
Development of a Python-based Platform for Teaching
Computer Science

Dawit Girma, Bernard Yett, Nicole Hutchins, and Gautam Biswas
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN 37212

KEYWORDS. Robotics, computer science, education, Python, Roboscape

BRIEF. This project consists of the creation of a robotics platform built on Python and a curriculum for middle and high school students in order
to increase the amount of students interested in computer science.

ABSTRACT. In 2015, there were 10 times the amount of jobs for
computer science (CS) graduates than there were people to fill
them. As a result, there has been an increase in CS education ef-
forts for middle and high school students. Current systems such as
NetsBlox peak curiosity in students but are based on block-based
programming languages (BPLs). While BPLs have proven to be
effective for introducing students to CS, for a student to pursue CS,
text-based programming languages (TPLs) need to be taught as
well. Therefore, a platform that advances from BPLs to TPLs is
necessary. The design of this platform used robotics as a medium
and included an agent that would send commands to the robots, a
server that would facilitate communication between a robot and an
agent, and a robot that would perform actions on command. A cur-
riculum was also created in order to see the computational skill
gains before and after using the robotics platform. When analyzing
the results of the pre- and post-tests, it was shown that the differ-
ences between the tests were not significant. However, scores did
improve for two students and no scores decreased, demonstrating
that this platform can be used for CS education.

INTRODUCTION.

Due to the technological advances of the last two decades, the market
for computer science jobs has been slated to increase by 21% from
2018 to 2028 (1). However, this market is highly unsaturated due to
the lagging increase of computer science (CS) graduates. According
to data from the National Center for Education Statistics, in 2015,
there were almost 10 times the amount of jobs available in the market
than positions filled by graduates (2). As a result, there has been a push
towards teaching computational thinking (CT) skills to middle and
high school students through different curriculums, such as Code.org
and the AP Computer Science Principles. These approaches target
inclusive access to computer science by highly scaffolding the
introduction to difficult CS constructs (e.g., conditional logic,
variables, and control structures) through tools such as visual block-
based programming languages.

A popular program created to educate students about computer science
through robotics is RoboScape (3). RoboScape is a program that gives
users control of robots through block-based coding and is provided as
a service, or an add-on, in NetsBlox (4), a block-based programming
language (BPL) with networking capabilities. In a sample study of 24
students using RoboScape as the main learning tool, CT skills of high
school students increased by 21%, as measured by a pre- and post-
survey of CT knowledge. This growth demonstrates the benefits of
teaching computer science in coordination with other mediums of
learning, such as robotics. Alongside the growth in CT skills, students
regularly arrived at the camp early and hardly paid attention to their
mobile devices, expressing increased interest in CS. Although BPLs
have shown to be successful in gaining interest, it is imperative for one
to also gain exposure to text-based programming languages (TPLs).
Early exposure to TPLs can support important software development
skills such as debugging syntax errors, a common difficulty for novice
programmers (5).

Therefore, the goal of this project was to create a new TPL platform
based on the robot controlling features of RoboScape in order to
incorporate the advantages of learning TPLs using the strengths of the
RoboScape platform. The platform that was created in this project was
based on Python, which is widely considered an introductory TPL due
to its simplistic syntax and extensive usage in many technology
companies such as Netflix, Facebook, and Google (6). The created
platform eases the transition from a BPL like NetsBlox into learning
TPLs for middle and high school students through the application of
skills learned in earlier RoboScape modules. The platform developed
in this project has the end goal of teaching computer science to middle
and high school students, using robotics as the medium. Because of
the general interest from the youth in robotics, it can be hypothesized
that a text-based robotics platform would increase one’s
computational thinking skills and proficiency in that TPL, as measured
through pre- and post-tests. An expected outcome is that the created
platform can be used to teach middle and high school students Python,
which may serve as the foundation for other, more difficult, TPLs.
Additionally, a growth in CT skills can be expected along with the
newfound knowledge of TPLs.

MATERIALS AND METHODS.

Programming.

Several different programs and languages were required for the
development of platform. The library, or a group of programs that
perform a specific task, was developed in Python due to the required
implementation of the library in any script that utilizes the robots.
Likewise, the server was scripted in Python in order to maintain
consistency throughout the platform and properly encode and decode
information between different components. The script to be used by
all robots was programmed in Propeller C, the proprietary
programming language for Parallax. All Propeller C scripting was
done in Simple IDE, the integrated development environment used by
Propeller C. All scripting done in the development of the platform was
done in Microsoft Visual Code Studio, which allowed for easy GitHub
interfacing and real-time debugging and syntax-checking.

Platform.

The platform was structured in a hierarchy (Figure 1) that consisted of
three components necessary for the successful execution of
communication between a user and a robot: the robot itself, the server,
and the client/agent. As a whole, a user could prompt a robot to drive,

Figure 1. A flowchart representation of the platform, starting from the agent
to the robot and back.

Server

Robot Agent

Commands to robots
and/or server

Commands from agent, confir-
mations from server

Return values to
agents and/or server

Connected robots, return
values from robot

beep and return the range of an object in front of it or the rotation of
its servo motors in ticks.

Agent.

The agent was structured in the form of a library where a user can
create an instance of the library’s class to allow for seamless robotics
control through object-oriented programming. The library was created
with a great level of abstraction in mind through the use of simple class
methods that do not require one to control a robot with knowledge of
what and how string-based commands are being transferred.

 The library was built in conjunction with a client script that handled
all messages received by and sent from the agent. This client was
based on a datagram or user datagram protocol (UDP) socket in which
data was sent and read in packets. The socket module from Python was
used to create a socket in the script. In a separate thread to allow for
simultaneous reading and writing, the client socket read packets
continuously from the server. Commands that were read were
processed based on a series of conditional statements checking for a
specific character that started each command. These characters
represented different types of information that was sent, such as the
range and servo ticks. In these conditional statements, certain bytes
would be converted into integers in order to be returned to the user.

When a library function was used, a command was sent to the client
script in order to send data to the server. These commands consisted
of a character that corresponded to a certain function that a robot
would complete and the MAC address of the specified robot. If a
return value was required, the function would hang until the client
socket received the corresponding return value from the robot.

Server.

The server controller was structured as an executable Python script
that required no user input or manipulation to run successfully. Similar
to the agent, the server used the UDP protocol for its server socket
script in order to connect with the agents and robots simultaneously
and read data coming into the socket continuously in a separate thread.
In the controller, data that came through the socket was sent to a given
function for processing.

 In the specified function, messages were processed based on the
starting character and the length of the command. The message was
then sent to the receiving component, using its MAC address as an
identifier. In the process, the bits that comprised of the message were
then rearranged in order for the sending component’s identifier to
become the identifier of the receiver, allowing for the sender to receive
a response. Messages that were sent to the server, such as
identification messages or messages that requested a list of connected
robots, contained the sending MAC address and the character that
differentiated these two functions. Overall, there were five functions
that the server processed: setting the speed of the motors, accessing
the range of an object, retrieving the rotation value (or ticks) from the
motors, causing the robot to beep, and retrieving a list of connected
robots.

The server controller had functionality to maintain a list of robots and
clients, containing their MAC addresses, IP addresses, and component
types, that were connected due to identification messages that were
sent from robots or clients upon initialization.

Robot.

The robots that the platform is fully compatible with are Parallax
ActivityBot 360˚ Robots (7). These robots contained two servo motors
for driving, a buzzer, an ultrasonic sensor for reading the range of a
path-impeding object, a WiFi module, and a pair of whiskers that sense
touch.

The Propeller C script that each robot was flashed with consisted of a

function that continuously read from the server through the WiFi
module. Each command was processed by its starting character or an
exact comparison with a command. To initialize the robot, the module
ran commands to fetch its MAC and IP addresses. The robot then
continued to send initialization messages to the server until
confirmation was received. Until the robot was powered off, the robot
executed the varying library functions that related to its sensors. If the
range or tick function was executed, a returning message was
constructed with integer to byte conversion and the MAC address of
the agent that requested the information.

Pilot Study.

In order to test and measure the functionality, usability, and
educational ability of the platform and the curriculum designed, a pilot
study approved by the Institutional Review Board was conducted
(Figure 2). Five high school students with little to no prior
programming experience were recruited from a programming
workshop and took part in a pre- and post-test.

Prior to the pilot study, one laptop for each student was equipped with
Python 3.7, the library, and the student files and documentation
installed. The Open Broadcasting Software (OBS) recording software
was also installed in order to record student engagement and
participation throughout the study. Paper/pencil pre- and post-tests
which comprised of ten multiple choice and open-ended questions
were created and mirrored each other. These tests were used to assess
knowledge of specific topics, including loops, conditional statements,
input and output, boolean expressions, arithmetic operations, lists,
string immutability, and class design. Due to these skills being
necessary for the robotics square driving task, a training module was
also developed for these topics. Documentation for the library and for
Python basics, adapted from an online textbook (8), was used as
student guides while working through the module and the driving task.

During the pilot study, pre-tests were administered to begin. The
participants then engaged in the training module, which consisted of
six varying tasks and lasted approximately one and a half hours.
Students then participated in the driving task, which consisted of the
students programming a robot to drive in a square, that lasted
approximately thirty minutes. Post-tests were administered after.

Statistical Analysis.

Statistical analysis was conducted using Microsoft Excel. Averages
and sample-based standard deviations were calculated for all of the
pre- and post-test scores. To test for a significant difference between
the pre- and post-test scores, a two-tailed and paired t-test was
conducted, using a p-value of p<0.05.

 RESULTS.

During the pre-and post-tests, scores were collected in order to deter-
mine whether the pilot study led to greater knowledge in computa-
tional thinking skills.

The average score increased from the pre-test to the post-test. How-
ever, the t-test resulted in a p-value of 0.19, indicating that there was
not a significant difference between the pre- and post-test. The stand

Figure 2. A graphical abstract of the pilot study execution.

Training Module

Square Driving

Pre-Test Post-test

ard deviations (Figure 3) for the two tests, 6.88% and 11.67% respec-
tively, were higher than expected, which could have been due to the
very small sample size of the study.

The most growth from pre- to post-test was seen in the questions that
tested for list indexing, Python syntax, and arithmetic operations.
Questions that tested computational skills excluding Python were an-
swered correctly the most often. However, in both tests, all students
missed questions that tested class design, string immutability, and im-
port statements.

DISCUSSION.

This project sought to develop a platform that could be used to teach
students Python in the context of robotics. Before the pilot study, the
platform was projected to affect students’ knowledge of Python and
CT skills, through a growth of scores from the pre- to post-tests. Based
on the findings, there was a slight increase in scores from the pre-test
to the post-test. Additionally, the topics addressed in the study,
specifically list indexing, Python syntax, and arithmetic operations,
were the same topics that experienced the most growth. These results
suggest that the study, if prolonged, might have a profound effect on
the learning from the pre- to post-tests. The lack of significant learning
gains revealed in the pilot study implementation results may be due to
the short implementation time, and therefore, further time is needed to
instruct the curriculum before a full assessment can be made.

Although the platform was carefully planned, the successful execution
was difficult to implement. One issue that arose in the development of
the platform was that the built-in method that converted integers to
bytes would not accept signed integers, meaning that negative inputs
would crash the system, as in the case of turning servos. In order to
mitigate the issue, another built-in method from a different package,
struct, was used, which accepted signed integers. Also prevalent
during the development phase was that bytes could not be shared over
different processes due to the process’ inability to share memory, not
allowing for different methods that read and accept connections
indefinitely to share messages. The solution that was found was to
remove all usages of processes and switch them to threads. Although
threads could have memory leakage issues, potentially crashing the
system, messages were able to be shared through different methods.
On the robot side in the platform, one initialization message that
included metadata such as the robot’s MAC and IP addresses could
not be picked up by the server, even while running the server method
that receives data continuously. Therefore, it was seen that the
initialization message from the robot would need to be sent
continuously until a confirmation message from the server was
received.

One potential improvement for the efficacy of the platform is to
implement a simple UI with logging functionality that allows to
relieve confusion of constituents in the platform as well as to allow for
more data for potential observations of the study. Another potential
improvement is to add functionality for pinging all robots which
would also relieve any confusions that could be seen by messages
being lost in processing. Likewise, implementation of exception

handling in the platform would be one room for improvement because
one simple issue would not crash the entire system. On the
development side, implementing external IP addresses when hosting
and receiving would allow for the constituents on the platform to be
on different network connections. This would simplify setup
procedures that would be done in the start of a new study on the
curriculum side of the project. Given known difficulties in
introductions to TPLs, increasing training time and tasks in Python
may aid in increased abilities in the target TPL, and in particular,
applications of class design, string immutability, and import
statements. Lastly, in order to supplement the cybersecurity program
done in Roboscape, a cybersecurity curriculum and its accompanying
functions in the platform should be implemented to also introduce
students into cybersecurity in TPLs.

CONCLUSION.

The platform developed can be used for education of Python and com-
puter science skills. Additionally, the curriculum that was developed
alongside the platform covers introductory topics needed to introduce
students into Python and for Python courses. Even when under strict
time constrains and facing technical issues, students demonstrated
some knowledge gains as indicated by their pre-post-test results dur-
ing the implementation of the study. This suggests that with a more
generous allotment of time, a significant difference could be achieved.
In summation, the curriculum and platform combined have the poten-
tial to induce growth of computational thinking skills.

ACKNOWLEDGMENTS.

I would like to thank Dr. Deweese for advising this project and assist-
ing in the creation of research outputs and Bernard Yett for mentoring
me throughout this project and assisting with procuring materials. I
would also like to thank Gordon Stein for assisting me with the robots
and Propeller C debugging. Nicole Hutchins assisted me with the cre-
ation of the pilot study and curriculum materials. I would like to thank
Dr. Biswas for providing the basis of my research through his leader-
ship of the lab. I would also like to thank fellow classmate Mert Sek-
men for assisting me with statistical analysis.

REFERENCES
1. Software Developers. Bls.gov (2019), (available at

https://www.bls.gov/ooh/computer-and-information-technology/soft-
ware-developers.htm#tab-6).

2. 2015 college computer science graduates v. open computing jobs. At-
las (2018), (available at https://theatlas.com/charts/B1rFqVkjl).

3. Á. Lédeczi et al., Teaching Cybersecurity with Networked Robots.
Proceedings of the 50th ACM Technical Symposium on Computer
Science Education - SIGCSE '19 (2019).

4. B. Broll et al., Journal of Parallel and Distributed Computing, in press.
5. S. Grover, S. Basu, Measuring Student Learning in Introductory

Block-Based Programming. Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education - SIGCSE '17
(2017).

6. M. Makai, Companies using Python. Fullstackpython.com (2020),
(available at https://www.fullstackpython.com/companies-using-py-
thon.html).

7. ActivityBot 360° Robot Kit. Parallax.com (2020), (available at
https://www.parallax.com/product/32600).

8. A. Johansen, Python: the ultimate beginners guide! (CreateSpace In-
dependent Publishing Platform, ed. 2, 2016).

Figure 3. Pre- and post-test scores for each student, in percent accuracy.

Dawit Girma is a student at Martin
Luther King Jr Academic High
School in Nashville, TN; he partici-
pated in the School for Science and
Math at Vanderbilt University.

0

20

40

60

80

100

1 2 3 4 5

Sc
or

e
on

 T
es

t

Student #

Pre-Test Post-Test

