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Abstract

This article is the second of two parts intended to serve as a primer for structural equations models for the behavioral researcher. The first
article introduced the basics: the measurement model, the structural model, and the combined, full structural equations model. In this second
article, advanced issues are addressed, including fit indices and sample size, moderators, longitudinal data, mediation, and so forth.
© 2009 Society for Consumer Psychology. Published by Elsevier Inc. All rights reserved.
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Structural equations modeling (SEM) is an important tool for
consumer psychology researchers. The Journal of Consumer
Psychology presents this article (to accompany the previous Part
I) to encourage more frequent and knowledgeable use of SEMs.
The first article introduced the SEM modeling approach. This
article illustrates several advanced uses of SEM, and closes with
some comments about the limitations of SEM.

Advanced SEM issues will be discussed, including how to
incorporate moderators, how to think about modeling longitu-
dinal data and so forth. We begin with what are perhaps the two
most important and pervasive technical issues—the perplexing
choice among fit statistics and the question of requisite sample
size.

Fit indices

One input when assessing a model is the examination of some
fit statistic. When modeling with regression, a researcher reports
an R2. The R2 is a descriptive index, and the evaluation of
goodness-of-fit is somewhat subjective: Is R2 =0.50 good? Is
R2 =0.30 good? Is R2 =0.10 good? There are no fixed guidelines
for R2, thus it is desirable to supplement it with the F-test. The F

statistic can test a null hypothesis because it comes with a
corresponding statistical distribution. Thus, the F-test tells us
whether the model is capturing a significant amount of variance.

The issue of model evaluation explodes in SEM because of the
plethora of fit indices. In the “Goodness of Fit Statistics” section
of the output, Lisrel prints 38 indices. Each of these serves to
optimize a slightly different objective function—the indices vary
whether they are related to sample size or not, whether they assess
absolute fit or fit relative to a benchmark model, whether they
value parsimony or not (i.e., if it does, a function is built in which
penalizes more complex models, those that estimate more
parameters and use up more degrees of freedom). Together,
these different indices provide complementary information.
Gerbing and Anderson (1992) describe the situation as being
analogous to the difficulty in answering the question, “What's the
best car on themarket?”The answer is that there is no one best car.
The definition of “best” car depends on the objective: do you wish
to drive a fast car, a stylish car, or a safe car?

So what's a good SEM modeler to do? This section offers
guidance through the quagmire of fit statistics.

First, there is some agreement that researchers should report
the following profile of indices: the χ2 (and its degrees of
freedom and p-value), the standardized root mean square
residual (SRMR), and the comparative fit index (CFI). Ideally,
for a model that fits the data, the χ2 would not be significant
(pN0.05), the SRMR would be “close to” 0.09 (or lower; Hu &
Bentler 1999, p.27), and the CFI would be “close to” 0.95 (or
higher; Hu & Bentler 1999, p.27). Let us examine these indices
(the gory details are provided in Appendix I).

Available online at www.sciencedirect.com

Journal of Consumer Psychology 20 (2010) 90–98

Journal of
CONSUMER

PSYCHOLOGY

E-mail address: dawn.iacobucci@owen.vanderbilt.edu.
1 I am grateful to friends, colleagues, and the SEM giants for their feedback on

this research and manuscript: James C. Anderson, Bill Bearden, Richard
Bagozzi, Hans Baumgartner, Peter Bentler, Bill Dillon, Jennifer Escalas, Claes
Fornell, Steve Hoeffler, John Lynch, Robert MacCallum, Steve Posavac, Joseph
Priester, and J. B. Steenkamp.

1057-7408/$ - see front matter © 2009 Society for Consumer Psychology. Published by Elsevier Inc. All rights reserved.
doi:10.1016/j.jcps.2009.09.003



Author's personal copy

Among the SEM fit indices, the χ2 is the only inferential
statistic; all the others are descriptive. That is, only for the χ2

may we make statements regarding significance or hypothesis
testing, and for the others, there exist only “rules-of-thumb” to
assess goodness-of-fit. This quality may make it seem like χ2

should be the only statistic to report. However, the χ2 has its
own problems. The most important of these is that the χ2 is
sensitive to sample size (Gerbing & Anderson 1985). While it is
important to have a large sample to enhance the precision of
parameter estimation, it is the case that as N increases, χ2 blows
up. A χ2 will almost always be significant (indicating a poor fit)
even with only modest sample sizes. As a result, it has been
suggested, with some consensus in the psychometric literature,
that a model demonstrates reasonable fit if the statistic adjusted
by its degrees of freedom does not exceed 3.0 (Kline, 2004):
χ2 /df≤3.

SRMR stands for “standardized root mean square residual.”
Differences between data and model predictions comprise the
residuals, their average is computed, and the square root taken.
SRMR is a badness-of-fit index (larger values signal worse fit),
and it ranges from 0.0 to 1.0. SRMR is zero when the model
predictions match the data perfectly. SRMR is enhanced
(lowered) when the measurement model is clean (high factor
loadings; Anderson & Gerbing 1984, p.171). The index is a
pretty good indicator of whether the researcher's model captures
the data, because it is relatively less sensitive to other issues
such as violations of distributional assumptions.

CFI is the “comparative fit index” and unlike the χ2, which
compares a model to data, the CFI takes the fit of one model to
the data and compares it to the fit of another model to the same
data. Hence, this kind of statistic captures the relative goodness-
of-fit, or the fit of one's hypothesized model as an empirical
increment above a simpler model (in particular, one in which no
paths are estimated). Unlike the χ2 and SRMR, the CFI is a
goodness-of-fit index. It ranges from 0.0 to 1.0, and larger
numbers are better. Also unlike the previous two indices, the
CFI attempts to adjust for model complexity or parsimony. It
does so by including the degrees of freedom used in the model
directly into the computation (see details in Appendix I).2

Monte Carlo study

SEM scholars frequently use simulations to test certain
relationships. The factor that concerns SEM modelers most
about fit indices is sample size, so let us see an illustration of its
effect on the three fit statistics just described. In this
demonstration, a simulation study was run in which the design
varied sample size from “probably too small” to “far larger than
we typically see in JCP”: N=30, 50, 100, 200, 500, to 1000. It
is customary to test population models for confirmatory factor
analysis, thus, a population covariance matrix was created based
on two underlying factors, with three items loading on each
factor, with loadings of 0.70, and a modest factor intercorre-
lation, φ=0.30. Then, for a given sample size, six normal

random deviates were generated, and transformed by the
population correlation matrix. The resulting data were analyzed
via SEM, and the fit statistics noted. In each cell, 2000 such
replications were created.3 The general linear model, ANOVA
specifically, was used to analyze the effect of sample size on the
fit indices.

Results

The mean fits are presented in Fig. 1. As sample size
increases, χ2 increases (F5,11994=251.39, pb .0001), and its
corresponding p-value decreases (F5,11994=745.89, pb .0001).
The SRMR declines (F5,11994=17,794.90, pb .0001) and the
CFI is enhanced (F5,11994=6.73, pb .0001, but the effect is
negligible after 50).

Fig. 1 illustrates that the effect of sample size on χ2 is
nonmonotonic, exploding for large N (500 or 1000). The effect
for SRMR is nearly linear—every new data point contributes to
helping SRMR. The effect on CFI is nonlinear and the data
suggest that a minimal sample of 50 may be beneficial, after
which the boost tails off.

Sample size

In this section, we examine the question of sample size from
the other angle, to answer the question, “How many observa-
tions are necessary for me to have a good SEM model?” Many
potential users shy away from SEM because of the impression
that sample sizes must be in the hundreds. It is true that “bigger
is always better” when it comes to sample size. This truism
holds particularly when the anticipated effects are subtle, the
measures not especially clean or reliable, the structural model
does not distinguish very clearly among constructs, etc. Notice
what that statement implies—if the variables are reliable and the
effects are strong and the model not overly complex, smaller
samples will suffice (Bearden, Sharma & Teel 1982; Bollen,
1990).

To get a flavor of these interrelationships, consider the
following. There was some thinking that strong, clean measures
(as defined by the number of variables loading on each factor
and the factors' reliabilities) would be somewhat compensatory
for sample size, but while the number of variables per factor has
an effect on improving fit statistics, its effect is modest
compared to that of sample size (Jackson, 2003). Further, the
effect may be nonmonotonic: Anderson and Gerbing (1991)
found fit indices generally worsened as the number of factors in

2 It might be overzealous; CFI tends to worsen as the number of variables
increases (Kenny and McCoach 2003).

3 Specifically, the Lisrel model was specified: Kx
V= 0 0 0 1 0:7 0:7

1 0:7 0:7 0 0 0

� �
;

U = 1:0 0:3
0:3 1:0

� �
;Hd=diag 3; 3; 3; 2; 2; 2½ �. All other matrices involving endogen-

ous variables were set to zero. This modelproduced the population covariance
matrix,Σ. In the 6 experimental conditions, 2000 samples were generated withN
observations and p=6 standard normal deviates. The population covariance
matrix was factored via a standard eigen decomposition and used to transform the
p-variate independent normals, i.e., MVNp(0,I) to create the proper intercorrela-
tions, i.e., MVNp(0,Σ). In each sample, the SEM model was run to obtain the fit
statistics. Empirical distributions were thus built with 2000 observations for
estimates of fit indices.
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the model, or number of variables per factor increased. If only
two variables load on a factor, there will likely be bias in the
parameter estimates, but “for three or more indicators per factor,
this bias nearly vanishes” (Gerbing & Anderson 1985, p.268).
In terms of bias reduction and even just getting the model to run,
these authors found the added benefit that with “three or more
indicators per factor, a sample size of 100 will usually be
sufficient for convergence,” and a sample size of 150 “will
usually be sufficient for a convergent and proper solution”
(Anderson & Gerbing 1984, pp.170–171).

Another inquiry along the lines of the interconnections
among the characteristics of a model is the study on multi-
collinearity by Grewal, Cote and Baumgartner (2004). They
considered high intercorrelations among exogenous constructs
(r values of 0.6 to 0.8), and found there to be many type II errors
in conclusions (e.g., paths not being significant when they
should be), unless there were compensating strengths in the data,
such as strong reliabilities and large samples. Both of these
compensating factors serve to reduce overall error, lending more
precision and confidence to the parametric estimation.

It is of some comfort that SEM models can perform well,
even with small samples (e.g., 50 to 100). The vague, folklore
rule of thumb considering requisite sample size, e.g., “nN200”
can be conservative, and is surely simplistic.

The researcher particularly concerned with sample size can
compute the desired N required for a given model (e.g., some
determined number of variables, constructs, and therefore
degrees of freedom) and desired level of power, or conversely,
an estimate of power for a given N (Kim, 2005; MacCallum,
Browne, & Cai 2006).

Different data scenarios

In this final section, we briefly cover some advanced topics:
moderation, longitudinal data, higher-order factor analyses,
mediation, reflective indicators and partial least squares models.

SEM is discussed in a tremendous literature, including its own
journal, Structural Equation Models. Thus, the treatment here
of advanced topics is necessarily brief.

Moderators

First, users query how to introduce moderators into a SEM
model. A moderator is simply an interaction term, and the
approach in SEM is the same as in regression. The main effect
variables are mean-centered, their product are computed, and all
three are introduced as predictors (see Fig. 2). There may be
theoretical interest in the main effects, but often their inclusion
is merely as statistical controls to allow for a pure empirical
focus on the interaction. This approach is general, allowing
moderators that are categorical or continuous. If the moderator
is categorical, another option is to run a multigroup analysis, in
which a model is fit to one group's data and posited to either be
numerically identical or qualitatively the same in the second
group.4

Longitudinal data

Researchers with longitudinal data, such as repeated
measures or within-subjects data can also use SEM. There are
two kinds of coefficients that represent effects over time. Some
are of theoretical interest, such as the effect in Fig. 3 of
cognition at time 1 on affect at time 2. Other effects act as
statistical controls, such as the autocorrelation effects between
cognition at times 1 and 2 and those between affect measured at
times 1 and 2. Autocorrelations are enabled by estimating

Fig. 1. Effect of sample size on popular fit indices.

4 The former is run by specifying that parameter values are “invariant,” a
strong form of cross-validation. The latter is run by specifying the “same
pattern” of links—the links are the same in both groups but the parameter
estimate values might vary—a weaker form of cross-validation.
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correlations between errors, e.g., in θε or θδ, which are normally
assumed to be independent (Gerbing & Anderson 1984).

Higher-order factor analysis

When sufficient variables have been measured, a factor
analysis can be followed up with another factor analysis where
the second is conducted on the correlation matrix among the
factors extracted in the first analysis. Those first factors are
called “first-order” factors, and the next factors are the “higher-
order” factors. Fig. 4 demonstrates an example of an eight-item
survey, where four questions tap affect, and four tap cognition.
In particular, two facets of affect are posited, and also for
cognition. It is highly likely in such data that the two affect
factors, AF1 and AF2, would also be correlated, as would be the
two cognitive factors, CF1 and CF2. To fit a higher-order factor
analysis in SEM, treat the variables as “y's”, the first-order
factors as endogenous, and the higher-order factors as
exogenous.5

Mediation analysis

A popular use of SEM is the examination of the process by
which an independent variable X is thought to affect a dependent
variable Y, directly, as X → Y, or indirectly through a mediator,
X → M → Y (see Fig. 5). Traditionally, researchers have fit a
series of regressions to estimate these relationships; but more
recently, statistical researchers have shown the superiority of
SEM in simultaneously and more efficiently estimating these
relationships (Iacobucci, 2008). All three paths are fit at once, in
a single model. The significance of the path coefficients would
be tested, and if desired, compared in magnitude.

Reflective indicators

The factor analytic piece of the SEM model draws on a rich
and extensive psychometric literature, dating back to the 1860s
when Galton conceived of measuring intelligence. His philos-
ophy, and that of Spearman and those factor modelers who

followed, was essentially Platonic; the unobservable was the
ideal, pure form, and the observed was a combination of the
ideal and imperfections. Translating to our purposes, the
unobservable, or latent factor was reflected in the observed,
measured variables, and those variables were also affected by
noise, in the form of systematic and random errors.

As Fig. 6 depicts, this philosophy is reflected in the direction
of the arrows for the hypothetical constructs labeled, C, D, and
E. (We will consider A and B shortly.) The construct, C (in the
oval), such as intelligence, or attitude toward an ad, gives rise to
the measures C1, C2, C3 (in the boxes). Errors also contribute to
those measures, C1-C3. People with greater intelligence or
more positive attitudes (C) are likely to score higher or more
positively on the measures, C1–C3 than others who are less
intelligent or less positive. The mapping is not perfect, and those
imperfections are noted in the ε's (the error terms are not equal
across C1–C3, but subscripts are eliminated for the sake of
brevity). Also in the figure, the ζ's capture how well each
endogenous variable is predicted—these structural errors are
like 1−R2, thus, if knowing D helps us predict E very well, then
E's ζ will be small.

Fig. 6 shows this reflective philosophy with three variables
measuring construct C, and four measuring E. Occasionally,
one might create a survey where no scale exists and a rough
measure of a single indicator might be pragmatic. This scenario
is represented for construct D, where only a single item, D1, is
available to tap the construct. In this scenario, the measurement
mapping is considered to be one-to-one, that is, the measure is
essentially equated with the construct, hence the factor loading
is the identity and the measurement error is set to zero. There is
no situation when studying human behavior for which this
situation actually holds—we will never have zero measurement
error. Thus, single items are never optimal; however, they are
sometimes used for practical reasons. We know multiple items
are desired to tease apart the substantive or ideal part of D1 (in

Fig. 3. Repeated measures.

Fig. 4. Higher-order factor analysis.

Fig. 2. Interactions to test moderators.

5 Gerbing and Anderson (1984) showed conditions under which a higher-
order factor model may be equated with a model that incorporates correlated
errors between variables loading on the same factor but concluded that typically
the higher-order factor model was the proper model specification. In general,
the only acceptable practice for allowing correlated errors is in the application
to repeated measures and longitudinal data (as discussed previously).
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D) from the noisy part of D1 (in ε). But with a single item, these
two parts are confounded.

Similarly, recall that a part of the superiority of SEM over
regression is that regression confounds prediction error with
measurement error. The lack of fit in 1−R2 cannot be
unambiguously attributed to a mis-specified model or to poor
measures. In contrast, SEM allows for such distinctions: the factor
analytical piece takes care of the measurement errors and the
structural path modeling piece hosts the model prediction errors.

Some time ago, some researchers not versed in psychometric
theory posited that the measurement arrows in Fig. 6 should go
the other way. In their approach, variables combine to create a
construct, in what is called “formative” measurement. The
example that is routinely used (so frequently that one wonders
whether another instantiation exists) is socioeconomic status
(SES). They claim that education, income, and occupation
combine to form SES and that a change in education, income, or
occupation changes SES, but that the reverse is not true.6

These researchers propose to measure education, income, and
occupation each with one item, as we saw construct D measured
solely by D1, with the accompanying (invalid) assumption of
perfect measurement. Next, a regression is modeled in which the
education, income, and occupation items predict socioeconomic
status. There is nothing wrong with regression. There is nothing
wrong per se with single-item measures, albeit it is theoretically
unsophisticated and empirically problematic. But “formative” as
a new term or approach is unnecessary and misleading. Let us
make clear that this proposed formative measurement is merely
incomplete reflective measurement.

In Fig. 6, consider the constructs A and B to the left of the
model. A formative approach would treat A and B like D (as
single items), and the dashed arrows and boxes to the left would
not exist. However, there is no reason that A and B cannot be
considered as constructs in the traditional sense, latent factors
which are reflected in multiple measures, as in the dashed
relationships to A1–A3 and B1–B3. If A is the construct of
education, A1 might be father's education, A2 mother's, A3
oldest child's. If B is income, B1 might be total household
income, B2 might be the income of the major adult earner, B3
might be income based on soft money sources such as book
royalties. Perhaps the measures of A1–A3 and B1–B3 are
excessive, and typically a single rough estimate of A and B will
suffice. However, the choice to use a single item for A and B for

expediency purposes should not be confused with a theoreti-
cally unsubstantiated modeling choice that distorts a 150-year-
old psychometric theory-laden tradition.

Thus, we see in Fig. 6 that the supposed new model may be
subsumed in the more general, traditional reflective model.
Scholars who defend the superiority of the reflective approach
over the formative new comer decry the lack of theory
supporting the new approach—there is no psychometric theory
to support it. They point to a number of technical issues, such as
problems in model identification. They also point to the fact that
for the formative formulation, the measurement error and
prediction error are once again confounded (cf., Bagozzi, 2007;
Franke, Preacher, & Rigdon, 2008; Howell, Breivik, & Wilcox,
2007). In the formative approach, the observed variables are all
thought to be measured without error, and the measurement
error contributes instead to the factor itself, along with the
factor's prediction error. In terms of measurement model
development, it is a step backward.

Thus, let us write off the handful of papers in the literature
which took us down an amusing little foray into pretending that
formative indicators have more substance than the emperor's
new clothes. Let us proceed as scientists would, drawing on
theory, building models of data on a combination of ideal
factors and impure errors—the reflective indicators model of
factor analysis, the only defensible measurement model.

Partial least squares

As SEM is a combination of factor analysis and path
modeling, partial least squares (PLS) is essentially a combina-
tion of principal components and path models (Fornell &
Bookstein, 1982). Thus one of the distinctions is the
measurement model—factor analysis is concerned with mea-
surement theory, reliability and validity, etc. Principal compo-
nents analysis creates linear combinations of variables, but not
to model measures, instead only to predict the dependent
variable(s) as best as possible.

Another distinction between SEM and PLS is in the
computational method—SEM estimates are usually obtained
via maximum likelihood, and PLS via least squares. This
difference leads some statisticians to characterize PLS as being
robust. For example, in theory, it can be used when the number
of variables in the model exceeds the number of observations.
However, note that this scenario poses less of a statistical
limitation than a logical one. PLS pays a price, in that loadings
tend to be overestimated and path coefficients underestimated
(Dijkstra, 1983), but recall the goal of PLS is not the model
coefficients per se, but the prediction and capturing the variance
of the dependent variable. Hence PLS is useful, e.g., in
predicting when consulting, but not for theoretical development
or testing (McDonald, 1996).

Limitations of SEM models and other issues

Perhaps the first concern that potential users cite is, “Don't I
have to have a huge sample?” If the measurement is strong (3 or
4 indicators per factor, and good reliabilities), and the structural

Fig. 5. Mediation.

6 This argument is already problematic because the question can be
reformulated as a perfectly suitable reflective question; namely, if one were
to profile those high in SES in one's data, generally they would have higher
education, income, and such, compared to changing one's focus to profile those
low in SES, where those people would largely have lower education, income,
and such.
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path model not overly complex (we cannot expect SEM to
perform miracles), then samples of size 50 or 100 can be plenty.

Another concern is how to handle categorical data. It is well
known that binary variables truncate the magnitudes of
correlations (or covariances), the data which serve as the basis
for SEMs. Alternatives exist. If all the variables in the model are
discrete, the researcher can fit a log linear model. If some
variables are discrete and the sample size is large, Muthén
(1984) models polychoric correlations (for ordered variables).
Research consistently says the correlations (and corresponding
parameter estimates) are attenuated (i.e., underestimated), and
standard errors and χ2 values overestimated (Schumacker &
Beyerlein, 2000), which is good news because all these results
err in the statistically conservative direction. Indeed studies
suggest that results based on categorical variables approximate
those of their continuous counterparts, except in the extreme
case where dichotomous variables were skewed in opposite
directions (Ethington, 1987).

Still another concern that has been tracked in the
psychometric literature is the method of estimation and the
seemingly strict requirements of multivariate normality.
Comparisons of estimation methods show maximum likelihood
(ML) generally performs best, better than generalized least
squares (GLS), and especially better than weighted least squares
(WLS) (Ding, Velicer & Harlow, 1995; Olsson et al., 2000).
ML has been found to be relatively robust (e.g., to violations of
the multivariate normality assumption) and is generally
endorsed for most uses (Hu & Bentler, 1998; Olsson et al.,
2000). There is mixed evidence on the effect of non-normality:
some say there is no effect on standard errors of parameter
estimates (Lei & Lomax, 2005) but that there can be an effect on
the parameter estimates themselves, if sample size falls below
100 (Lei & Lomax, 2005). Others say parameter estimates are
fairly robust to non-normality (Finch, West, MacKinnon, 1997).
Let us hope for continued evidence of robustness, because
alternative modeling approaches, the asymptotically distribu-
tion-free methods, bootstrapping, other nonparametric methods
need very large sample sizes (at least 4000–5000; Finch, West,
MacKinnon, 1997), especially as data are more nonnormal. In

general, distribution-free tests are said to perform “spectacularly
badly” (Hu, Bentler & Kano, 1992). The bottom line is: stick to
ML.

Conclusion

We close with a few suggestions regarding SEM. These
comments are equally relevant to the researcher building and
testing models as to the reviewer assessing a paper in which the
authors had used SEM.

1. SEMs are not scary—they are natural progressions from
factor analysis and regression.

2. As such, be careful not to over interpret path coefficients as if
they were causal, any more so than if the results had been
obtained via regression.

3. Shoot for a sample size of at least 50.
4. Ideally each construct would be measured by at least three

indicator variables. If a few constructs are single items, that
is probably okay. Constructs measured with four or more
variables is probably excessive.

5. Use maximum likelihood estimation. (It is usually the default
anyway.)

6. Check the fit statistics, but as Marsh et al. (2004) say: Do not
take the rules-of-thumb too seriously. Do not be overly
concerned with χ2—it simply will not fit if the sample size is
50 or more. Instead, see if χ2/df is about 3 or under. Do not
be overly critical if the CFI is not quite .95, or the SRMR not
quite .09.

7. On the other hand, ask good theoretical questions: Is every
hypothesized link logically supported, and is there a sound,
comprehensive yet parsimonious theoretical story for the
entire model?

8. Fit at least one nontrivial competing model, presumably
representing the extant literature on which the focal model is
building, to see a demonstrable improvement.

SEM could be used more frequently among academics, and
in industry wherever practitioners espouse conceptual models.

Fig. 6. Reflective measurement.
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For more information, read Kline (2004) and Marcoulides and
Schumacker (1996).

Appendix I: Fit Indices

SEM scholars distinguish two classes of fit indices: those
that reflect “absolute” fit, and those that reflect a model's
“incremental” fit, or the fit of one model relative to another.
Absolute indicators of model fit include χ2 and SRMR, among
others. Incremental fit statistics include CFI, among others.
Here are their definitions and basic behavioral properties.

Chi-square: χ2

As Gerbing and Anderson (1992) describe it, what users
refer to as the χ2 is based on the “likelihood test statistic,” the
traditional statistical inferential measure of fit of a model on
data, which when multiplied sample size (for large samples), is
an index distributed χ2 with degrees of freedom=[k(k+1) /2]− t
(where k=p+q=the number of observed endogenous variables
plus the number of observed exogenous variables (note:
variables, not constructs), and t=number of parameters
estimated). This statistic tests the null hypothesis H0:
Σ= Σ̂=S, thereby reflecting the extent to which the residuals
are zero. Specifically, the equation for χ2 is:

X 2 = N tr SR�1
� �

+ logjRj � logjSj � p + qð Þ� �� 	
;

where S is the sample covariance matrix (computed on the
data) and is the predicted covariance matrix (based on the
model), and other terms as defined previously. Note that if
the model produces predictions that closely mimic the data,
then the and the will cancel each other. Similarly, would equal
the identity matrix. The trace (“tr”) of a matrix is the sum of
the diagonal (the diagonal elements would equal 1.0 in an
identity matrix, and there would be p+q of them), so that term
would cancel with the –(p+q) term. Thus, a model that fits
well would produce a χ2 close to N. Hence the conclusion that
χ2 is sensitive to N.

Facts about χ2 include the following: 1) It increases as
function of df, hence the concern for N. The previous paragraph
shows that even if the model fit very well, if a sample were say of
size 1000, then the χ2 would be approximately 1000. 2) χ2

Ranges from zero to very high. It is zero when the saturated
model is fit (i.e., all possible paths are in the model to be
estimated). It is at its highest on any data set for the model of
independence (i.e., no paths are entered into the model). 3) χ2

Penalizes models with a large number of variables (i.e., it is large
when there are many variables). 4) χ2 Reduces as parameters are
added to the model (much like an R2 would increase as one adds
predictors). However, adding parameters means the model is
getting more complex, and less parsimonious. 5) χ2 Can be used
to compare the fits of nested competing models. We compute ,
where model A is a restricted version of B, and the result is
distributed χ2 with degrees of freedom equal to (dfA)− (dfB). To
say A is a restricted version of B is to say that model A is nested
in model B; i.e., Model B estimates more parameters, whereas in

model A, more parameters are fixed (usually to zero) and not
estimated. The is also affected by N. If two models are not
nested, they may be compared using descriptive goodness-of-fit
measures, such as Akaike's Information Criterion (AIC) or an
adjusted goodness-of-fit index (AGFI).

SRMR

RMR stands for “root mean square residual.” The differences
between the data in S and themodel in Σ̂ are called residuals. The
average of these residuals is computed—on average, just how far
off was the model. The square root of that value is taken—to
put the index on a “standard deviation” scale, rather than a
“variance” scale. The matrices S and Σ̂ are typically (should be)
covariance matrices, so the index is more easily interpreted if it is
standardized (as if it were computed on a correlation matrix
where the variances were equal to 1.0), so that it ranges from 0.0
to 1.0. The equations for the RMR and SRMR (the standardized
root mean square residual) follow (Browne et al., 2002):

RMR =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i = 1

Pi
j = 1

sij �r̂ij
� �2

k k + 1ð Þ=2

vuuut

where k=p+q, and

SRMR =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i = 1

Pi
j = 1

sij �r̂ij
� �

= siisjj
� �� �2

k k + 1ð Þ=2 :

vuuut

Like the χ2, the RMR and SRMR are badness-of-fit indices—
higher values indicate worse fits. If the model predicted the
data fairly closely, then the residuals should be close to zero,
making the numerator of RMR obviously zero (or zero
squared), and the numerator of the numerator of SRMR
similarly zero.

Regarding the SRMR: 1) Hu and Bentler (1999, p.27)
suggest that an SRMR “close to .09” represents a reasonable fit
(meaning in part that the model was not overly likely to have
been the result of too many type I or type II errors). 2) In
thorough simulation testing, the SRMR has been characterized
as more sensitive to model misspecification than to sample size
or violations of distributional assumptions. Thus, if SRMR is
not as low as would be desired, the inflation is a fairly clear
indicator that something is wrong with the (measurement and/or
structural) model.

The RMSEA is an index that sounds somewhat like the
SRMR but it is computed differently and it behaves differently
(Steiger, 2000). The RMSEA is the “root mean square error of

approximation”: RMSEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � df
� �

=df N � 1ð Þ
q

. Unfortu-
nately, it does not behave well. In simulation studies, RMSEA
over-rejects true models for “small” N (Nb250), the fit tends to
worsen as the number of variables in the model increase, etc.
(Fan & Sivo 2005; Hu & Bentler, 1998; Kenny & McCoach,
2003). Thus SRMR is preferred.
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CFI and friends

The comparative fit index (CFI) is best understood in the
context of its development. More than 30 years ago, the
problem of large χ2's and the seemingly non-informative state
of nearly always rejecting the null hypothesis led researchers to
develop other model evaluation criteria. In particular, Bentler
and Bonett (1980) reasoned that an index should compare a
model's fit not against a straw-model (the null) but against an
idealized (yet still simple) model. Thus, this class of statistics
became known as model comparison, or incremental fit indices
(Bentler 1990).

The NFI (the normed fit index) is defined as follows: NFI=
(χ2null−χ2model) /χ

2
null and it ranges from 0.0 to 1.0. The χ2-

model is the fit of the model of interest, and the χ2null is the fit of
the model of independence which estimates variances, but no
covariances (i.e., there are no paths in the model between any
constructs, and all the variables are thought to be independent).
NFI was quickly trounced (it is influenced by sample size, it
underestimates fit in small samples, it is difficult to compare
across data sets, etc.; Ding, Velicer &Harlow 1995;Marcoulides
& Schumaker 1996; Marsh et al. 1988), thus a new index was
created to correct these shortcomings. The CFI ranges from 0.0
to 1.0, and its definition follows:

CFI ¼ 1−f Max v2model � dfmodel

� �
; 0

� �� �
= Max v2null � df null

� �
; 0Þ�g:�

The comparison (by subtraction) of a model's χ2 and its df is an
adjustment for model parsimony. Models tend to fit worse (χ2's
are larger) when few parameters are estimated (i.e., when there
are many df). Yet if a model fits well (the χ2 is small), there is a
penalty if that fit is achieved via an overly complex model (one
with many parameters, using many df). Then, the comparison
(by ratio) of the focal model to the null model reflects the extent
to which something more interesting than independence is
present in the current dataset. Instead, if there were nothing
going on in the data, and in fact the independence model were
true, the χ2s (for model and null) would be similar, though the df
might be different. If the df were similar, the entire ratio would
be approximately 1.0, hence the CFI=1−1, would be 0.0. Thus,
a CFI gets larger as the model and data become more interesting,
away from a simplistic model of independence.

The CFI has been said to be somewhat forgiving in
exploratory modeling (Rigdon, 1996). Other indices in this
class include TLI (Tucker–Lewis index), BL89 (Bollen's fit
index), RNI (relative noncentrality index), gamma hat, and Mc
(McDonald's centrality index). Overall, Hu and Bentler (1998)
have demonstrated strong performance (power and robustness)
of the CFI.
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