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BRIEF. Predicted Zika outbreak severity directly correlates with human population density. .

ABSTRACT. The sweeping spread of Zika Virus and its severe symptoms 
make it a serious threat to public health. However, its records have not 
become well-kept until recently. The lapses in case reporting have made it 
impossible to model Zika's spread by traditional methods, such as differen-
tial equation-based models, because they require aggregate data that are not 
presently available. 

We applied an alternative modeling technique and created an agent-based 
model that is dependent on knowledge of mosquito behaviors and ecologi-
cal data. Such information is easier to acquire and validate compared to data 
of the spread patterns of Zika. Our model also enables performing what-if 
analyses on Zika’s spread under several conditions, predicting and produc-
ing results which indicate a causal relationship between outbreak severity 
and population density. We also show that future work can be focused on 
refining the behaviors of mosquito agents and enhancing the modularity 
and scalability of running experimental trials with our model.

INTRODUCTION. 

Zika Virus (Flavivirus Zika, ZIKV) is an international epidemic. Though it 
was originally isolated from the blood of a sentinel rhesus macaque residing in 
Uganda’s Zika Forest in 1947, it has proven its ability to spread in humans lately 
[1]. As of this writing, the Center for Disease Control (CDC) reports that Zika 
is being actively transmitted in 62 countries worldwide, amounting to 37,168 
cases since the start of 2015 in the U.S. and its territories alone [2,3].

Numerous serious health risks beyond Zika’s placid symptoms—mild fever, 
rash, joint pain, muscle pain and conjunctivitis—have been noted since the 
past decade’s outbreaks [4]. One rare yet dangerous side-effect associated with 
ZIKV after a 2014 outbreak in French Polynesia is Guillain-Barre syndrome, 
an auto-immune disorder that causes acute and chronic flaccid paralysis [5, 6]. 
Several studies have also observed a correlation between infant microcephaly 
and the presence of ZIKV in mothers during the first trimester of fetal develop-
ment [7, 8]. These high-impact risk factors, which are especially dangerous for 
young women, combined with Zika’s increasing ubiquity have prompted such 
agencies as the National Science Foundation to solicit research addressing the 
ecological transmission dynamics of the virus [9].

Many mathematical modeling templates have been conventionally used to 
delineate the spread patterns of epidemic diseases, the Susceptible-Infected-
Recovered (SIR) model being among the most commonly adapted of these. 
In the SIR model, variables such as the number of susceptible, infected, and 
recovered individuals and the infected, susceptible, and recovered fractions of 
the total population were joined by the variable time in parametric differential 
equations to demonstrate broader disease spread patterns [10]. This method 
has been used to examine a wide range of phenomena—spanning all topics 
from the spread of measles and dengue fever to the efficacy of pulse vaccination 
policies [11, 12, 13]—but it cannot reveal the spread dynamics of any disease 
for which its key variables are unknown [10].

In contrast, agent-based models approach modeling from the level of individual 
organisms (agents) in heterogeneous environments, using the unique behaviors 
of individuals and the intra- and inter-species interactions which arise from these 
behaviors as modeling inputs [14, 15]. This input method allows for patterned 
behaviors of the whole complex system being modeled to emerge from the 
individual interactions over time. Using agent-based modeling, it is possible to 
capture real-world interactions between persons and other organisms more time-

efficiently than is possible in the field and more immediately than is currently pos-
sible in the case of ZIKV with conventional differential equation models.

In this work, we developed an agent-based model to assess the impact of fac-
tors affecting the spread of ZIKV. The model observed ZIKV spread exclu-
sively between humans and Ae. aegypti mosquitoes, excluding the potential 
for person-to-person ZIKV spread since the risk chance of sexual transmission 
remains unknown [16]. It provided evidence for a causal relationship between 
Zika outbreak severity and human population, leading us to hypothesize that 
Zika will, in the real world, most greatly afflict urban centers (as opposed to 
more rural areas) during locally transmitted outbreaks.

MATERIALS AND METHODS. 

Overview

Our ZIKV model was implemented using Netlogo (version 5.3.1), the program-
ming language and agent-based modeling environment created by U. Wilensky and 
colleagues [14, 17]. 

While creating the model studied in this work, we prototyped, incrementally devel-
oped, tested, and analyzed the model while also developing a parameter validation 
strategy unique to agent-based modeling. The model overall was validated by devis-
ing and valuing each parameter directly from the literature. Such literature focused 
mostly on the detailed behaviors of Ae. aegypti under variable environmental condi-
tions and on ZIKV behavior in culture/laboratory settings.

Experiments were conducted approximating the environments of Rio de Janeiro 
State, Brazil and Wynwood, Florida in order to prove that the model could make 
predictions about ZIKV spread dynamics in locations of existing outbreaks [2, 3, 
18, 19]. A set of simulations was also conducted and analyzed in two contexts to 
determine the factor which most greatly affected ZIKV outbreak severity in human 
agent populations. The following subsections outline experimental designs, param-
eter validations, and statistical analysis methods.

Parameter Validation.

Modeled mosquitoes fed exclusively on human agents, excluding any possible diver-
gence from a diet consisting solely of human blood [1, 20, 21, 22, 23]. Furthermore, 
only Ae. aegypti were included while Ae. albopictus were excluded since the former 
has demonstrated a higher capacity for ZIKV transmission and a tolerance for wider 
temperature ranges than has the latter [20, 21, 22, 23, 24]. Male Ae. aegypti speci-
mens were excluded and reproduction was abstracted in order to strictly restrict 
the diet of mosquito agents to human blood. Mosquito feeding was regulated by 
an energy variable which encouraged blood-feeding every 3-5 days [25]. Initial 
energy values were stochastically determined from a range of 3-5 for each indi-
vidual mosquito; this value was decremented daily starting 10 days after hatching 
(hatchlings remained fed until day 11) and decrementation continued until energy 
reached 0 (causing mosquito death) [26]. Upon feeding, mosquitoes gained 2 units 
of energy, exchanged pathogens with its victim, and chanced random death (there 
was a 10% chance that the human agent would kill the mosquito when it landed; 
it was assumed that though the mosquito died in this case, pathogens were still 
exchanged). Maximum mosquito lifespans were stochastically, individually deter-
mined upon hatching from a range of 40-60 days; this range was based on Floridian 
average temperatures [24].

Mosquitoes could move a maximum of 20 meters per day starting on day 11 of their 
lives [26, 27]. Mosquitoes could sense and pursue human agents within this same 20 
meter range; this chasing behavior was activated once the mosquitoes’ energy levels 
equaled 1-3. On days when the chase behavior was inactive or no human agents 
were in range, mosquitoes moved their maximum distance in a stochastically deter-
mined direction. Mosquitoes could not sense human agents after they were bitten 



32

greater than 20 times in a single day; this measure was implemented to control situ-
ations where humans were bitten thousands of times per day.

Humans could move, sense mosquito agents, and avoid them in a 4-meter radius. 
When avoiding mosquitoes, humans attempted to stochastically select a mosquito-
free environment patch to move to. When no such a patch was available or when no 
mosquitoes were in range, humans moved their maximum range in a stochastically 
selected direction.

Mosquitoes or humans that acquired ZIKV did not become infectious until an 
extrinsic incubation period had passed. For humans, this period was 7 days; for 
mosquitoes, it was 10 days [1, 28, 29, 30; 31, 32, 33]. Since neither mosquitoes nor 
humans were classified as infectious until the concentration of ZIKV in their sys-
tems was high enough to have a very high chance of infecting the opposite species, 
there was a 100% chance of transmission when infected mosquitoes fed on unin-
fected humans and when uninfected mosquitoes fed on infected humans [1, 28, 29, 
30, 31, 32, 33, 34].

Human agents lost their “ZIKV infectious” status 14 days after being initially bitten 
by a ZIKV infectious mosquito (7 days after humans gained the “infectious” status) 
[34]. Their loss of infectious status was non-permanent; the possibility for acquired 
immunity is unsubstantiated in the literature and was therefore excluded. However, 
there is no evidence at the time of this writing to suggest that mosquitoes infected 
with ZIKV ever lose that infection; the “ZIKV infectious” designation was therefore 
irreversible in mosquito agents.

All simulated mosquito agents were female, but it was assumed that enough males 
were present to ensure successful egg fertilization, allowing simulated females to 
reproduce. Females had to be at least 11 days of age and be atop a standing water 
patch (the ideal egg-laying environment) [21, 26]. Since it was assumed that each 
female became engorged enough to reproduce after each feeding, they were allowed 
to reproduce (energy-wise) after each blood-meal [25]. Females could reproduce 5 
times total in their lives and laid 75 female (and therefore relevant) eggs per clutch 
[21, 26].

The starting spatial distribution of all human and mosquito agents was determined 
stochastically, placing all agents within the 1 km2 simulation environment. Standing 
water coverage was calculated as the ratio of standing water pixels to total pixels; 
these ratios were then converted to percentages. Collections of standing water were 
uniformly distributed throughout the simulation environment.

Experimental Design.

Experiment 1 studied the relationship between standing water coverage, the popula-
tion density of humans (persons/km2), and ZIKV outbreak severity (as measured 
by the peak percentage of infected humans on any given day during the 100 day 
simulations). Standing water coverage incremented by 2% per simulation ranging 
from 2% to 20% while human population density incremented by 50 persons/km2 
per simulation ranging from 179 to 529 persons/km2; each combination of standing 
water coverage and human population density within these intervals represented 
one simulation (or square in the figures). The initial mosquito population was arbi-
trarily set at 525 individuals/km2; the initial population of ZIKV infectious mos-
quitoes was set at 250 individuals/km2. All other variables remained constant at the 
values found in the literature. The dependent variable in experiment 1 was ZIKV 
outbreak severity.

Experiment 2 observed correlations between standing water coverage, human popula-
tion density, and peak mosquito populations (as measured by the peak count of mos-
quito agents present on any given day during the 100 day simulations multiplied by 2 
to account for male mosquitoes). Experiment 2 represents the same simulation set as 
Experiment 1; the experiments merely draw from 2 different data outputs produced 
by the same simulation set. Therefore, the initial population of ZIKV infectious and 
non-ZIKV infectious mosquitoes in Experiment 2 was the same as in Experiment 1. 
The dependent variable in Experiment 2 was peak mosquito population.

Experiment 3 sought to study ZIKV under approximations of conditions in Rio 
de Janeiro State, Brazil and the Wynwood neighborhood of Miami-Dade County, 
Florida. Two sets of simulations separate from the prior experiments were conduct-
ed: Florida’s set contained 16 trials while Brazil’s set contained 40 trials. The Florida 
simulations set standing water coverage equal to 22% and human population density 
equal to 2983 persons/km2 [35]. The Brazil simulations set standing water coverage 
equal to 18% and human population density equal to 1174 persons/km2 [36, 37].

All experiments were conducted with simulations run on a 64-bit Windows 10 oper-
ating system with 16 GB of installed RAM. Experiments 1 and 2 are composed of 
data from one set of 80 total simulations; each experiment explores the same data 
set in a different light. This 80-simulation set took approximately 72 hours to com-
plete. Each simulation took on average 54 minutes to complete, but this average is 
computed cognizant that simulation lengths increased exponentially with human 
population density and standing water coverage. This is because both of these varia-
bles increased peak mosquito populations, which in turn directly increased process-
ing demands. The data in Experiment 3 were obtained through 56 total simulations, 
amounting to roughly 50 hours of processing.

Statistical Analysis.

In Experiment 1, a two-factor ANOVA test without replication was conducted to 
ascertain the relationship between human population density, standing water cover-
age, and outbreak severity. The null hypothesis for the human population densities 
was given by H0: there is no significant difference in Zika outbreak severity between 
the means of the human population. The null hypothesis for the standing water cov-
erages was given by H0: there is no significant difference in Zika severity between 
the percentages of standing water coverage.

In Experiment 2, a two-factor ANOVA test without replication was conducted to 
learn the relationship between human population density, standing water coverage, 
and the peak population of mosquitoes. The null hypothesis for the human popula-
tion densities was given by H0: there is no significant difference in the peak mosqui-
to population between the means of the human population. The null hypothesis for 
the standing water coverages was given by H0: there is no significant difference in 
the peak mosquito population between the percentages of standing water coverage.

RESULTS.

Experiment 1.

We performed two-factor ANOVA test without replication on the simulated 
data to observe the relationship between human population density (rows), 
standing water coverage (columns), and Zika outbreak severity. The analysis 
results rejected the null hypothesis that there was no significant difference in 
Zika outbreak severity between the means of the human population. However, 
the analysis observed no significant difference in Zika outbreak severity 
between the percentages of standing water coverage.

Figure 1 plots Zika outbreak severity in each of the individual simulations within 
the experiment’s 80-simulation set on a heat map. This heat map declares human 
population density and standing water coverage percentage, both variables fixed 
at the start of each simulation, as the experiment’s independent variables. It 
asserts a causal relationship between these variables and Zika outbreak severity.

Figure 1. Zika outbreak severity, given by the peak percentage of the human popula-
tion infected with Zika in the first 100 days of simulation, is plotted in a heat map 
against standing water coverage percentages (x-axis) and human population den-
sities (y-axis; humans/km2). Each colored square represents one simulation from 
the 80-simulation set whose human population density and standing water coverage 
percentage value settings are delineated by the x- and y-axes; the color gradient illus-
trates Zika outbreak severity.

Table 1. Results of ANOVA on Zika Outbreak Severity 
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The ANOVA test in Table 1 further delineates this causal relationship. The test 
considered the relationships between simulated human population densities 
(rows), standing water coverage percentages (columns), and Zika outbreak 
severity. It revealed a significant difference in Zika outbreak severity between the 
means of the human population (p < 0.01). It indicated no significant difference 
in Zika outbreak severity between the standing water coverages (p > 0.95).

Experiment 2.

We also analyzed the relationship between human population density (rows), 
standing water coverage (columns), and the peak populations of mosquitoes 
with two-factor ANOVA. Both null hypotheses were rejected (see green high-
lighted p-values): there was a significant difference in peak mosquito popula-
tions between both the means of the human population and the percentages of 
standing water coverage.

Figure 2 visually illustrates the relationship between human population densities, 
standing water coverages, and peak mosquito populations in each of the simula-
tions in the 80-simulation set. It asserts a causal relationship between the first two 
of these factors, the independent variables; and the third, the dependent variable. 
It claims that both standing water coverages (essen-tially the availability of mos-
quito breeding grounds) and human population densities (basically the availabil-
ity of food for mosquitoes) affect the peak populations of mosquitoes.

Figure 2. Heat Map of Peak Mosquito Populations. Observing the relation-
ship between the initial population density of humans (blood-meal availability; 
humans/km2), the amount of standing water present in the environment (breed-
ing ground availability), and the peak population of simulated mosquitoes (given 
in units of 1,000 mosquitoes) via heat map. Each colored square represents one 
simulation from the same 80-simulation set as Experiment 1 whose human popu-
lation density and standing water coverage percentage value settings are delin-
eated by this figure’s x- (standing water cover-age) and y- (human population 
density) axes; the color gradient illustrates peak mosquito populations.

Table 2. Results of ANOVA on Peak Mosquito Population

The ANOVA test in Table 2 confirms the assertions put forth in Figure 2. The 
test looked at the relationships between human population densities (rows), 
standing water coverage percentages (columns), and peak mosquito popula-
tions. It confirmed a significant difference in the peak populations of mosquitoes 
between both the means of the human population and the percentages of stand-
ing water coverage (p < 0.01). However, no significant differences between the 
peak populations of mosquitoes and outbreak severities were observed.

Experiment 3.

On average, Zika outbreak severity under settings approximating the Wynwood 
neighborhood in Miami-Dade county, Florida equaled 30.940% (Fig. 3). Given 
that in Brazil this average was 27.425%, Brazil conditions produced lower 
outbreak severities than Florida conditions. Since coefficient of variation cor-
responding with the average Florida outbreak severity was 6.471% (0.06471) 
while the that same coefficient corresponding with the average outbreak sever-
ity in Brazil was 10.826% (0.10826), more confidence can be placed in results 
from the Florida simulations than in results from the Brazil trials. 

Figure 3. Outbreak Severity Comparison: Brazil vs. Florida. Simulated Zika 
outbreak severity under settings approximating the Wynwood neighborhood in 
Miami-Dade county, Florida (in orange) and Rio de Janeiro State, Brazil (in blue).

It is noteworthy that there was a significant difference (p < 0.01) between the 
simulated outbreak severities of Rio de Janeiro State and Wynwood. This dif-
ference indicates that in the absence of the disease control regulations in place 
in Florida, natural conditions in the Miami-Dade area may lend themselves 
towards worse outbreaks than Rio de Janeiro.

DISCUSSION.

This study found a significant correlation (p < 0.01) between Zika outbreak 
severity and human population density in its simulations (Table 1). We hypoth-
esize that the significant correlation observed between Zika outbreak severity 
and human population density in this study translates into the real world of Zika 
spread. Therefore, these results are impactful on the broader public health field.

In future studies, we suggest further building on the model’s modular struc-
ture to make human agent behaviors more complex. Additionally, more minute 
deposits of standing water than were possible to account for on this model’s 
scale should be accounted for in future iterations. Seasonal and weather-related 
temperature and water deposit fluctuations should also be incorporated in fu-
ture iterations. These additions and their added complexities should be accom-
modated with higher-powered hardware for running simulations.

When we began this study, we hypothesized that there would be a direct cor-
relation between peak mosquito populations and outbreak severities; the tests 
in this study prove no such correlation. We now hypothesize that the observed 
lack of correlation is caused by the fact that while peak mosquito popula-
tions increased, the initial number of ZIKV infectious mosquitoes remained 
constant across simulations; as peak mosquito populations increased and the 
ratio of ZIKV infected mosquitoes to ZIKV uninfected mosquitoes decreased, 
mosquito-human infection likelihood decreased. We hypothesize further that 
this phenomenon was exacerbated by ZIKV uninfected mosquitoes beating out 
ZIKV infected mosquitoes for food and other resources. These revised hypoth-
eses should be studied after future revisions to the model’s modular structure.

The model we produced was a novelty because of the early-designed behav-
ioral stages that draw on both the limited available knowledge on the patterned 
behavior of ZIKV on a global scale and the more understood behavior of the 
disease’s vectors on a smaller scale. The results it produced contributed to our 
knowledge of the practical behavior of ZIKV. Most importantly, this model, in 
its success, served as a proof of concept for constructing similar agent-based 
disease models in future years.
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