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Determining the Turning Wing Kinematics of 
a Ruby-Throated Hummingbird
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BRIEF. The turning wing kinematics of a ruby-throated hummingbird are determined by use of a blade element model. 

ABSTRACT. A new field of engineering involving small unmanned auto-
mated flying vehicles called Micro Aerial Vehicles (MAVs) is emerging 
with applications such as small-scale surveillance for the military. The most 
recent and promising model for MAVs involves modeling insect-like flyers 
such as hummingbirds due to their unique mode of flight that includes the 
ability to hover and fly backwards unlike many other birds, yet all the while 
maintaining capabilities for complex in-flight maneuvers. In order to fur-
ther understanding of this insect-like flight for future biomimetic applica-
tion, the turning wing kinematics of a ruby-throated hummingbird were 
determined. In this study, video from a ruby-throated hummingbird is used 
to extract data points from which variables for a translational force, rota-
tional force, and force due to acceleration effect can be solved so that the 
overall torque can be found to describe the mechanism of the humming-
bird’s turning. A blade element model or (BEM) approach is used which 
involves breaking the wing down into a series of strips or “blades” that have 
their own forces. The wing forces and torque that drive the hummingbird’s 
turning were successfully solved for, and a direction towards finding the 
mechanism of the hummingbird’s turning was determined.

INTRODUCTION. 

In the world of engineering, a new field has recently emerged with its focus on 
developing insect-sized robots known as Micro Aerial Vehicles (MAVs). The 
main practical application proposed for these robots has been small scale mili-
tary scenarios in which MAVs could execute missions in complex environments 
with stealth. For example, an MAV could be used for quick surveillance in small 
areas if applied with video, and with its minute size could find its way into a 
room occupied by hostile forces whose presence was previously unknown, 
thereby preventing an ambush. Also, in accordance with radioactive or chemi-
cal detection technology, MAVs of the future could also be used on the battle-
field or in a disaster scenario to prevent harmful exposure from biochemical or 
radioactive hazards [1]. 

Of the various recent models for MAVs, the most promising of these models 
have been those involving flapping wings. Compared to those models with rota-
ry propellers or fixed wings, flapping wings have been advantageous in terms 
of flight efficiency, maneuverability as the size becomes smaller, in which case 
the Reynolds number, a measure of how flow patterns will behave on a cer-
tain scale, is very low [2]. The basis for flapping wings came from the flyers of 
this scale in nature such as insects and small birds. Hummingbirds have been 
especially advantageous in this respect due to their superior flight performance. 
They have shown to be capable of sustainable hovering, flying forward at high 
speeds, sharp turns, and flying upside-down for short periods.

Using hummingbirds as a model, however, means that the various factors 
involved in creating the forces that generate their flight must be understood. 
There have recently been two major computational-modeling approaches in 
determining such characteristics: a low fidelity and high fidelity model in which 
the terms “high fidelity” and “low fidelity” respectively describe the accuracy 
of a model. The low fidelity model in this case has consisted of a quasi-steady 
blade element model (BEM). A previous study by Song et al has shown that 
the quasi-steady model generally succeeds in predicting overall forces produc-
tion although it overlooks some of the unsteady effects that the flow-field, or 
collection of freely moving air particles surrounding an object, has on the hum-

mingbird during flight [3]. However, the less computationally taxing nature of 
quasi-steady modeling and capability to nevertheless yield fairly accurate mea-
surements has made it a prevalent and promising method. Comparatively, the 
high fidelity model would consist of a computational fluid dynamics (CFD) 
approach which would describe force characteristics as in the BEM while fur-
thermore accounting for flow field configuration by using the Navier-Stokes 
equations [4]. The trade-off here has existed with the high amount of comput-
ing effort and time needed to complete a CFD model. More specifically, a pre-
vious study also by Song et al created a CFD model looking at the hovering 
aspect of a ruby-throated hummingbird’s flight showed that there exist other 
factors not accounted for in the quasi-steady model that contribute to the lift 
of the bird [4]. 

This study set out to use a low-fidelity BEM model with a kinematic approach 
similar to that of Song et al to quantify and characterize specifically the turn-
ing aspect of a hummingbird’s flight from a hovering stage [3]. This data would 
advance the field’s comprehension of the hummingbird’s flight so that more 
flight-efficient MAVs could be developed in the future.

MATERIALS AND METHODS. 

Wing Kinematic Reconstruction.

In characterizing the ruby-throated hummingbird’s flight, a wing kinematic 
reconstruction was done so that computational measures could be taken with 
ease. First, high-speed videos of the hummingbird were acquired. Before taking 
the video of the hummingbird in flight, nine white markers had been dotted 
on the edge of the wing to ensure consistency in the digitization of the wing 
on each frame. Four visible high-speed cameras and two thermal IR cameras, 
all having a camera frequency of 1000 Hz, were used to film the hummingbird 
flight in the wind tunnel and to locate wing markers while minimizing blind 
spots. Using a free digitization software, the markers from the high speed videos 
on the wing were digitized frame by frame to obtain the three dimensional posi-
tion of each marker.

The digitized points from the nine markers were then used to make a full three 
dimensional kinematic reconstruction. In this reconstruction, new points were 
interpolated and a finite element mesh was generated in MATLAB to define the 
entire wing surface. Spline interpolation was used in the time domain to inter-
polate more frames and smooth results. In total, there were 700 three dimen-
sional points resulting from spline interpolation and smoothing that were used 
to describe the wings for 2000 time-steps which were later used for determin-
ing model parameters. To give some perspective, one time-step here would be 
equal to 0.145 milliseconds, and the entire time-span of the video that was ana-
lyzed lasted about 0.29 seconds.

Force Calculation.

The turning of the hummingbird is generally the consequence of torque dis-
crepancy between the two wings, due to their asymmetric motion. Researchers 
have generally suspected that birds and insects primarily use an asymmetry in 
the angle of attack, flapping frequency or flapping amplitude to generate the 
torque asymmetry [3]. In order to determine which factors cause the torque 
asymmetry, a blade element model (BEM) was adopted in this study to quan-
titatively calculate the force and torque production based on the wing kinemat-
ics. This quantitative approach consists of breaking the wing down into several 
strips or “blades” and summing the forces from each to attain the total force 
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on the wing. In the following equations, these “blades” are mathematically 
described using “chord” lengths and angles for consistency with previous litera-
ture. There are three fundamental forces generated by each blade of each wing: 
the translational force, rotational force, and force due to the acceleration-effect. 
Eq. 1 depicts the translational force:
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where ρ, was the air density, !Φ , was the instantaneous angular velocity of the 
wing, r̂, was the dimensionless span-wise location scaled by R ; ĉ was the 
dimensionless chord length according to c ; C'D α( ) is the drag coefficient and 
C'L α( )  is the lift coefficient. Both C'D and C'L  are dependent upon the angle of 
attack α . In order to obtain the relation between these force coefficients and 
the angle of attack, a series of revolving wing CFD simulation with constant 
angle of attacks were previously run. The force found on the wing from this 
simplified CFD model with an assumed steady-state was used to fit the data, 
and the fitted relations are shown in Eq. 2 and Eq. 3[3].

 
C'D = 0.245+1.63sin 2.43α − 6.3!( )
C 'L = 1.88−1.70cos 2.27α −10.66!( )

These calibrated coefficients based on CFD could therefore most accurately 
correlate the two variables [2]. The total translational force is the resultant vec-
tor of the lift and drag forces [3].
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The rotational force is shown in Eq. 4 where !α  is the instantaneous pitching 
velocity, and n  is the surface normal which was assumed to be orthogonal to 
the chord surface. Crot  is the rotational force coefficient dependent on the loca-
tion of the pitching axis, which is represented by dimensionless distance from 
the leading edge assumed to be 0.25 in the equation Crot = π 0.75( ) . Previous 
researchers have found that the value 0.25 for  has consistently been the case for 
most insect-like flyers such as the fruit fly, hawk moth, and hummingbird [2].

The force due to the acceleration effect is given in Eq. (5):
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where !!Φ and !!α  were the instantaneous stroke acceleration and pitching accel-
eration [3]. The normal surface n  was assumed to be orthogonal to the chord 
surface in this equation [3]. This assumption in respect to the normal surface 
was made with respect to the acceleration effect force and the vertical force. 
These forces related back to an overall force vector on the wing that has a certain 
direction. The predominant force that would significantly change the direction 
of the resultant force vector on the wing of the hummingbird to more or less 
than 90 degrees would be due to viscous drag. However, with a moving body at 
this scale, the Reynold’s number which describes the ratio of pressure forces to 
viscous forces based on the scale of linear dimension determines that the pres-
sure drag would be dominant, making the viscous drag negligible.

These three forces are all decomposed into their vertical and horizontal com-
ponents. The translational force is decomposed using the tip angle θ , the angle 
that the tip trajectory makes with a horizontal plane. The rotational force and 
force due to acceleration effect are decomposed using the chord angle γ , the angle

that the chord makes with a horizontal plane. The decomposition into vertical 
and horizontal components for the drag and lift components which combine 
to make the translational force as well as that of the rotational and acceleration-
effect forces are shown in Eq. 6 – Eq. 15.

	 dFrotver = dFrot cosγ 	 (6)

	 dFrothor = dFrot sinγ 	 (7)

	 dFaccver = dFacc cosγ 	 (8)

	 dFacchor = dFacc sinγ 	 (9)
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cosθ 	 (11)
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	 dFtransver
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= dFtransL  hor
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	 (15)

Figure 1. A visual representation of the various parameters described in the meth-
odology is shown. The highlighted region indicates what can be referred to as a 
“blade” in the blade element model (BEM).

The rotational and acceleration-effect forces were assumed to be perpendicular 
to the chord angle, which is the angle made by an individual blade of the bird’s 
wing and a horizontal plane, and thus the chord angle can be used to decom-
pose these.

dFhor = dFtranshor + dFrothor + dFacchor              (16)

dFver = dFtransver + dFrotver + dFaccver               (17)

T
!"
= dr × dFhor∫                                               (18)

Using the combined horizontal force of each blade dFhor  from Eq. 16 the torque 
is then calculated as shown in Eq. 18.

The BEM in this study makes the quasi-steady assumption which assumes 
calm fluid surroundings, eliminating the possibility for force interactions that 
come from anything besides the hummingbird’s own doing. As previously men-
tioned, this then allows one to focus solely on the bird and segment the wing 
into finite regions as shown in Fig 1, where a respective force is calculated for 
each region. One limitation of the BEM is the assumption that the wing is a 
perfect two dimensional object, such that the rigid body dynamics and effects 
of the different solid properties are not taken into account. Moreover, the BEM 
used in this study does not take into account the various possible vortex and 
wake interactions that could be involved in the turning motion of the humming-
bird as would a CFD model. However, the advantages of the BEM approach lie 
heavily in its ability to predict the average overall forces with relative accuracy 
and computational ease. Research done by Song et al reported the use of the 
quasi-steady model for calculating the hovering motion of hummingbirds [3]. 
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RESULTS.

Using the previously explained methodology, the necessary angles, forces, and 
torque values were successfully found. Of the translational, rotational, and 
acceleration effect forces, the rotational and acceleration-effect forces proved to 
be so small that they were insignificant in comparison to the translational force 
when contributing to the overall horizontal or vertical forces.

Figure 2. This figure depicts the path taken by the tip of each wing throughout the 
time segment analyzed from the video as an illustration of the hummingbird’s move-
ment. It can be seen from this figure that the bird flapped significantly more in the 
early cycles to initiate the turn to its right.

The turning of the hummingbird to its right is demonstrated by Fig. 2. Also, the 
combined vertical force from each wing was equal to the approximate weight 
of the ruby-throated hummingbird used in this study implying that the BEM 
model was correct on the average force production.

Figure 3. The torque vector sum of the left and right wing is shown here. The shaded 
region indicates the time period for the down stroke, and the unshaded region indi-
cates the upstroke.

The overall average torque as a sum of the left and right wing is shown in Fig 3. 
Individually, the torque for the right wing is 6.66 x 10-5 Nm while the average for 
the left is -1.25 x 10-4 Nm. Thus, the left wing has a larger magnitude in torque 
than the right wing, and the torque vector sum is -5.8410 x 10-4 Nm. 

DISCUSSION.

Each type of wing force was found, decomposed, and then successfully used 
to find the overall torque for each wing. Results show that the combination of 
the vertical force from each wing of the hummingbird is approximately equal to 
the weight of the hummingbird. Therefore, the fundamental fact that the bird 
can sustain itself in the air was accurately described by the methodology of this 
study and can verify the accuracy of the rest of the study’s findings in compari-
son to similar or more intensive models.

The results that would aid to describe the underlying cause of the humming-
bird’s motion have shown to be contrary to the intuitive expectation. Since 
the hummingbird is turning to its right, one would expect the down stroke of 
the right wing or the upstroke of the left wing to produce the greatest amount 
of torque to drive the motion. This domination of a certain period of a wing’s 
flapping would imply that throughout the cycles of wing flapping shown, there 
would be an overall more positive torque coming from the right wing than from 
the left wing. However, the extracted forces show that the overall torque for the 
left wing was more positive than that for the right wing.

A potential explanation to account for this unexpected result could be due to 
the use of the quasi-steady assumption. The problematic use of this assumption 
would imply that the more complex fluid interactions not taken into account 
had a significant effect on producing the torque for the hummingbird. The 
unseen effect of these fluid interactions would be contrary to previous studies in 
which the complex fluid interactions acted so that the quasi-steady model was 
generally successful and further detailed by more complex CFD analysis [3]. In 
this sense, a complete CFD model on the turning hummingbird could reveal 
vortex effects that take away from fluid air pushing on the left wing resulting in 
a torque that corresponds to the bird’s change in direction. Another possibil-
ity for the results of this study indicating that the left wing has a more positive 
torque could be that the part of the bird’s turning that was digitized for force 
calculation was incomplete. In order for the hummingbird to make a turn, it 
requires a positive torque that will initiate the turn and a negative torque that 
will stop its momentum so that the bird does not continue to turn past what is 
desired. The concern for this study would be that what was digitized accounted 
for mainly the negative torque part of the turning and not enough of the posi-
tive torque that initiates the turning. In order to correct this digitization, sig-
nificantly more of the earlier frames of the hummingbird video would need to 
be digitized.

To resolve these possibilities, a full CFD model of the turning hummingbird 
must be completed. Use of a CFD model would allow one to identify flow-field 
interaction as well as potential wing wake interaction and vortex effects such 
that the air movement and turbulence produced by the wing goes to take effect 
on the wing itself. Also, it would be necessary to go back and digitize more 
frames before and after the cycles that have already been analyzed. This way 
one could hopefully identity the positive and negative torque segments of the 
bird’s turning.

Future studies would also include accounting for the subtleties that exist in 
fields such as solid body dynamics which include the effects of the composi-
tion of the wing on the wing’s production of force, potentially adding to the 
understanding of the turning motion of the hummingbird from hovering. Once 
the turning of the hummingbird is fully understood, studies examining forward 
flight and in-flight turning can also add to knowledge of the hummingbird’s 
flight. All of these will contribute to the development of more efficient flight 
for MAVs.
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