a high degree of confidence. Because of this, we 

are able to map long-range autocorrelations for the protein-binding 

pocket. By contrast, we did not have crystallographic structures of the 

ligands, and consequently we did not know correct binding confor-

mations of each small molecule. As a result, we were limited in our 

ligand descriptors to shorter-range autocorrelations. We wrote scripts 

to compute ligand and binding-pocket descriptors on the DUD-E da-

taset. A shallow ANN, a 2-hidden-layered DNN, and a 4-hidden-lay-

ered DNN were each generated first using ligand-based descriptors 

and then using both ligand- and receptor-based descriptors through the 

use of an existing Python script. 

We chose logAUC as a metric for accuracy to gain insight into early 

enrichment. logAUC values of shallow and deep neural networks and 

then ligand-based and hybrid models were compared in order to deter-

mine the impact of the additional hidden layers and protein de-

scriptors. Bootstrapping was used in order to obtain 95% confidence 

intervals for the logAUC values. Bootstrapping uses the data sample 

as a population and performs random resampling. The information its 

accuracy measures give allows for inferences concerning variance to 

be made. These confidence intervals provide a range in which there is 

a 95% chance the true logAUC falls. With confidence intervals, we 

can determine statistical significance visually. If the mean logAUC of 

a model is less than the lower bound of confidence of another model, 

statistical difference is present. 

All models were trained using five-fold cross validation—a statistical 

test that divides the sample into 5 groups and runs the model 5 times. 

Each time, a different subsample serves as the testing set, and the re-

maining groups act as the training data. The results from each are av-

eraged together [12]. A shallow ANN would be used as a benchmark 

ligand-based model to compare to both ligand-based DNNs and hybrid 

ANNs. A ligand-based 2-hidden-layered DNN was also trained using 

the same dataset as the ligand-based shallow network in order to facil-

itate the effect of the extra hidden layer on model performance. Drop-

out, a technique that aids in avoiding overfitting at input and hidden 

layers by preventing “memorization” of the training data [12], was uti-

lized for all QSAR models. Receiver operating characteristic (ROC) 

curves were plotted comparing specificity and sensitivity, and the 

logAUC value of each model’s curve was recorded. ROC curves are 

commonly used to assess model performance and diagnostics [7, 12, 

16].  

Parameter Optimization for DNN QSAR Models 

An iterative process was carried out in order to optimize the settings 

for the DNN. For each trial, one parameter was altered in the configu-

ration file. Changing only one parameter at a time expedited the iden-

tification of factors influencing the logAUC. Another dataset, known 

as the M1 muscarinic receptor dataset, was utilized in the optimization 

process in addition to the DUD-E combined dataset due to its larger 

size relative to the DUD-E dataset. The logAUC of each ROC curve 

generated during this optimization process was computed. Different 

dropout rates, balance target ratios, learning rates, and levels of input 

noise were tested on both datasets, and a set of optimal parameters was 

chosen based on the results from these trials. When testing ligand-

based benchmarks and hybrid models, DNNs with 2 and 4 hidden lay-

ers were trained with their respective optimized parameters using the 

aforementioned Python script. 

RESULTS. 

An Iterative Process refines DNN parameters and gives insight into 

optimization for logAUC 

Previous studies in the Meiler lab have optimized shallow ANNs for 

ligand-based QSAR [12]. DNNs have been less utilized and tested in 

QSAR modeling than ANNs. Therefore, optimizing a DNN was nec-

essary to minimize variability when comparing ANN and DNN per-

formance. We focused on altering dropout rates to gain insight into 

different rates’ effects on logAUC. Figure 1 demonstrates that opti-

mized dropout could increase logAUC by 0.02 or more, as altering 

dropout rates on the DUD-E DNN with 4 hidden layers resulted in a 

logAUC increase of 0.023. On DNNs with 4 hidden layers, dropout 

rates of 0.05, 0.5, 0.2, 0.5, and 0.1, in order from the input layer to the 

4th hidden layer, performed well on both the DUD-E datasets and the 

M1 dataset. Dropout rates of 0.05, 0.15, and 0.5 worked most effec-

tively on DNNs with 2 hidden layers. 

Model performance statistics allow for comparison of shallow to deep 

neural networks and LB- to hybrid CADD models 

We selected 6 permutations based on the number of hidden layers and 

the types of descriptors used as inputs. A model was generated for 

each one of these permutations across, and their logAUC values were 

computed. Comparisons of the logAUC values of the hybrid and lig-

and-based QSAR neural networks on all 10 DUD-E datasets combined 

revealed that the hybrid DNN with 2 hidden layers significantly  

 

Figure 1. Effects of dropout on logAUC. Optimal dropout rates were iden-

tified through an iterative process. 
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Figure 2. Comparison of QSAR model performance. Bar graph showing 

the mean logAUC values of ligand-based and hybrid ANNs with different 

numbers of hidden layers of the 10 combined DUD-E datasets. The error 

bars represent confidence intervals of 95%. The black bars at the top of the 

graph indicate statistical difference between two models. 

improved logAUC over the ligand-based models (Fig. 2). Interest-

ingly, it also outperformed the other hybrid models, including the 

DNN with 4 hidden layers. The logAUC values for each of the other 

five models were lower than the minimum value in the confidence in-

terval for the hybrid 2-hidden-layered DNN, indicating a significant 

statistical difference in logAUC. 

DISCUSSION. 

The hybrid DNN with 2 hidden layers significantly improved the 

logAUC (with 95% confidence) when compared to all ligand-based 

models as well as the hybrid shallow model. Its improved performance 

over ligand-based models suggests that protein binding-pocket de-

scriptors can be employed in order to successfully improve ligand ac-

tivity prediction. The fact that the hybrid DNNs performed better than 

the shallow hybrid ANN suggests that multiple hidden layers may be 

necessary to functionally relate ligand- and receptor-based chemical 

descriptors, supporting conclusions on deep networks reached by Ben-

gio [17]. 

Optimization of the DNN parameters indicated that dropout rates 

served as the most significant parameter to the model’s performance 

because they produced the most variation in the logAUC value. Itera-

tive model optimization has suggested improved dropout rates that 

function on varied datasets. Due to the size of the datasets, a dropout 

rate of 0.5 on at least half of the hidden layers seems to work most 

effectively. The improvement in performance of a dropout rate of 0.5 

in the second hidden layer as opposed to the first in DNNs with 2 hid-

den layers is interesting to note since the first hidden layer of the opti-

mized 4-hidden-layered DNN has a dropout rate of 0.5. However, a 

dropout rate of 0.5 was included in the back half of the hidden layers 

in DNNs with 4 hidden layers. Therefore, it is possible that a dropout 

rate of 0.5 is necessary in one of the last hidden layers. 

Despite the functionality of a set of parameters and a set of dropout 

rates on both the DUD-E dataset and the M1 dataset, results from DNN 

optimization are rather limited. The two datasets used for DNN opti-

mization are not extremely representative of all datasets of ligand in-

formation, as some datasets, such as several of those developed by 

Butkiewicz, et al. [5], can carry information on hundreds of thousands 

of small molecules. The DUD-E dataset constructed contained only 

about 15,500 molecules, whereas the M1 Musarinic dataset has about 

62,000 molecules [5]. The quantity of datasets is also an issue; 

additional datasets would provide further evidence to support an opti-

mized set of parameters. 

An issue with the DUD-E dataset used to train the optimized models 

exists, however. High logAUC values suggest that the chemical space 

occupied by inactive compounds in the dataset does not represent that 

of the dataset’s active compounds. As a result, the ML algorithm can 

find a characteristic that it uses to easily distinguish between active 

and inactive ligands, resulting in highly inflated logAUC values. In 

addition, the protein descriptor set used in hybrid modeling was not 

developed specifically for use in protein binding-pockets. The bind-

ing-pocket descriptors used were derived from the ligand descriptor 

set and modified. They were not developed with a binding-pocket’s 

characteristics in mind, so they may not work as well when applied to 

a binding-pocket. As a result, many of the descriptors of the binding 

pocket were potentially noise that detracted from the signal. 

From these conclusions and limitations, several future steps can be 

seen. For method development, optimizing DNN parameterization on 

a larger quantity and variety of datasets is necessary in order to fully 

understand the effectiveness of the DNN when compared to its shal-

low counterpart. In addition, a descriptor set should be developed spe-

cifically for protein binding-pockets and tested in structure-based and 

hybrid models. The hybrid DNN should be compared to ligand-based 

multitasking DNN models in a similar fashion to the work described 

here, as this comparison can provide further insight into the influence 

of protein descriptors on model performance. This proof-of-concept 

demonstrates that these hybrid models can perform better than stand-

ard ligand-based models while avoiding the temporal constraints of 

docking and other structure-based techniques. The use of hybrid 

QSAR modeling could eventually facilitate the discovery of novel 

drugs and medications when compared to the current standard method 

of QSAR following by docking. 
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SUPPORTING INFORMATION.  

Figure S1. Diagrams for how a shallow ANN and how a DNN both work.  

Table S1. Dropout rates for each of the optimization trials included in Fig-

ure 1.  

REFERENCES. 

1. B. T. Hennessy, D. L. Smith, P. T. Ram, Y. Lu, G. B. Mills, Exploit-

ing the PI3K/AKT Pathway for Cancer Drug Discovery. Nat, Rev, Drug. 

Discov. 4, 988-1004 (2005). 

2. D. Zhu, Z. Wu, B. Luo, Y. Du, P. Liu, Y. Chen, Y. Hu, P. Huang, S. 

Wen, Heterocyclic Iodoniums for the Assembly of Oxygen-Bridged Pol-

ycyclic Heteroarenes with Water as the Oxygen Source. Org. Lett. 20, 

4815-4818 (2018). 

3. S. Leelananda, S. Lindert, Computational methods in drug discovery. 

Beilstein J. Org. Chem. 12, 2694-2718 (2014). 

4. J. R. Marchard, A. Caflisch, In silico fragment-based drug design with 

SEED. Eur. J. Med. Chem. 156, 907-917 (2018). 

5. M. Butkiewicz, E. W. Lowe, R. Mueller, J. L. Mendenhall, P. L. 

Teixeira, C. D. Weaver, J. Meiler, Benchmarking Ligand-Based Virtual 

High-Throughput Screening with the PubChem Database. Molecules 18, 

735-756 (2013). 

6. A. J. Clark, P. Tiwary, K. Borrelli, S. Feng, E. B. Miller, R. Abel, R. 

A. Friesner, B. J. Berne, Prediction of Protein-Ligand Binding Poses via 

a Combination of Induced Fit Docking and Metadynamics Simulations. 

Abbreviated Journal 12, 2990-2998 (2016). 

LB

Shallow

LB 2-

hidden

LB 4-

hidden

Hybrid

Shallow

Hybrid

2-

hidden

Hybrid

4-

hidden

logAUC 0.869 0.884 0.896 0.879 0.918 0.889

0.780

0.800

0.820

0.840

0.860

0.880

0.900

0.920

0.940

0.960

lo
g

A
U

C

Model Type

* 
* 

* 



 

 

7. R. Shahin, I. Mansi, L. Swellmeen, T. Alwidyan, N. Al-Hashimi, Y. 

Al-Qarar’h, O. Shaheen, Ligand-based computer aided drug design re-

veals new tropomycin receptor kinase A (TrkA) inhibitors. J. Mol. 

Graph. Model. 80, 327-352 (2018). 

8. P. Labute, C. Williams, M. Feher, E. Sourial, J. M. Schmidt, Flexible 

alignment of small molecules. J. Med. Chem. 44, 1483-1490 (2001). 

9. J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, V. Svetnik, Deep neural 

nets as a method for quantitative structure-activity relationships. J. 

Chem. Inf. Model 55, 263-274 (2015). 

10. L. Hu, G. Chen, R. M. Chau, A neural networks-based drug discov-

ery approach and its application for designing aldose reductase inhibi-

tors. J. Mol Graph Model 24, 244-253 (2006). 

11. X. Li, Y. Xu, L. Lai, J. Pei, Prediction of Human Cytochrome P450 

Inhibition Using a Multitask Deep Autoencoder Neural Network. Mol. 

Pharm. 15, 4336-4345 (2018). 

12. J. Mendenhall, J. Meiler, Improving quantitative structure-activity re-

lationship models using Artificial Neural Networks trained with dropout. 

J. Comput. Aided Mol. Des. 30, 177-189 (2016). 

13. Y. Xu, J. Ma, A. Liaw, R. P. Sheridan, V. Svetnik, Demystifying 

Multitask Deep Neural Networks for Quantitative Structure-Activity Re-

lationships. J. Chem. Inf. Model 57, 2490-2504 (2017). 

14. T. A. Binkowski, S. Nasghibzadeh, J. Liang, CASTp: Computed At-

las of Surface Topography of proteins. Nucleic Acids Res. 31, 3352-3355 

(2003). 

15. M. M. Mysinger, M. Carchia, J. J. Irwin, B. K. Shoichet, Directory of 

useful decoys, enhanced (DUD-E): better ligands and decoys for better 

benchmarking. J. Med. Chem. 55, 6582-6594 (2012). 

16. W. Yao, Z. Li, B. Graubard, Estimation of ROC curve with complex 

survey data. Stat. Med. 34, 1293-1303 (2015). 

17. Y. Bengio, On the challenge of learning complex functions. Prog. 

Brain Res. 165, 521-534 (2007). 

 

 

 

 

Aidan Cloonan is a student at Martin 

Luther King Jr. Academic Magnet 

High School in Nashville, TN; he 

participated in the School for Science 

and Math at Vanderbilt University. 


