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BRIEF. A comparison between an automated method of collection calcium peaks to a manual version to determine the accuracy of the automated 
system and gain insight into the role of calcium during the wound healing process.   

ABSTRACT. Epithelial cells are a vital part of basic survival in 
many organisms. When these cells are wounded, coordination be-
tween the epithelial cells is necessary for the wound healing pro-
cess to begin. During this time, the concentration of calcium oscil-
lates within the cells. These oscillations, or peaks, may contain in-
formation about how epithelial cells use calcium to aid the wound 
healing process. Previously, an automated system was created to 
collect and analyze these peaks using a dual-threshold method. 
However, this automated system had not been verified to work ac-
curately. Therefore, the creation of a manual peak detection system 
was necessary to calculate the accuracy of the automated system. 
Specificity and sensitivity of the automated system in comparison 
to the manual system were measured to determine the most optimal 
automated system settings. The setting proved to have the highest 
accuracy of approximately 87%. However, the targeted goal was 
to have a minimum accuracy of 95%. Therefore, the current auto-
mated system was determined to not be accurate enough for use.  

INTRODUCTION.  

When epithelial wounds occur, coordination between epithelial cells 
is essential for the wound healing process [1,2]. Following injury, ep-
ithelial cells are involved in a complex process in which they must 
detect the wound, migrate and multiply to close the wound, and 
reestablish damaged tissue architecture [3]. During this time, the in-
tracellular concentration of calcium begins to increase around the 
wound. It is currently unknown how cells use the calcium to transmit 
information between each other in the healing process [4]. However, 
it has been seen in laser-induced wounds of Drosophila pupae that in-
fluxes of calcium appear around the wound in four main stages: the 
initial influx, the first expansion, the second expansion, and the flaring 
state [5,6].  

The initial influx of calcium occurs milliseconds after wounding due 
to a laser-induced cavitation bubble. The bubble creates micro-tears in 
the cells’ plasma membrane near the wound which allows calcium to 
enter the cell. This elevated concentration of calcium in the tissue 
causes the first expansion as calcium diffuses intercellularly away 
from the wound through gap junctions connecting adjacent cells. In 
the second expansion, more calcium enters cells farther away from the 
wound in a slower, extracellular process. Finally, in the flaring state, 
intracellular calcium concentrations begin to rapidly oscillate. These 
oscillations may encode important information that instructs cells on 
how to heal the epithelial wound. The oscillations, or peaks, of calcium 
concentrations, however, have not been thoroughly examined in the 
context of wound healing. Fully examining the relationship between 
the calcium oscillations and time, distance from the wound, and inten-
sity may link calcium as a key factor in the wound healing process. 

To be able to efficiently analyze the calcium peaks, a method of deter-
mining when these peaks occur is warranted. Currently, an automated 
system has been created to determine when a peak occurs following 
the second expansion, but this automated system has not been vali-
dated. Before the automated system could be verified, a manual peak 

detection system must first be created. Comparing the peaks detected 
in the automated system against the manual system would reveal the 
settings that provide the highest accuracy of the automated peck de-
tection and if the automated system is consistently 95% accurate 
enough to be used.  

MATERIALS AND METHODS.  

Drosophila pupae were marked with the genetically encoded calcium 
indicator GCaMP, and then lasered ablated using a Zeiss LSM410 ras-
ter-scanning inverted confocal microscope with a 40 × 1.3 NA oil-im-
mersion objective to provide seven different wounding videos [5]. Fur-
ther experimental procedures and data acquisition methods are ex-
plained in reference [5]. 

All videos were recorded with the microscope and passed through a 
median filter in ImageJ. From the videos, sixty-six pixels were se-
lected semi-randomly such that each pixel was outside the second ex-
pansion and contained at least one peak. Additional pixels were also 
selected without any peaks to assess the rate of false positives in the 
automated system. Each pixel produced a graph of GCaMP fluores-
cence vs. time. The graph was then processed by both the automated 
peak detection code and the self-developed manual peak detection 
code.  

The automated code determined peaks using a dual-thresholding 
method. First, the mean of fluorescence noise before wounding was 
subtracted from the fluorescence data to set the baseline relative to the 
mean. Then, a lower threshold and an upper threshold were determined 
using the standard deviation of the noise. Standard deviation calcula-
tions had two different options: frame-based or pixel-based. The 
frame-based option calculated the standard deviation of the noise 
based on all pixels in the frame before wounding. The pixel-based op-
tion calculated standard deviations of noise based on only the one se-
lected pixel before wounding. The standard deviation of the noise 
would then be multiplied against the multipliers, a combination of two 
integer numbers ranging from one to ten, to create each respective 
threshold. 

With each multiplier, the first number is always below the second (e.g. 
1,3), for a total of forty-five different combinations. A peak would start 
from the moment the data crosses the upper thresholds and end when 
it crosses the lower threshold.  

The manual version chose peaks based on a subjective baseline and 
were all handpicked by one user for consistency. Both the automated 
and manual versions then produced a binary graph using the start and 
end of peaks for all points (Figure 1). 

Five different peak-matching outcomes were defined to compare the 
manual and automatic peak detection. A correct match occurred when 
both the automated and manual code detected a peak within a given 
time interval, although the peaks do not have to be completely aligned. 
False negatives occur when there is a peak in the manual detection but 
not in the automatic detection within some time interval, while false 
positives occur when there is a peak in the automatic detection but not 
in the manual detection. Grouping occurs when two or more manual 



 

 
Figure 1. Example of automated and manual fitting of raw fluorescence data. Raw data was smoothed using a medium filter to create a fluorescence light (light 
green). The automated version calculates peaks based on the mean of noise before wounding. Then, the lower threshold (light-blue dashed line) and the upper 
threshold (dark-blue dashed line) are calculated using the standard deviations and a multiplier. The multipliers are a combination of two integer numbers ranging 
from 1 to 10, with the first number always being below the second. A peak (blue) would start from the moment the fluorescence crosses the upper threshold and 
end when it reaches the lower threshold. The manual version peaks (red) were chosen subjectively compared to the automated detection of peaks. 

peaks are placed within one automated peak, while the opposite is 
termed splitting (Figure 2). 

For each threshold multiplier combination, specificity and sensitivity 
values were calculated. Specificity was calculated as the ratio of the 
number of correctly matched peaks to the total number of outcomes. 
Sensitivity was calculated as the ratio of the number of correctly 
matched peaks to the total number of manual peaks. The average of 
the specificity and sensitivity resulted in the accuracy which was used 
to find the most optimal setting for the automated peak detection code. 

RESULTS. 

To determine the most optimal threshold settings, the selected time 
series were analyzed using both the manual peak detection as well as 
the automated peak detection with all combinations of threshold mul-
tipliers using both frame-based and pixel-based standard deviation cal-
culations. This produced a total of 90 distinct sets of automated peak 
detection settings to compare to the manual peak detection. For each 
comparison, the number of each peak-matching outcome was counted 
in order to determine the specificity of each automated peak detection 
setting. Sensitivity and accuracy were then calculated for each auto-
mated peak detection setting. All upper threshold multipliers greater 
than five resulted in accuracies below 75%.  

Since a correct peak-match outcome does not compare the duration of 
peaks between the manual and automated versions, it could be the case 

that the automated peak detection method, even with high accuracy, 
either overestimates or underestimates the duration of the peaks. 
Therefore, for each automated peak detection setting the duration of 
correctly match peaks was compared between the manual and auto-
mated peak detection methods (Figure 3a). The slope of the best fit 
line indicates how well the automated peak detection is at matching 
the peak durations given by the manual peak detection; a slope less 
than 1 indicates a tendency of the automated version to underestimate 
peak durations while a slope greater than 1 generally indicates an over-
estimate peak durations. A slope close to 1 indicates that the automated 
peak detection does not favor underestimation or overestimation of 
peak durations.  

A correct peak-match event also does not guarantee that the automated 
peak detection method has correctly determined when a peak starts 
and ends. The difference between the start of the manual detection and 
the start of the automated detection, as well as the ends, were found 
and plotted in histograms to show early or late detections/endings (Fig-
ure 3). Positive differences indicate that the automated peak detection 
placed the start or end of a peak earlier than what was set by the man-
ual peak detection, and negative differences indicate that the auto-
mated peak detection placed the start or end of a peak later than what 
was set by the manual peak detection. Values of 0 indicates an agree-
ment between both peak detection methods. 

DISCUSSION. 

In order to determine the optimal setting of the automated peak detec-
tion method, a manual version of the code was created to determine 
the accuracy of the automated system. Out of all of the possible com-
binations of threshold values and setting choices, a framed-based 
standard deviation, a lower threshold multiplier of 1, and an upper 
threshold multiplier of 3 have proved to have the highest accuracy of 
87%. Other multiplier combinations with the upper threshold of 1 to 4 
range relatively close as well (generally greater than 80%). These up-
per threshold values contained few false negatives, but they contained 
several false positives. As the upper threshold values increased, fewer 
false positives appeared, but an increase the percentage of false nega-
tives increasingly grew. In terms of peak durations, closer lower 
threshold values and upper threshold values had a decreasing slope, 
indicating that automatically detected peaks lasted shorter than their 
manual counterpart. Generally, a lower threshold of 1 had the slopes 
closest to 1 in comparison to other lower threshold values. Automated 
detection of the start of the peak became increasingly behind while the 

 
Figure 2. Examples of the different results possible from peak comparisons. 
Five different outcomes from comparing the manual and automatic peak de-
tection methods. 



 

 

 
Figure 3. Comparisons between manually and automatically detected peaks. (A) The scatter plot compares peak width, or how long each peak lasted, at the setting 
of a frame-based threshold multiplier of 1 and 3. The horizontal axis is how long each manually detected peak lasts while the vertical axis is how long each 
automatically detected peak lasts. Only correctly matched peaks (blue) were plotted along with a best-fit line (red). A best-fit slope greater than one suggests 
longer automated peaks while a slope less than one suggests shorter automated peaks compared to the manually determined peak durations. A line with a slope of 
one (green) is plotted as well. For the threshold multipliers of 1 and 3, the slopes of both lines closely matched, indicating no tendency for the automated version 
to overestimate or underestimate peak durations. The histograms represent how early (B) or late (C), in terms of frames, the automated version detects or ends a 
peak in relation to the manual detection. Values equaling to zero show that the automated peak detection picked up a peak in the same frame as the manual 
versions. Positive values indicate early detections or ends while negatives indicate late detections and ends. In 2B, values tend to center zero meaning that peaks 
are generally started in the same frame. In 2C values tend to nearly center zero but are slightly more negative, indicating a slightly late ending. 

detection of the end of the peak became increasingly ahead. This is 
consistent with the shorter duration of peaks in the scatterplots.  

The desired level of accuracy wanted was at a minimum of 95%. The 
highest accuracy was only approximately 87% for the threshold com-
bination of 1 and 3 using the frame-based standard deviation calcula-
tion. This combination also contained less than 5% of false negatives 
and less than 8% of false positives in its detection. Although the peak 
duration nearly matched, the beginning of the detection was consist-
ently late with ending detections being consistently early. As this was 
the current best setting, it was determined that automated peak detec-
tion is not currently usable for statistical analysis of the calcium oscil-
lations.  

Nevertheless, there are a few ways that accuracy may be improved. 
Currently, the automated peak detection only uses threshold multipli-
ers that are integers. However, using rational numbers may or may not 
increase the accuracy of the automated detection. Adjustments could 
also be made with how the automated detection calculates values like 
the thresholds or the standard deviations. For instance, instead of just 
selecting one pixel for the pixel-based standard deviation calculation, 
another calculation method could be selecting the individual pixel and 
the surrounding ones. Also, as only a limited amount of videos (7)  
were analyzed, more videos could be processed with both the manual 
and automated detection system to increase the certainty of the com-
parison. Another method to automatically detect peaks, such as ma-
chine learning, may be necessary to provide the most optimal peak 
detection.  

By having an efficient and reliable automatic system to detect peaks 
in time series data sets, calcium oscillations may be further studied and 
analyzed. In turn, patterns could be discovered regarding how calcium 
operates and travels during the oscillation portion of the wound heal-
ing process. Overall, this would help in determining how cells work 
together to heal epithelial wounds. 
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