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Recent interest in sequential dyadic interactions has motivated researchers to develop methods ap-
propriate for the analysis of such data. After briefly reviewing a series of methodological papers
focusing on the analysis of discrete-valued observations, we present a general framework for studying
many substantive effects, including dominance and autodependencies, in social interactions mea-
sured on dyads. We show how this framework allows a researcher to study dyadic interactions mea-
sured at two or more time points on one or more relations. The methods described here are general
enough to permit the simultaneous analysis of the sequential relational variables and attribute vari-
ables (such as sex of actors or emotional status of the dyad) recorded on either the dyad or the actors.

Several recent articles in Psychological Bulletin have de-
scribed theoretical and methodological developments in the
study of sequential dyadic interactions. The theoretical ad-
vances include a renewed interest in the dynamics of social in-
teractions (Jones, 1986) and the recognition of bidirectional in-
fluences on members in the dyad. Rather than a snapshot obser-
vation of behavior, many researchers are interested in the
development and change of relationships within a dyad and the
effects that each member of the dyad has on the other’s behavior.
When the behavioral history of a dyad predicts the future be-
havior of the dyad, the term serial dependence is often used to
reflect the influence that past behavior has on present or future
dyad states. In earlier research, serial dependence has been
viewed as a statistical difficulty, because the stochastic process
that is assumed to underlie dyadic behavior yields observations
that are not independent. Recently, an alternative view has
emerged: The dependence between observations is of psycho-
logical interest when studying dyadic interaction data (Kenny
& Judd, 1986).

One of the contexts in which the study of sequential dyadic
interactions is frequently used is the analysis of coded, observa-
tional sequences of the interactions of married couples (Gott-
man, 1979a, 1979b, 1979¢; Gottman & Bakeman, 1979; Gott-
man, Markman, & Notarius, 1977; Gottman & Notarius, 1978;
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Margolin & Wampold, 1981). Gottman and his colleagues have
studied the interaction patterns in distressed and nondistressed
couples and have analyzed the structure of these sequences for
possible explanations of marital satisfaction. Their most impor-
tant contributions to the methodology for sequential dyadic in-
teraction data are three: (a) By concentrating on the substantive
problems that can arise in marital dyads, they realized the need
to collect longitudinal data and the need for statistical methods
to analyze these sequential dyadic interactions; (b) they intro-
duced statistical methods for the analysis of time-series data to
many social scientists and developed some related statistical
techniques (Gottman, 1981); and (c) they proposed a definition
of the important notion of dyadic “dominance” (which we de-
scribe later) that many researchers have found useful.

Sequential dyadic interactions have also been examined in
the study of interactions within mother—child dyads. For exam-
ple, the cyclic aversive behavior interactions between mothers
and their deviant children have been found to depend on moth-
ers’ attributes, such as socioeconomic status and strength of so-
cial support systems (Dumas, 1984; Dumas & Wahler, 1985).
Because behaviors tend to be reciprocated (the response to neg-
ative—or positive—behavior by one member of the mother-
child dyad is negative—or positive—behavior by the other
member), it becomes important to understand the conditions
that terminate negative or positive behavior (Martin, Maccoby,
Baran, & Jacklin, 1981).

Sequential dyadic interactions are also studied within larger
groups. For example, Mishler and Waxler (1975) studied triads
containing mother—child and father-child dyadic interactions
in both normal families and families in which the child was
schizophrenic. The study of formation of coalitions of two from
groups of three and the change over time of the composition of
the coalition (e.g., Komorita & Chertkoff, 1973; Komorita &
Mecek, 1978; Komorita & Moore, 1976) is another example of
studying dyads within triads. The dyad can be contained in a
group larger than three, of course, facilitating the study of the
relative effects of individual attributes and group characteristics
on behavior (Ingraham & Wright, 1986; Wright, Giammarino,
& Parad, 1986; Wright & Ingraham, 1985, 1986).
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Table 1
Four-Way Table of Hypothetical Data From Allison
and Liker’s (1982) Article

W2 H2 W2H2 W2 H2 W2H2

Wi H1 2 2 21 1 2 11
2 2 300 79 5 16
2 1 70 11 5 14
1 2 14 5 11 70
1 1 16 5 79 300

Note. From “*Analyzing Sequential Categorical Data on Dyadic Interac-
tion: A Comment 6n Gottman” by P. D. Allison and J. K. Liker, 1982,
Psychological Bulletin, 91, p. 399. Copyright 1982 by the American Psy-
chological Association. Adapted by permission. The notation in this
table represents the behavior of the husband (H) and wife (W) at times
I (H1, W1) and 2 (H2, W2). 2 = target behavior present; | = target
behavior absent.

The interest in theoretical and substantive issues has moti-
vated the need to understand how to properly analyze sequential
social interaction data. The examples mentioned previously
should demonstrate the varied substantive applications of
methodology designed for the analysis of sequential dyadic in-
teraction data. We focus on methodological developments origi-
nating with Sackett (1979) and Gottman (1979a) and continu-
ing with Allison and Liker (1982) and Budescu (1984) in this
article. After briefly describing these methods, we present a gen-
eral framework for the statistical analysis of discrete-valued dy-
adic interactions based on the research of Wasserman and Iaco-
bucci (1986) and Iacobucci and Wasserman (1987). To illus-
trate our ideas, we adopt the substantive structure of husband—
wife dyads.

The data obtained from the observation of a married couple
are a string of behavioral units. The couple is usually video-
taped while discussing some issue problematic to their mar-
riage. The videotape is transcribed into coded units that mea-
sure the content of the verbal statements and perhaps the affect
of the speaker or listener. The resulting data are a sequence of
behaviors (a continuous record of interactions). If the recorded
measurements are discrete valued (rather than continuous),
they may be aggregated so that individual behaviors fall into
cells of a multidimensional contingency table. Our primary fo-
cus here is on discrete-valued behaviors, primarily because the
sequential analysis of continuous-valued dyadic behavior, using
time-series techniques, is already well documented (mostly by
Gottman, 1979¢) and fairly well understood.

For example, husband-wife dyads observed at two points in
time on one discrete-valued or binary-valued behavior will fall
into cells of a four-dimensional contingency table. The first vari-
able of this four-way table represents whether the husband dis-
played the target behavior at some time. The second margin rep-
resents the wife’s behavior at that same time. The third and
fourth margins represent the behavior observed for the husband
and wife, respectively, at the subsequent time. For example, Ta-
ble 1 contains such a 2* table, the hypothetical data presented
and analyzed by Allison and Liker (1982, p. 399).

Review of Recent Methodology

Sackett (1979) suggested that the familiar standard normal z
statistic for testing proportions be applied to sequential dis-

crete-valued data. The proportions represent the conditional re
lations between different variables at different lags. For exam-
ple, we might be interested in whether a wife’s negative behavio
(X} at time ¢ is responded to by a husband’s negative behavioi
(Y)at time 7 + 1. The null hypothesis would be that the occur-
rence of the husband’s negative behavior is independent of the
wife’s previous behavior: Pi(Y|X) = P(Y) at lag k. The numera-
tor of the test statistic is the difference between estimates of
these two probabilities: [P(Y|X) ~ P(Y)]. This difference is
then standardized by the estimated standard error of the ex-
pected proportion (P(Y)): [(P(Y))(1 — P(Y))/(n — k)]'%. One
then refers the observed value of the 7 statistic to the standard
normal distribution to judge the validity of the null hypothesis.

Gottman (1979a) studied this z statistic in more detail, by
focusing on estimates of conditional probabilities. Although
Gottman’s (1979¢) main contribution to the analysis of sequen-
tial dyadic data has been the exposition of time-series methods
for continuous data, he and his collaborators have also briefly
described methods for discrete data. Their research is an impor-
tant antecedent of the methods that we describe here. Gottman
and Bakeman (1979) discussed how to compare empirical con-
ditional and unconditional probabilities. This comparison is
one way of estimating Gottman’s (1979b) dominance effect.

Gottman’s (1979b) definition of dominance is simply the
presence of an asymmetry in the predictability of behavior. Ifa
wife’s behavior at some time is better predicted from the hus-
band’s behavior at a previous time than the reverse (predicting
the husband’s future behavior from the past behavior of the
wife), then the husband is said to be dominant. This definition
has been used by many, particularly Budescu (1 984), who noted
that Gottman’s (1979b) definition of dominance is similar to
the definition of power in dyadic relations given by Thibaut and
Kelley in 1959,

Gottman and Bakeman (1979) also described the use of Mar-
kov chains to model the transitions in sequences of behavior.
The data are represented in a two-way contingency table, in
which the rows correspond to the different categories coded at
time ¢ and the columns correspond to the same categories for
behaviors observed at time ¢ + 1. For example, there may be
four coded behaviors: wife or husband and complaining or
agreeing (Gottman & Bakeman, 1979, p. 195). The frequency
in a cell in this 4 X 4 table is increased by one for every pair of
consecutive time periods of the behavioral sequence.

Note, however, that models for these data cannot reflect the
dyadic interaction nature of these behavioral processes, be-
cause the researcher is focusing on only the husband or only
the wife but not both. Dyadic interactions can be modeled by
representing the sequences in a contingency table similar to the
one shown in Table 1 (adapted from Allison & Liker’s, 1982,
Table 3), in which behaviors for both the husbands and wives
are coded for times fand ¢ + 1.

The suggestion made by Allison and Liker (1982) to restruc-
ture dyadic interaction data into a four-way table is, from our
perspective, their most important methodological contribution.
This new structure enables direct application of log-linear
models that can describe sequential dyadic social interactions
and can allow the researcher to test hypotheses about patterns
of behavior. They also made two other major contributions.
First, they corrected the estimate of the standard error of the z
statistic proposed by Sackett (1979) and used by Gottman
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(1979¢). Second, they criticized the traditional procedures be-
cause such methods (like Sackett’s statistic) do not control for
autodependencies in the data. They showed that results can be
quite misleading if one fails to include such effects in the
analyses.

Budescu (1984) also found Allison and Liker’s (1982) struc-
ture of the data useful but chose to take a different approach to
the analysis of the data. He criticized Allison and Liker on three
counts. First, they modeled the individual actors within a dyad,
rather than the dyad itself. The actors within a given dyad are
usually not independent, so the observations on the actors can-
not be assumed to be a random sample from a large population
of unrelated actors. Allison and Liker’s methods ignored the
fact that dyads, rather than actors, are sampled in studies of
married couples or mother—child pairs. Budescu used the dyad
as the unit of observation for these types of data (as did laco-
bucci & Wasserman, 1987; Wasserman & Iacobucci, 1986; and
authors of related papers).

Budescu’s (1984) second criticism was that Allison and Liker
(1982) postulated a common model for both individuals (or ac-
tors) in the dyad and then estimated one set of parameters for
each actor. The parameters in the set were common to both
actors, but their estimates were allowed to vary. Budescu argued
that some effects (such as autodependence) may not be neces-
sary for both partners, whereas other effects might be needed in
the parameter set for both individuals in the dyad. For example,
the behavior of actor 4 (e.g., the husband) at time ¢ might be
best modeled as a function of the previous behavior of actor 4
(himself) and actor B (his wife), but the behavior of actor B (the
wife) may be solely a function of her husband’s prior behavior.
Both Budescu’s and our models allow for this flexibility.

Third, Budescu (1984) claimed that his method is to be pre-
ferred on statistical grounds, because his methodology includes
tests that can be used to identify the best fitting model. We point
out that, theoretically, Allison and Liker (1982) could have also
developed such tests simply by using the standard goodness-of-
fit test statistics for log-linear models for multidimensional con-
tingency tables.

Budescu (1984) adopted Allison and Liker’s (1982) use of
contingency tables and described the two primary approaches
to the analysis of multivariate categorical data: maximum likeli-
hood estimation of log-linear models as developed by Goodman
(1964, 1968, 1970, 1971a, 1971b) and Bishop, Fienberg, and
Holland (1975) and weighted least squares estimation of linear
models, first presented by Grizzle, Starmer, and Koch (1969).
Budescu analyzed his four-way dyadic interaction contingency
tables by using Grizzle et al’s methods, because the models and
computations resemble regression and analysis of variance.

The methods that we describe rely on log-linear models. We
prefer this approach over the Grizzle et al. (1969) method for
three reasons. First, we believe that log-linear models are be-
coming fairly well-known to psychologists and that they are bet-
ter understood and more frequently used by social and behav-
ioral scientists. Furthermore, many introductions to and appli-
cations of such methods have recently been published in
Psychological Bulletin—Bonett and Bentler, 1983; Isaac and
Milligan, 1983; Olzak and Wickens, 1983; Dillon, Madden, and
Kumar, 1983; Wampold, 1984; Tanner and Young, 1985; Ha-
ber, 1986, Iacobucci and Wasserman, 1987; and especially Feick
& Novak, 1985—so there is substantial evidence of the growing

popularity and ease of use of log-linear models for categorical
data analysis.

Second, model specifications are more straightforward for
log-linear models, and computer programs are considerably
easier to use. The choice of a computer program is certainly a
subjective decision, but it is true that Grizzle et al’s (1969)
methods require more detailed knowledge of the analysis, such
as how to define the actual functions to be estimated, contrasts,
design matrices, and so on. In addition, the only widely avail-
able statistics software that implements this estimation algo-
rithm is sas. Log-linear modeling can be done with spssX,
BMDP, GLIM, SYSTAT, as well as SAS.!

Finally, the model structure necessitated by Grizzle et al’s
(1969) use of weighted least squares as an estimation technique
may not always be the most appropriate way to view categorical
data. Grizzle et al. viewed such data sets as single two-way con-
tingency tables in which the rows are populations that reflect
the sampling structure of the data. A researcher may sometimes
have data in which the sampling structure is either not apparent
or uninteresting, motivating treating the data as if they had
come from a single population. In this instance, there is only
one row, and the full capacity of Grizzle et al.’s structure is not
used. Furthermore, Grizzle et al. always viewed the columns of
these two-way tables as responses. This implies that multivari-
ate response variables must be made univariate, or “strung out”
into a single column variable. This unnatural view can be quite
confusing to the novice modeler.

Budescu (1984) described effects that might be present in the
data, such as autodependencies and direct and indirect domi-
nance, and described how his methods would be used to test for
the presence of such effects. Dominance is defined as the effect
of the husband or wife on future interactions in the dyad. If
direct-dominance effects exist, the behavior of one member of
the dyad predicts the future behavior of the other member. If
indirect-dominance effects exist, the behavior of one member
predicts the future joint behavior of the dyad. Budescu then
classified these combinations of effects as either strong or weak
dominance, but we are not interested in the labeling of the com-
binations of such effects.

The models that we describe shortly can include both autode-
pendence and dominance effects, as well as many other effects
that are substantively interesting. The data sets that we study
are similar in structure to the four-way tables that may be ana-
lyzed by Allison and Liker’s (1982) and Budescu’s (1984) meth-
ods. Furthermore, the parameters contained in our models have
direct counterparts in Budescu’s framework because of the rela-
tion between log-linear models and logit models estimated by
using Grizzle et al.’s (1969) methods.

Our framework is more general because of the theoretical ap-
proach that we take to model building. Rather than start with
the data array to be analyzed, we first posit a variety of substan-
tively meaningful models that could have generated the data.
These models contain parameters that reflect important struc-
tural or longitudinal tendencies for the behavioral processes un-

! The computer manuals for these statistical programs discuss log-
linear modeling of categorical data on the following pages: BMDP, Dixon
(1983), pp. 176-201; GLIM, Payne (1985), pp. 45-53; SAS, SAS Institute
(1985), pp. 184, 225-230; spss*, Norusis (1985), pp. 295-365; SYSTAT,
Wilkinson (1984), pp. 91-102.
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der study. We then fit these models to data and determine which
of the parameters are statistically significant. This approach al-
lows the substantive models, rather than the data, to guide the
researcher,

We see the framework that we describe shortly as being the
next step in the evolution of methodology for sequential dyadic
analysis begun by Sackett (1979) and Gottman (19794, 1979¢)
and refined by Allison and Liker (1982) and Budescu (1984).
Budescu’s models can also be fitted by using our framework.

For completeness, we acknowledge that other methodology is
indirectly related to our approach. The work of Wampold and
Margolin (1982) and Wampold (1984) demonstrates that one
can study sequential dyadic interactions and the presence of
dominance effects by using nonparametric methods, such as
runs tests and Hubert’s quadratic assignment paradigm (Hu-
bert & Baker, 1977; Hubert & Schultz, 1976; and especially
Baker & Hubert, 1981). These methods are also valuable statis-
tical tools. Dillon et al. (1983) used latent structure analysis, a
technique popular with sociologists that can be applied to con-
tingency tables of dyadic interaction data, to study dominance
and lagged dependence across populations of dyads. Feick and
Novak (1985) showed how to model two-way tables of frequenc-
les of preferences made by each actor in a dyad (but not sequen-
tial preferences) by using log-linear models designed for the
analysis of ordinal, categorical data.

Other researchers have proposed methods for the analysis of
nonsequential social interaction data. Kraemer and Jacklin
(1979) showed how to analyze univariate social interactions,
and Mendoza and Graziano (1982) extended Kraemer and
Jacklin’s results to multivariate relations. These methods use
standard multivariate statistical techniques for continuous data
and, thus; may not be appropriate for discrete interaction data.
lacobucci and Wasserman (1987) showed how these methods
could be modified to apply to discrete data. Also related is the
social relations model proposed by Kenny (1981), LaVoie
(1982), and Kenny and LaVoie (1984). This model is similar to
Kraemer and Jacklin’s and has been used by many researchers
{see Ingraham & Wright, 1986).

An Alternative Method
Background and Data

The statistical details on the methodology we are about to
describe have been presented elsewhere (Fienberg, Meyer, &
Wasserman, 1985; Wasserman, 1987; Wasserman & lacobucci,
1986), so we do not repeat those details here. Instead, we de-
scribe the models in more general terms and concentrate on the
applications of these methods to sequential dyadic interaction
data. We present the statistical framework in some degree of
generality, but we always include models for the analysis of data
such as those in Table 1 (one relation measured at two time
points) as a special case. The methods that we discuss here are
similar to those of Iacobucci and Wasserman (1987) but are
designed for sequential, rather than cross-sectional, dyadic in-
teraction data.

Before introducing notation, we present two reasons why this
statistical framework can be considered quite general. First, the
framework is general in that models may be fitted to data that
include any number of relational variables and any number of

time points. In addition, our models can accommodate data
that describe attributes of the couple as a unit or of the individu-
als that compose the dyad.

Simultaneously modeling a large number of variables allows
us to study a much greater number of effects or higher order
interactions. We can estimate effects for autodependence at any
lag and dominance at any lag. In addition, we can also estimate
effects for dominance that cross over relations (e.g., if she does
this at time ¢, he does that at time ¢ + 1). We can also look
for associations, or “correlations,” between relations, and these
effects can also depend on time or on the attributes of the actors
and partners. That is, the higher order interactions between any
combination of relations, time points, and attribute variables
can be estimated. Because our approach to the analysis of these
behavioral sequences is slightly different from those of other
methodologists and because we are equipped with theory, we
can ask and answer a much greater number of questions in these
types of data.

The second reason that the framework may be considered
general is that these models may be applied to a given sample
of data that has been aggregated in several ways. No statistical
method will be able to do much for data on only one couple
recorded at only two time points. There are several ways to ob-
tain replications, however, and our methods can be applied to
data aggregated in any of these ways.

First, data may be aggregated over time points for one couple.
This is the historical approach in the ethological, or “idio-
graphic,” tradition, in which the focus is on one couple and the
time points serve as replications. In this context, the researcher
must decide on the length of the sequences of behavior that will
be aggregated. We cannot pretend to know how long these se-
quences should be: It depends on the given data and research
area. We can only suggest starting conservatively——perhaps
modeling sequences of, for example, five time units—and mod-
ifying the analysis on the basis of the results.

For example, if five time units were used, the series of behav-
iors coded at times 1, 2, 3, 4, and 5 would be aggregated with
the behaviors coded at times 2,3,4,5,and 6; 3,4, 5,6,and 7:
and so on. Then interactions could be tested at lags 1, 2, 3, 4,
and 5. If the only significant interactions were between (a) times
tandz+ lortimest+2and?+ 3 (ie., lag 1) and (b) times ¢
and ¢ + 2 (i.e., lag 2), then the sequences of five time units could
be further aggregated to sequences of only three time units (i.e.,
times 1, 2, and 3; times 2, 3, and 4; times 3, 4, and 5; and so
on). The subsequent analyses would be simplified, without loss
of information.

Alternatively, the sequences of behaviors might be aggregated
over couples, for some given number of time points. In this con-
text, the time points are of greater interest, and the couples are
serving as replications. For example, if each dyad had been ana-
lyzed separately, as described above, and most dyads showed
effects at a lag no greater than one, there would be two relevant
time points to model for several couples.

Two (or more) time points might also be the focus of the
models when there actually were only two interesting time
points during which data were collected. For example, couples
might receive some score when observed at time ¢ (e.g., during
a pretherapy diagnostic session) and another score when ob-
served at time ¢ + | (e.g., during a posttherapy evaluation ses-
sion). Whether (a) only two time points were observed or two
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time points were of interest in the context of all those times
observed or (b) the data were aggregated to only two time
points, the models would describe behavior at times ¢ and ¢ +
1, for typical couples. This is the framework of Allison and Liker
(1982) and Budescu (1984).

Finally, data may, of course, be aggregated over both couples
and time points. Whether couples or time points serve as repli-
cations must be decided by each researcher confronted with
each given data set. Sometimes this decision will be easy, as
when there are few times observed but data exist for many cou-
ples. The opposite case—when the researcher had observed
only one couple for a long time or for a short period at several
times—would also be relatively easy.

Related issues exist in the actual coding of the behavioral se-
quences. For example, does one code positive, neutral, and neg-
ative affect as three levels of one relation, or does one code them
as two relations—the presence or absence of positive affect and
the presence or absence of negative affect. Furthermore, are
time units determined by clock units, or are time units deter-
mined by the duration of thought units (as described earlier in
this article). Finally, does one code a behavior for each person
at each time, to allow for overlapping behavior, even when there
may be dead time, perhaps necessitating a code that represents
the fact that at a given time, a given person displayed none of
the target behaviors. (In an example that we describe shortly, we
allow for overlapping behavior.)

These issues depend on the research questions and on the
available data. We cannot pretend to resolve these issues, nor
would that be desirable, because, as one of our anonymous re-
viewers stated, “There is no right way to code social interac-
tions.” Our models may be applied to data regardless of the rep-
lication paradigm, and because we can model several relations,
we can accommodate any of the coding schemes. If the re-
searcher cannot resolve these issues on theoretical grounds, per-
haps our methods could be useful in resolving these issues on
empirical grounds.

We now introduce notation. Suppose that we are given se-
quential observations for g/2 husband-wife dyads on a single,
binary relational variable (such as presence or absence of nega-
tive affect). There would be a pair of observations, one for each
member of the dyad. We can look at this pair from the point of
view of the wife as the actor and the husband as the partner, or
we can look at the data from the point of view of the husband
as the actor and the wife as the partner.

Because of the symmetry in the way we can treat the data,
all individuals can be considered both actors and partners. An
individual within a dyad will be subscripted by i as an actor and
by Jj as a partner. For example, as actors, husband 1 would be
denoted by i = 1, wife 1 by i = 2, husband 2 by i = 3, wife 2 by
[ = 4, and so on. As partners, husband 1 would be denoted by
J =1, wife 1 by j = 2, husband 2 by j = 3, and so on. The dyads
that would have interacted, then, would be husband and wife 1
(f=1,j=2andi=2,j=1)and husband and wife 2 (i = 3, =
4 and { = 4, j = 3). The subscripts for actors and partners, / and
J, range from 1 to g.

We consider the observations on these dyads at times ¢, 1 + 1,
t+2,....The Allison and Liker (1982) and Budescu (1984)
data (such as those in Table 1) involve T = 2 time points, but
we can model a general number of time points. It is common
for the sequences of data to be of different lengths for different

dyads, but each sequence is aggregated to pairs of behaviors at
time ¢ and ¢ + | (when looking at two time periods).

As described, data frequently are collected on a single rela-
tional variable, but occasionally, a researcher may gather more
than one behavioral sequence for each dyad. For example, the
verbal content codes of the dyad might be one behavioral se-
quence, and the nonverbal affect displayed by the dyad might
be another behavioral sequence. For data such as these, the re-
searcher will want to study the relation between the two se-
quences.

For a single relational variable observed at two time points,
the data for some dyad (i, j) consists of bivariate quantities (k,,
h) and (k;, b). The subscripts represent the time points during
which the data were collected, whereas the ks and /s record the
behaviors of the husband and wife. For example, suppose that
we measure the absence (1) or presence (2) of negative affect at
two points in time. I (k;, /) = (2, 2) and (k,, b)) = (2, 1), then
both members in the dyad display the behavior at time 1, but
only the first member does at time 2,

The methods that we present can be used to analyze data
more general than those in Table 1. We can extend the analyses
by increasing the number of time points, the number of rela-
tional variables, or both. For example, one relational variable
observed at five time points would result in the following data:
(kl . [1), (kz, 12), (k3, [3), (k4, 14), and (ks, 15) for each dyad (l,_]).
Two relational variables at three time points may be denoted
(again for each dyad) (k,, /;) and (m,, n,) for time ¢, (k2, ;) and
{(mz, ny) fortime ¢ + 1, and (k3, /s) and (m3, n3) for time ¢ + 2.

Yet another generalization of dyadic social interaction data
that can be analyzed with the models that we will present is
discrete (and ordinal) data, rather than just dichotomous rela-
tional variables. Note that the data in Table 1 are frequencies
of binary interactions and are aggregated over only the presence
or absence of a single behavior for each husband and wife. There
is no need to restrict our methods to binary data. The indicator
variables k and / (and m and n and so on) can be discrete valued.
For example, k and / might be binary codes for whether the
individual within the dyad displayed any negative affect, but
this could be generalized to discrete k and / by measuring the
intensity of the negative affect displayed.

These dyadic sequential interaction data may be represented
by a sociomatrix. The rows and columns of this matrix, X, are
the individuals. For a specific time point and specific relation,
the entries in the matrix are the value of the observed dyadic
behavior (k, /). That is, for individuals 7 and j, there would be a
k in cell (4, j) and an [ in cell (j, i). There is one matrix for
each time period for each relational variable, for a total of RT
matrices (R = number of relational behaviors and T = number
of time points). '

Sociomatrices, as noted by many authors, such as Knoke and
Kuklinski (1982), are helpful in representing many sorts of so-
cial interaction patterns. Many dyadic studies in psychology
(such as those of husband-wife dyads) yield sociomatrices in
which there is only one nonzero entry in each row and column,
representing the fact that each individual interacts with only
one other. Such studies focus on a small number of special dy-
ads, because all other dyads are structurally impossible. For ex-
ample, the X matrices generated by three couples measured on
one binary relational variable at two time points are given in
Table 2.

3—-_-
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Table 2

Example of Sociomatrices for Three Couples, Two Time Points, and a Single Relational Variable

X, (time 1) X; (time ¢t + 1)
j=1 2 3 4 5 6 j=1 2 3 4 5 6
i HI Wi H2 W2 H3 w3 Hi Wi H2 W2 H3 W3
1 H1 —_ k — 2
2 Wi I} — 1 —
3 H2 —_ k — 1
4 w2 ! — 1 —_
S H3 i —_ k — 2
6 W3 ! — 2 —

Note. These sociomatrices contain data representing the relation between actor / and partner /. X, includes subscripts k (to indicate behavior from
actor / to partner j) and / (to indicate behavior from partner j to actor #). X; includes possibie values (I and 2) that the relational variable might take.
For example, in dyad I, husband 1 (H1) reacts negatively to wife 1 (W1), who does not reciprocate the negative behavior at the same time. In dyad
2, both individuals do not behave negatively. In dyad 3, both individuals do behave negatively. All empty cells are structural zeros.

Although sociomatrices are a convenient way to represent the
data, the methods that we have developed use contingency ta-
bles that are derived from the RT matrices of discrete-valued
interaction data. We construct contingency tables that can be
modeled by using log-linear models of the dyadic probabilities.
Our approach, as noted by Wasserman and lacobucci (1986),
allows these models to be fitted by using any log-linear, categori-
cal-data-modeling computer program.

We define a multidimensional Y array, in which the margins
are subscripted by using the notation described above. For a
dyad observed at two time periods (7" = 2) on a single relational
variable (R = 1),

Yij s, = 1 if the dyad (7, /) behaved as described by (k;,
’ /) at time 1 and by (k;, [,) at time 2 and

= () otherwise.

Note that there is no restriction that the ks or /s be binary (see
Wasserman & lacobucci’s, 1986, article).

A Y array may be constructed for any of the data-gathering
scenarios that we have described. Consider the following four
cases, which are distinguishable on the basis of the number of
observed time points and the number of relations. The nonzero
elements in the Y arrays would be in the following cells:

1. Single relation and two time points,

1 fordyad (i, j).

),ijkll,kzlz =
2. Single relation and T time points,

1 fordyad (i, ).

Yijk,/,k,/,. kely
3. Rrelations and two time points,

=1 fordyad (i, ).

Useyhykgiamymymang. 3,299,
4. Rrelations and T time points,

=1 fordyad (i, ).

Ukydikaly- - kgl yyzy - - yroy

The number of dimensions for each of these Y arrays is 6,
2T+2,2R +2,and 2RT + 2, respectively. The first two dimen-

sions of these Y arrays always refer to the actor pair. It should
be clear that the methods that we use are adaptable to a wide
variety of data. Furthermore, as the data become richer, the esti-
mable parameters, which we describe shortly, become more in-
teresting.

Attribute Variables

Before discussing the models and parameters, we describe an-
other way in which the methods that we use can be generalized.
The Y array is built on the data of individuals, yet we are seldom
actually interested in the behavior of particular individuals or
particular dyads. Instead, the interest is usually focused on how
actor subgroupings defined by an attribute characteristic of the
individuals or the dyad interact with the observed behaviors.

For example, the attribute variable “distressed versus nondis-
tressed” is usually considered a characteristic of the couple.
That is, a clinician classifies the couple on the basis of scores on
marital satisfaction inventories or on the basis of help sought.
Then, the data on distressed couples could be compared with
data on nondistressed couples. Dyadic attributes can be viewed
as stratifying variables that place dyads into a finite number of
strata or populations.

In addition, there is frequently demographic information on
the individuals within the couple. For example, the attribute of
sex is usually used when studying married couples, so that each
actor is placed into a category defined by his or her sex. Such is
the case in Table 1, although in this situation, same-sex interac-
tions do not occur. For other examples, the ages of the husbands
or wives might be a contributing factor to the satisfaction ob-
tained in the relationship, or distress could be an attribute vari-
able measured at the level of the individual if it was, say, a score
on an attitude questionnaire that could be used to place the
husbands and wives separately into categories on the basis of
their individual opinions regarding the satisfaction of the mar-
riage.

It should be clear that there are two types of attribute vari-
ables. One type consists of dyadic attributes that are recorded
on dyads (so that the actors in a dyad have identical values on
the attribute). The other type consists of actor attributes that
are measured on individual actors (and may mean that a dyad
contains actors with differing values on the attribute),
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Table 3
Six-Dimensional W Array Corresponding to Data in Table 1
s=1 §=2
=1 =2 li=1 L=2
r k] kz [2—1 12=2 12=l [2_2 [2’-1 12=2 12=l 12=2
1 t 1 0 0 0 0 300 S 14 11
2 0 0 0 0 79 16 5 70
2 1 0 0 0 0 70 5 16 79
2 0 0 0 0 3 14 5 300
2 1 1 300 79 70 1 0 0 0 0
2 5 16 5 14 0 0 0 0
2 1 14 5 16 5 0 0 0 0
2 11 70 79 300 0 0 0 0

Note. r = actor subgroup; s = partner subgroup; k, and k, = behavior observed for the actor at times | and 2 (or times ¢ and ¢ + 1), respectively; /,
and /, = behavior observed for the partner at times 1 and 2 (or times f and ¢ + 1), respectively.

To demonstrate how to include attribute variables in a se-
quential dyadic data analysis, we start with data for g/2 couples
on a single relational variable at two time points. To make
things concrete, we again have married couples and both a dy-
adic attribute and an actor attribute: whether or not the couple
has been classified as distressed and the age of the actor (catego-
rized into a finite number of classes). Thus, dyad (i, j) falls into
one of two categories, for which we use the superscript 4, indi-
vidual / falls into age group r; and individual j falls into age
group 5. (We have chosen to use just one attribute variable for
the dyad and one for the individuals to keep things simple.) We
then modify the Y array to incorporate these attribute variables
as follows.

A W array contains the information in the Y array but fo-
cuses on the subgroups d, , and 5. A W array is defined by the
attribute variables and is formed by summing the Y array over
the appropriate dyads and individuals. That is, a typical entry
in this array, W9, ,, , is the sum over the (i, j, ki, I, ka, b)
cells of Y where i E r, j € 5, and (i, j) € d. If one has 4, dyad
attribute variables, then the first 4; dimensions of the ¥ array
correspond to these variables. If one also has A4, actor attribute
variables, then the next 24; dimensions of the array correspond
to these variables (because one must record the variable values
for both the sending and receiving actors in the dyad). Rather
than model the Y array, the researcher interested in subgroup
differences would model the W array. More detail on incorpo-
rating attribute variables into the analysis of nonsequential so-
cial network data and dyadic interaction data can be found in
Wasserman and Galaskiewicz’s (1984) article and Fienberg et
al’s (1985) article.

Once again, the framework is adaptable; a researcher might
have attribute variables on the dyads and individuals, on just
the dyads or the individuals, or on neither the dyads nor the
individuals. Note that the data in Table 1 represent part of a W
array incorporating a single actor attribute variable (sex). The
full six-dimensional W array, which contains the four dimen-
sional array in Table 1, is given in Table 3. _

As can be seen, the array in Table 1 is the northeast quadrant
of the array in Table 3, because the northwest and southeast
quadrants, giving husband-husband and wife-wife interac-
tions, are structurally zero in studies of married couples. The

southwest quadrant is a transposition of the northeast quad-
rant. That is, the g individual actors (husbands and wives) serve
both as sending actors (those performing the target behavior)
and as receiving actors (those witnessing the target behavior).

For example, husband i displays negative behavior (e.g., criti-
cizes his spouse) with intensity k, and wife j displays the negative
behavior (criticizes her spouse) with intensity /. Viewing the
data (k, I) for dyad (i, ) is the same as viewing the data (/, k) for
dyad (J, i).

Sometimes, one is interested only in the behavior sequences
and not actor or dyadic characteristics. If the W array is col-
lapsed over these variables, one loses all information about the
individual actors and dyads. The resulting contingency table,
which is termed a V array, represents only the relational vari-
ables and time points. A typical entry is Vi x,1,, which gives the
number of dyads with value (k,, /;) on the behavior at the first
time and (k;, /) on the second behavior. The V array derived
from the data in Table 1 by collapsing over the sex of the actors
in the dyad is given in Table 4. The methods of Gottman
(1979a, 1979c¢), Allison and Liker (1982), and Budescu (1984)
are applicabie only to parts of the W array that contain infor-
mation on a single binary actor attribute variable from one of
the four possible quadrants of the table (i.e., these authors ana-
lyzed only tables such as Table 1). We consider both ¥ and com-
plete W arrays with arbitrary numbers of attribute vanables.
We present models applicable to data sets containing attribute
information on the dyads, the individuals, or both because we
believe this is most frequently the case.

Models

Before we describe how to fit models to Y, W, and V contin-
gency tables, it would be useful to review the notation that we
use to represent parameters and the margins of the table that
correspond to the associated sufficient statistics. This notation
comes from Fienberg (1981). A set of numbers in brackets im-
plies that the model includes parameters for the highest order
interaction between the margins listed, as well as all lower order
effects. For example, [124] represents fitting the 124 interac-
tion; the 12, 14, and 24 two-factor interactions; and the main
effects for margins 1, 2, and 4.
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Table 4
V Array Formed by Collapsing Over Attribute
Variable (Sex) in Table 3

11 =1 [] =2
ki k; L=1 ly=2 L=1 L=2
1 1 600 84 84 22
2 84 32 10 84
2 84 10 32 84
22 84 84 600

Note. ki and k, = actor behavior at times ! and 2 (or times tand ¢ + 1),
respectively; /, and /, = partner behavior at times | and 2. These four
take on the value | when the behavior did not occur and the value 2
when the behavior did occur,

The margin numbers correspond to the subscripts and super-
scripts in the Wor V arrays. For example, for the data array
W kgy—which incorporates a single attribute variable for
both the dyad (<) and the individuals (7 and s), two time points,
and one relational variable—the notation [1] [2] (3] [41 (5] (6]
[7] implies that the log-linear model contains main effects only
for the variables corresponding to the subscripts d, r, s, ki, [,
ks, and J, respectively.

An example might be useful. Fitting the log-linear model [4]
[5][6]1[7] would be equivalent to collapsing over dyads and indi-
viduals (i.e., modeling the V array) and fitting only the main
effects on the relational. variables (variables 4-7). This model
assumes independence between individuals at a given time; that
is, no parameters correspond to the [45] or {67] margins. It also
assumes independence between time points, because there are
no terms in which [4] or [5] interacts with [6] or [7], such as
[46] = [57] (an autodependence effect) or [456] = [457] (the
interaction specifying an association between the behavior of
both dyad members at time | and the behavior of one member
of the dyad at time 2).

To start simply, we describe models that may be fittoa V
array for two time points and a single relational variable with
no attribute variables. An example of such an array is given in
Table 4. Such a table is four-dimensional, and a typical entry,
Vit koly » TEPTESENLS the number of dyads in which one actor dis-
plays the target behavior at rate k, during time 1 and k; during
time 2 and the other actor displays it at rates /; and /.

In a four-way contingency table, there are four margins corre-
sponding to main effects, six margins for two-factor interac-
tions, four for three-factor interactions, and a single margin for
the four-way interaction. Because we know the psychological
meaning associated with each margin (e.g., variable 4—sub-
scripted with /,—is the behavior of an actor at time 2), we can
fit a log-linear model that contains specific interactions and test
any parameter that seems interesting.

Some examples of effects that may be interesting follow. If
there were no time effect, the model [12] {34] woulid fit, because
this model has no interactions between behaviors at time | and
time 2. The effects corresponding to the {12] margin are associ-
ated with behavior at time 1, and the effects corresponding to
the [34] margin are associated with behavior at time 2. If there
was, in fact, an effect of carryover from time 1 to time 2, we
would need parameters that indicated an interaction between

time 1 ([1] and [2]) and time 2 ({3] and [4]), such as {13] [24],
[123}]124], or [23][14].

An example of an interaction between the two time points is
the parameters associated with the [13] = [24] margins, which
can be interpreted as autodependence effects for actors who
(continuing with the earlier scenario) are either criticizing or
being criticized. The parameters associated with the [23}=[14]
margins correspond to a dominance effect between the behavior
of one actor at time | and that of the other actor at time 2.The
[123] = [124] margins are associated with effects for the entire
dyadic behavior at time 1 interacting with the behavior of just
one of the actors at time 2,

Now consider a six-dimensional W array that incorporates a
single actor attribute variable (such as sex). Refer again to Table
3. The main effects might be interesting if the overall behavior
levels differ between time points (variables 3 and 4, whose mar-
gins are equal by symmetry, vs. variables 5 and 6, which are
also equal by symmetry). Included in Table 5 is a list of possible
interpretations of some of the higher order effects for this six-
way W array. Models that fit the data could include any hierar-
chical subset of these effects.

A model such as [12345] [12346] would be interpreted as
follows: *“‘Conditional on the dyad’s behavior at time 1 ([34])
and the sex of the actors ([12]), the behaviors of the husband
and wife at time 2 ([5] and [6]) are independent of each other”
Or perhaps the model that best fits the data is [1235] [1246].
This model suggests that the behaviors of the husband and wife
(conditional on the sex of the actors) are not affecting each other
but that the only important effects are autodependencies of
time 1 behavior on time 2 behavior.

Two more sets of effects are often central to the study of hus-
band-wife dyads. These are direct and indirect dominance—
the predictability of a person’s or the dyad’s behavior at some
time by the other person’s behavior at the previous time. Param-
eters measuring the effect of a dominant husband or wife could
be included in the model by fitting the margins [1245] = [1236].
The model [1245] [1236] lacks autodependence effects, which

Table 5

Interpretations of Some Margins in the Six-Dimensional
Wdrray: W= (W™, ..\ (With Criticism

as the Single Behavior)

Margin Interpretation of associated parameters
[12] Sampling structure of W array
[13] = [24] Actors criticizing at time 1
[16] = [25] Actors being criticized at time 2
(34 Reciprocal criticism at time 1
[35] = [46] Overall autodependence effect for all
actors
[36] = [45] Overall direct dominance (actor criticizing

at time | and gets criticized at time 2)

Autodependence effect dependent on type
of actor (i.e., [35] = {46] depends on
subgroups)

Overall indirect dominance (behavior of
actor at time 1 interacts with behavior of
dyad at time 2)

Indirect dominance differing by subgroups

Dyadic interaction at time ! interacts with
same at time 2

[135] = [246)

[356] = [456]

[1356] = [2456]
{3456]
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Table 6
Interpretations of Some Margins in the Seven-Dimensional
W Array: W= (W9, | .}

Table 7
Interpretation of Margins in the Eight-Dimensional
VArray: V=V 1iiiki}

Margin Interpretation of associated parameters Margin Interpretation of parameters

[123] Sampling structure of W [13] = [24],[25] = First-order autodependencies

[45] Reciprocal behavior at time 1 {36], [37] = [48]

{145} Reciprocal behavior at time | dependent on type of [15] = {26],[27] = [38] Lag 2 autodependence effects
dyad [12], [34], [56], {78] Reciprocal behavior at each time

[2345] Reciprocal behavior at time 1 depends on attributes of [1278] Reciprocal behavior at time 1 interacting
individuals within dyad with reciprocal behavior at time 4

[12345] Reciprocal behavior at time 1 depends on attributes of [347} Reciprocal behavior at time 2 interacting
dyad and individuals with individual’s behavior at time 4

[46] = [57] Autodependence effect

[47] = [56] Direct-dominance effect

{147} = [256] Direct dominance depending on type of dyad

suggests that within-actor behavior is changing over time; that
is, there is no sequential dependence of an actor’s time 2 behay-
ior on his or her behavior at time 1. Incorporating autodepen-
dencies with dominance would mean fitting the margins [35]
[46] [36] [45]. Allowing these effects to depend on attribute
variables would mean fitting {1235] [1246] [1236] [1245] in the
model. Indirect dominance, as Budescu (1984) defined it, is the
effect on both actors in the dyad of an individual actor’s previ-
ous behavior, so indirect dominance on the part of the husband
or wife would be reflected in the parameters associated with the
margins {12356] = [12456].

As the data become richer, more variables are measured, and
the associated W and V arrays grow in size. Consequently, these
arrays have larger numbers of margins that are sufficient statis-
tics for various effects and more complex and interesting pa-
rameters. It should be clear that W arrays, unlike ¥ arrays, allow
the researcher to postulate that any effect for time or the rela-
tional variables can depend on the attributes of the actors and
dyads. For example, the autodependence effect for distressed
couples might be nearly zero, suggesting inconsistent or chang-
ing behavior, whereas the autodependence effect for nondis-
tressed couples might be nonzero. If we use just this single dy-
adic attribute and measure a single relation at two time points,
then the five-dimensional array W = {W@ ..} would be
modeled with a log-linear model containing parameters corre-
sponding to the interaction [124] = [135]. That is, the overall
autodependence effect ([24] = [35]) would depend on the type
of couple (d, denoted by variable 1).

We list interpretations for some of the higher order margins
of a seven-dimensional W array—formed from a dyadic attri-
bute, an actor attribute, and one relation measured at two time
points—in Table 6, Once again, the models that fit the data
might include any hierarchical subset of these margins. One
should always include the [123] margin in all models under con-
sideration for this W array. This three-dimensional margin cor-
responds to the attribute variables for the dyad and individuals.
This margin is usually considered fixed by the sampling design,
so one should always statistically condition on the numbers of
actors and dyads that fall into the cells of this three-way margin.

We include two more tables that are lists of interpretations
of margins for other data arrays. Table 7 contains a list
of the effects for an 8-dimensional V array, with entries
{ Vicyiegtokyisiats ) (1.€., ONE relational variable extended to four

time periods and no attribute variables). Table 8 contains a list
of effects for models of an 1 I-dimensional W array, with entries
{ W 1 kgtymymymyny} (attribute variables for the dyad and indi-
viduals, two time periods, and two relational variables).

These data arrays are only three examples of the many types
of data that can be analyzed by using this general framework. A
researcher can have more than one (binary, discrete, or ordinal)
relational variable and more than two time points and can also
incorporate actor and dyad characteristics into the models. The
general approach taken here to sequential dyadic interaction
data uses common sets of parameters and is easily applied to
any type of data set. As we have stated earlier, the effects that
we have discussed have their counterparts in other approaches.
The theoretical basis of our framework, however, allowed us to
easily generate the lists of effects and associated margins that
must be fitted. Most of these effects had not yet been studied or
even identified.

The effects are straightforward to understand, and they are
easy to generate: One needs only to remember which margin or
subscript belongs to which variable or time point. The parame-
ters associated with the effects are also easy to test. The logic of
the parameter testing follows the standard log-linear approach:
The fits of two models, one of which contains the parameters in
question and one of which does not, are compared. These tests
are simply conditional likelihood ratio tests, in the spirit of hier-
archical model fitting, and use the standard likelihood ratio test
statistic. For example, in testing whether the parameters associ-
ated with the interaction [234] are zero, one might compare the
fit and degrees of freedom of a model like [123] [124] [134]
[234] with the model [123] [124] [134]. The theory of these tests
is explained in many sources, including Fienberg’s (198 1) book
and Bonett and Bentler’s (1983) article.

The likelihood ratio test statistics should be calculated by us-

Table 8
Interpretation of Margins in the 11-Dimensional
WArray.' W= { W{d”)kll,kzlzm,n,m;n;}

Margin Interpretation of associated parameters
[123] Sampling structure of W
[48] = [59] “Correlation” of relations at time |
{6, 10] = (7, 11] “Correlation” of relations at time 2
[456789] Dyadic interaction of relations 1 and 2 at time |

with relation | at time 2
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! Table 9 v
i W Array for Hypothetical Data on 5- and 7-Year-Olds Conversing
s=1 §=2
1;; L=1 =2 L=1 =2
)rx-ié) r k| k2 /2—1 h=2 [2—1 12=2 L=1 12=2 [2—-—‘1 [2_2
i
{ i" ! 1 | 1 2 2 2 2 0 2 2 0
2 2 2 2 2 0 2 2 0
2 1 2 2 2 2 0 2 2 0
2 2 2 2 2 0 2 2 0
2 f -1 0 0 0 0 0 0 0 0
2 2 2 2 2 0 0 16 0
2 1 2 2 2 2 0 16 0 0
2 0 0 0 0 0 0 0 0

Note. r = | represents 5-year olds as actors; s = | represents 5-year olds as partners; r = 2 represents 7-year olds as actors; s = 2 represents 7-year
olds as partners; (k,, /,) represents talking behavior of dyad at time 1, where | represents no talking and 2 represents presence of talking by that

actor; and (ky, /) represents talking behavior of dyad at time 2.

ing the Y arrays, rather than the W or ¥ arrays that are used to
fit models. The reason behind this calculation is that the basic
unit in our modeling is the dyad, so one must compare esti-
mated probabilities for the dyads based on some model with the
dyad values actually observed. Thus, if one does not model the
entries in the Y array, statistics generated by “canned” log-lin-
ear modeling procedures will be incorrect.

Examples and Conclusion

Budescu (1984) analyzed Allison and Liker’s (1982) hypo-
thetical data (shown in Table 1) as a four-way contingency table,
so we do not reanalyze these data. For these data, Budescu
found that a wife’s behavior at time ¢ is a function of her previ-
ous behavior and her husband’s previous behavior, whereas the
husband’s behavior may be adequately modeled solely as a func-
tion of his wife’s previous behavior (i.e., the wife is directly
dominant). Finally, the couple’s joint behavior is independent

The W array created with the expected structure is found in
Table 9. The hypothesized randomness of the 5-year-old-chil-
dren pairs is simulated by an entry in every possible combina-
tion of behavior at times | and 2. The turn taking of the 7-year-
old pairs is simulated by entries only in the cells that correspond
to one person talking at one time and the other person talking
at the other time, that is, (ky, /,) = (2, 1) and (k, ) = (1, 2) or
(ki, i) = (1,2)and (k,, ;) = (2, 1). Finally, the 5- and 7-year-old
mixed pairs are somewhere in between. The 5-year-old behaves
somewhat randomly by talking or not talking without regard to
current or past behavior of the 7-year-old. The 7-year-old modi-
fies his own behavior as a result of the current or past behavior

Table 10
Models and Statistics for Hypothetical Data on 5- and
7-Year-Olds Conversing

of the dyad’s previous interactions. Model Model

We chose to construct and analyze an example of a full W , tested
array. The scenario is identical to the data studied by LaVoie a6 against 4
(1982). Boys 5 and 7 years old are paired and allowed to inter- A. [12][34][56][13] [24] [15]
act. Thus, the Y array, giving the recorded interactions among [26][14]{23][16][25]
the pairs, is aggregated over age to produce four groups of 5- and B. [12][34])[56] [13}[24] [15]
7-year-old boys: 5-year-olds with 5-year-olds, 7-year-olds with 7- C [12[??%5 ‘gé]zﬂ 3241 [15] 0 A 1.000
year-olds, and mixed age pairs. Note how these data are more ’ [26] [16] [25] 0 A 1.000
complete than mixed sex couples. All subgroups are allowedto D, [12] [34){56][13] [24][14]
interact. There are no husband-husband or wife-wife interac- [23][16] {25] 0 A 1.000
tions in studies of married couples, but in this example, there ~ E. [12}[34] [56] [15][26][14]
are 5-year-olds playing with other 5-year-olds and 7-year-olds E M([)2d3e]l E\Ii] gg} [46] 12 42 Q 122(5)
playing with other 7-year-olds. If we had data for 5-and 7-year- G, Model A + [36] [45] 14.434 H 000
old girls as well, the W array would be structured to include sex H. Model A + [35] [46] [36]
as a subgroup variable. [45]

We consider one relational variable at two time points to be JI ﬁ}f,’gﬁf g : ggg% Eigg} 8 g 1888
consistent with our introduction of these methods. We suppose” K. Model H + [134] [234] 9617 H 002
the relational variable to be whether a child is recorded as talk- L. Model H + {156] [256] 9.617 H 002
ing dur.ing the given time interval. When two S-year-olds are brilt R{/Iogei }P{I : H ;g{ 52(53} Ti%g }g 83(1)
paired in their play, we mxght expect some raqdom talking, o Mgd:lH + 145 [236] 11743 H 001
whereas the talking behavior of two 7-year-olds might resemble P. Model H + [146] [235] 3551 H 060

turn-taking conversation. (The actual age at which this behavior
of taking turns is acquired is not important for our example.)

Note. All these AG? statistics have 1 degree of freedom.
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of the 5-year-old. This implies that the 7-year-old does not talk
while the 5-year-old is talking.

We fitted a variety of models to the data arranged in the six-
dimensional W array of Table 9. The models and their fit statis-
tics are included in Table 10. Table 5 gives the substantive
meanings of the fitted parameters and associated margins (sub-
stitute the words talks 1o for the word criticizes). Before describ-
ing the parameters that were significant, we repeat that the sta-
tistical tests are hierarchical. Two models are fitted; one model
includes the parameter of interest, the other does not, and the
fit statistics for these two models are compared. The models
whose fit statistics were compared are also listed in Table 10.

The structure that we have built into these data is reflected
by the parameters that are significant. The largest effect corre-
sponds to the [135] = [246] margins, which represent the sub-
group, or age-related, autodependence. That is, for this exam-
ple, these statistically important parameters reflect the fact that
3-year-old but not 7-year-old actors talk at both time 1 and
time 2.

Two more sets of parameters were important in the models
that we fitted to these data. The first set was that corresponding
to the margins [36] = [45], [136] = [245], and [145] = [236].
The simpler effect ([36] = [45]) represents the dominance of the
relational behavior. For this example, dominance is simply turn
taking: One child talks at one time, and the other child talks at
the next time. The other, more complicated effects involve the
attribute variables and indicate that this behavior again de-
pends on the subgroup, or the age of the children in the dyad.

The second set of important parameters corresponds to
effects for margins [134] = [234] and [156] = [256]. The param-
eters associated with {34] imply mutual, or reciprocal, talking
attime 1, and those associated with [56] imply mutual talking at
time 2. The fact that the parameters associated with the margins
given above are statistically important implies that this mutual
talking effect at time | and at time 2 depends on the age of the
children. This is exactly as it should be, given how we con-
structed the data.

This example illustrates some of the generality of the statisti-
ca} framework that we have described. The effects that Gottman
(1979a, 1979c¢), Allison and Liker (1982), and Budescu (1984)
were interested in may all be estimated within this framework.
Furthermore, we have shown that by using the techniques that
we have described, many more types of (discrete) data may be
analyzed, and many more types of effects may be estimated. We
have emphasized the applicability of the models rather than the
statistical details, but we remind the reader that these details
exist in other articles (Fienberg et al., 1985; Wasserman, 1987;
Wasserman & Galaskiewicz, 1984).
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