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ABSTRACT 

 

Manufacturers and their distributors must cope with an increased flow of returned products from their 

customers. The value of commercial product returns, which we define as products returned for any 

reason within 90 days of sale, now exceeds US $100 billion annually in the US. Although the reverse 

supply chain of returned products represents a sizeable flow of potentially recoverable assets, only a 

relatively small fraction of the value is currently extracted by manufacturers; a large proportion of the 

product value erodes away due to long processing delays.  Thus, there are significant opportunities to 

build competitive advantage from making the appropriate reverse supply chain design choices.  In 

this paper, we present a network flow with delays model that includes the marginal value of time to 

identify the drivers of reverse supply chain design.  We illustrate our approach with specific 

examples from two companies in different industries and then examine how industry clockspeed 

generally affects the choice between an efficient and a responsive returns network. 

 

1 Introduction 

 Manufacturers and their distributors must cope with an increased flow of returned products 

from their customers. The value of commercial product returns, which we define as products returned 

for any reason within 90 days of sale, now exceeds US $100 billion annually (Stock, Speh and Shear 

2002).  Although the reverse supply chain of returned products represents a sizeable flow of 

potentially recoverable assets, only a small fraction is currently extracted by manufacturers. A large 
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proportion of the product value erodes away in the returns process.  Most returns processes in place 

today were developed for an earlier environment in which return rates were low and the value of the 

asset stream was insignificant.  Returns processes were typically designed for cost efficiency where 

collection networks minimized logistics costs and the need for managerial oversight.  For example, 

Stock, Speh and Shear (2002) describe Sears’ cost-effective transportation network serving three 

central returns processing centers.     

 Although cost-efficient logistics processes may be desirable for collection and disposal of 

products when return rates are low and profit margins are comfortable, this approach can actually 

limit a firm’s profitability in today’s business environment.  The design of processes driven by a 

narrow operational cost focus can create time delays that limit the options available for reuse. These 

limited product disposition options can lead to substantial losses in product value recovery.  This is 

typically the case for short life cycle, time-sensitive products where these losses can exceed 30% of 

product value.  There is a need for design strategies for product returns that emphasize asset recovery 

in addition to operating costs, and that need motivates this research.   

 We consider the problem of how to design and manage the reverse supply chain to maximize 

net asset value recovered from the flow of returned products. Unlike forward supply chains, no 

principles of design strategy for returns processing have been established. Blackburn, Guide, Souza 

and Van Wassenhove (2004) hypothesize that the marginal value of time can be used to help 

managers design the right reverse supply chain. Their hypotheses are supported by case studies of 

several reverse supply chains.  We evaluate alternative reverse supply chain designs using network 

flow models capturing the effects of delays on costs and revenues. Our alternative network designs 

are derived from two sources: observations of emerging practices in returns processing and the 

research on design strategies for forward supply chains.   

 Our models are built and validated using data collected through in-depth studies of the returns 

processes at Hewlett-Packard Company (HP) and Robert Bosch Tool Corporation (Bosch).  These 
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two firms’ product return environments exhibit significant differences in processing and delay costs, 

and we show that these should lead to alternative network designs, offering useful insights into what 

drives these decisions.  We subsequently use these two cases as a basis for sensitivity analysis and 

test the generality of our insights.  

  This paper is organized as follows.  In §2, we review the relevant literature.  In §3, we present 

an overview of the product returns system for two manufacturers, HP and Bosch, which serves as a 

motivation for the model.  In §4, we present the model, and theoretical results.  In §5, we study ways 

to improve network responsiveness.  In §6, we analyze a partially decentralized network for handling 

product returns.  In §7, we apply the results to HP and Bosch, using empirical data from these 

manufacturers.  Finally, we conclude in §8.   

2 Literature Review   

 Although manufacturers have a growing interest in extracting value from commercial product 

returns, there has been little research on how to design the reverse supply chain for this purpose. 

However, extensive research has been conducted on managing product return flows for the recovery 

of products at their end-of-use (EOU) or end-of-life (EOL), where products are prevented from 

entering the waste stream via value and materials recovery systems.  Fleischmann (2001), Guide 

(2000) and Guide and Van Wassenhove (2003) offer comprehensive reviews of the remanufacturing, 

reverse logistics, and closed-loop supply chain research on EOU/EOL returns processes.  Most of 

these studies focus on cost-efficient recovery and/or meeting environmental standards. This literature 

has focused on operating issues (e.g., inventory control, scheduling, materials planning) and the 

logistics of product recovery. Few papers take a business perspective of how to make product returns 

operations profitable (see Guide and Van Wassenhove 2001 for a discussion, and Guide, Teunter and 

Van Wassenhove 2003 for a modeling example).   
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 Much of the previous research on commercial product returns documents the return rates of 

different product categories and the cost of processing returns.  This research finds that return rates 

vary widely by product category, by season and across global markets.  For example, product return 

percentages can vary from 5-9% for hard goods and up to 35% for high fashion apparel. Return 

percentages are also typically much higher for Internet and catalogue sales.  Other research has found 

that, due to differences in customer attitudes and retailers’ return policies, the proportion of returned 

product tends to be considerably higher in North America.  Many retailers in the United States permit 

returns for any reason within several months of sale. Return policies have been much more restrictive 

in Europe and, consequently, return rates were markedly lower. However, return rates are rising in 

Europe rapidly due to new EU policies governing Internet sales, and the entry of powerful US-based 

resellers. Additionally, companies have seen an increase in commercial returns disguised as defects 

from large resellers in the UK (Helbig 2002).   Recent studies reported in the trade literature also 

reveal that returns may cost as much as three to four times the cost of outbound shipments (Andel and 

Aichlmayr 2002). Although these reports have raised management’s awareness of the problem of 

product returns, the issue of how to extract more value from the returns stream has been largely 

ignored.    

 From a marketing perspective, research examines how returns policies affect consumer 

purchase probability and return rates.  Wood (2001) found that more lenient policies tended to 

increase product returns, but that the increase in sales was sufficient to create a positive net sales 

effect. Other research has focused on the problem of setting returns policy between a manufacturer 

and a reseller and the use of incentives to control the returns flow (Padmanabhan and Png 1997 1995, 

Pasternack 1985, Davis, Gerstner and Hagerty 1995, Tsay 2001). Choi, Li and Yan (2004) study the 

effect of an e-marketplace on returns policy in which internet auctions are used to recover value from 

the stream of product returns. 

Supply Chain Design Strategy 
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 A number of researchers have contributed to the development of design strategy for forward 

supply chains and our models are motivated by this work (Swaminathan and Tayur 2003, Fisher 

1997, Lee and Whang 1999, Lee and Tang 1997, Feitzinger and Lee 1997). We are able to confirm a 

set of design principles for reverse supply chains. Fisher (1997) recommends (cost) efficient supply 

chains for functional products (low demand uncertainty), and responsive supply chains for innovative 

products (high demand uncertainty).  We observe that a (cost) efficient returns network equates to a 

centralized structure and a responsive network equates to a decentralized one; we relate products with 

high time value decay to Fisher’s innovative products.  However, we find that in reverse supply chain 

design, it is early, not delayed, product differentiation that determines profitability.  

Valuing Time in Supply Chains 

 A significant difference between our model and previous research on reverse supply chains is 

that we explicitly capture the cost of lost product value due to time delays at each stage of the returns 

process.   Studies of time-based competition (Blackburn 1991) have demonstrated that faster response 

in business processes can be a source of competitive advantage, and other studies have shown how to 

quantify the effect of time delays in traditional make-to-stock supply chains (Blackburn 2001).    In 

his book Clockspeed, Fine (1998) shows that the effects of speed vary across industries and product 

categories, and he uses these concepts to link supply chain strategies to product architecture. This 

earlier work provides the motivation for our models that specifically incorporate the cost of time 

delays and its effect on asset recovery.  

3 Commercial Returns at HP and Bosch 

 Customers may return products for a variety of reasons (see Tables 1 and 2), many of which 

may be classified as non-defective. Some of these non-defective returns are new returns, because 

they are essentially unused products that may be resold after visual inspection and repackaging. HP 
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estimates the cost of product returns at 2 percent of total outbound sales for North America alone 

(Davey 2001).   Figure 1 shows the flow for product returns in generic terms. 

3.1 Case 1: Hewlett-Packard Inkjet Printers 

 HP’s product returns strategy is focused on recovering maximum value from the returns and 

developing capabilities that would put HP in a position of competitive advantage. HP’s inkjet printer 

division handled over 50,000 returns per month in North America in 1999 (Davey 2001).  The most 

recent trend estimates show a 20% increase.  Inkjet printers have a relatively short lifecycle, with a 

new model being introduced every 18 months on average.  

        

Figure 1: Product returns process flows 
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 Products returned to the reseller are stored until transportation to the central HP returns depot 

outside Nashville, TN, where credit is issued.  No hard data is available on how long the returned 

products spend waiting for transport at the reseller. This can vary drastically from reseller to reseller, 

but HP managers believe products could spend as long as 4 weeks when the returns are stored in 

areas where they are ‘out-of-sight, out-of-mind’ (Davey 2001).   

 Inkjet printers are delivered via truck and are unloaded and stored in holding areas at the depot 

to await disposition.  The time required for transportation ranges from 6 to 13 days depending on the 
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distance to be traveled.  The receipt and credit issuance take an average of 4 days. After credit 

issuance, returns are sorted by product line. Inkjet printers are tested, evaluated, and sent to one of 

several facilities. All HP printers have an electronic counter that allows a technician to determine 

how many copies have been printed.  

  Presently, the average remanufacturing time is 40 days. All remanufactured HP inkjet printers 

are sold in secondary markets under the direction of a dedicated sales representative. 

Table 1: Breakdown of reasons for commercial product returns of HP printers 

Reason for 

return 

Description % of 

returns 

Procedure after return 

Product defective A truly defective product – it simply 

does not function as intended 

20.0% Product is tested, remanufactured (low 

or high touch) and sold to a secondary 

market (sell as remanufactured). 

Could not install  The customer could not install the 

product correctly.  Box opened, but 

product was never used.   

27.5% Product is tested for number of pages 

printed; if this number is zero, then the 

product is re-boxed and shipped back to 

the forward distribution center to be 

sold as new.  Otherwise it is shipped to 

appropriate remanufacturing facility. 

 

 

Performance not 

compatible with 

user needs 

The product did not meet the user’s 

needs.  Print quality was too low, 

printing speed was too slow, etc. 

40.0% 

Convenience 

returns  

The product was returned for a host of 

reasons (remorse, rental, better price, 

etc.) 

12.5% 

    

3.2 Case 2: Robert Bosch Tool Corporation 

 Bosch’s Skil line is aimed at the consumer market. These tools are reasonably priced and have 

small profit margins due to the competitive nature of the market.  The current product returns process 

is a result of the 90-day returns policy, which is meant to attract customers. 

 Customers return products directly to resellers. The life cycle of power tools currently averages 

6 years.  Table 2 shows the primary reasons customers return products (Wolman 2003).  The reseller 

holds the returned tools in an RTV (return-to-vendor) cage. This inventory is held until a Bosch 

salesperson is available to perform disposition on the product. The period of time between receipt of 

product and disposition is again highly variable, depending on the workload of the salesperson, with 

times ranging from one to four weeks (Valenta 2002). The returned products are sent to Walnut 
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Ridge, AR if a product is deemed to be a straightforward remanufacture and to Addison, IL if the 

problem appears to be more technical in nature. Products are transported in bulk via trucks to the 

appropriate remanufacturing facility. Products are diagnosed by technicians and remanufactured 

when possible. Products are discarded if reconditioning is not possible or likely to be very expensive.  

The reconditioned products are sold mainly to liquidators at an average of 15% below the retail price 

for the new product.   

Table 2: Returns classifications for power tools 

Reason for return Percentage of returns 

Consumer tools 

Product defective 60% 

Poor performance – does not meet 

user expectations 

 

15% 

Improper marketing of tool 10% 

Buyer remorse 10% 

Tool used for a specific purpose then 

returned (rental) 

 

5% 

4 A Simple Analytical Model for the Time-Value of Product Returns 

 We present an analytical model that computes the value of time in a closed–loop supply chain 

and provides closed–form expressions that allow a manager to quickly compute the value of reducing 

delays.  In §5, we discuss specific actions aimed at reducing delays in the network. We also 

developed a simulation model in ARENA that allowed us to confirm the model’s robustness under 

more complex scenarios such as the presence of batching; we comment on this later.     

 Empirical evidence gathered at HP and Bosch suggests that the rate of commercial returns 

follows a curve similar to the product life cycle, shifted to the right in the time axis, with a long 

steady state period.  Figure 2 shows the returns life cycle for an inkjet printer, which has a typical life 

cycle of 18 months; the steady state period varies in length from seven to thirteen months.  For Bosch 

power tools, a typical life cycle is 6 years, with a steady state period of 5 years.  In the ramp-up 

period of the life cycle, most returns are used for warranties (i.e., instead of repairing defective 

products in the field, the firm uses refurbished products originated from convenience returns to 
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replace these defective products), whereas in the ramp-down period their primary use is for spare 

parts, after disassembly (Davey 2001).   

 

Figure 2: Returns lifecycle for a typical inkjet printer 
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 We develop a profit maximization model for the steady state period of the returns life cycle, due 

to the high volumes involved, the long time frame, and the primary use of returns in the steady state 

period for remanufacturing and sales at a secondary market. We model a closed-loop supply chain as 

a network flow model, shown in Figure 3, where the notation is defined in Table 3.  The facilities in 

the closed-loop supply chain include factory, distribution center, retailer, customer, evaluating facility 

for returns, remanufacturing, and the secondary market, where remanufactured products are sold.  We 

represent facilities by nodes, and the flow of products through the nodes is indicated in Figure 3, and 

described in detail below.  To avoid unnecessary confusion, our notation uses parentheses for 

grouping terms, and square brackets for denoting functions, e.g., r(1 – p) denotes r times (1– p), and 

c[a] denotes c as a function of a.   

 Similarly to Toktay, Wein and Zenios (2000), and for ease of exposition, we consider a single 

retailer. In §7 we show how the model can be easily extended to multiple retailers when we apply it 
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to HP.  Each node i experiences a fixed delay Wii; there are also transportation delays ij  between 

each pair of nodes i and j in Figure 3, except to and from the customer. 

      

Figure 3: Closed-loop supply chain model 
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Table 3: Notation 

i, j Subscripts for nodes: f (factory), d (distributor), s (retailer sales), r (retailer returns), c 

(customer), e (central evaluating facility), m (remanufacturing), 2 (sales outlet at secondary 

market) 

 Net new sales rate at the primary market 

r Total steady state return rate  

p Proportion of new returns from total returns  

ij  Product flow rate between nodes i and j  

ij  Average transportation time between nodes i and j 

Wij Delay between the beginning of processing at node i and end of processing at node j 

Wii Delay at node i 

 Continuous–time price decay at primary market (i.e., % price decay per unit time) 

m Continuous–time price decay at secondary market 

 Continuous–time discount rate 

 Continuous-time variable production cost decay parameter  

m Continuous-time remanufacturing cost decay parameter 

P[t] Unit price for new product at primary market at time t 

Pm[t] Unit price for remanufactured product at secondary market at time t; 

v[t] Variable production cost at time t 

vm[t] Variable remanufacturing cost at time t 

ijc  Unit transportation cost between nodes i and j  

hi
 

Handling cost per unit at node i; { , }i e r  

 [t]
 Profit rate at time t 

  Total discounted profit over steady–state period 

 

 Time t = 0 is defined as the beginning of the steady state period for returns (sales are already in 

steady state at that time). Time t = T is the end of steady state for sales and returns (whichever is 

earlier). Thus all nodes are in steady state for the period of analysis. The factory operates in make–to–

order mode; (1 ) rp    represents the rate of orders to the factory.  Products then flow from node 

to node as they are processed; the flow rates between each pair of nodes ij are defined in Figure 3, 

i.e., (1 )fd rp     , ds sc r      , cr re r    , 2 (1 )em m rp     , and ed rp  .   

Inventory is stored as finished goods at the retailer (and thus the delay Wss before the new product is 

sold), and at the secondary market node (thus the delay W22 before the remanufactured product is 

sold).   

 Consistent with empirical data obtained at HP and Bosch, we assume for both new and 

remanufactured products exponential price decay functions, i.e. [ ] [0] tP t P e   and 
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[ ] [0] mt

m mP t P e


 , and exponential variable cost decay functions, i.e. [ ] [0] tv t v e  , and 

[ ] [0] mt

m mv t v e


 .  The continuous–time decay parameters ( and m,  and m  ) may or may not be 

equal.  All decay parameters can be viewed as a measure of industry clockspeed (see, e.g. Williams 

1992, Mendelson and Pillai 1999). 

 There are handling costs for processing returns where ih  is the handling cost per unit at facility i 

(i = r for retailer and i = e for evaluating facility).  Transportation and handling costs are assumed 

constant over time. This is because the decay in prices and variable costs is primarily related to 

material and product value erosion, which does not hold for transportation and handling costs.  All 

cash flows are discounted at a continuous discount factor , which represents the firm’s opportunity 

cost of capital (i.e., time value of money). 

 For tractability, we make one assumption:       

Assumption 4-1:  New returns are only returned once.  That is, a new return only goes through the 

cycle in Figure 3 once.      

 Assumption 4-1 is a reasonable approximation because the fraction of returns that are returned 

to the forward supply chain is very small, as we document in the case examples described later. 

 The sequence of events is as follows (see Figure 3): 

 Time t: the factory produces (1 ) rp    units at a per unit cost v[t].  These units are shipped to 

the distributor, where they are joined by rp  new returns (produced at time loopt W , where loopW  

is the delay through the loop for the network shown in Figure 3), and then transported to the 

retailer.    

 Time fst W : the retailer sells   r  units at a per unit price [ ]fsP t W .  After a sojourn time 

with the customer, r  units are returned to the retailer, where they wait until they are shipped to 

the evaluating facility for sorting and credit issuance.     

 Time fs cet W W  : after sorting, the manufacturer issues a credit of [ ]fsP t W  (selling price) for 

each of the r  returns  to the retailer.  New returns rp  are shipped to the forward distribution 

center; non-new returns (1 ) rp   are shipped to the remanufacturing facility. 
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 Time fs cmt W W  : non-new returns (1 ) rp  are remanufactured at a per unit cost 

[ ]m fs cmv t W W  , and then shipped to the secondary market.   

 Time 2fs ct W W  : (1 ) rp  remanufactured products are sold at the secondary market at a per 

unit price 2[ ]m fs cP t W W  .         

  The profit rate at time t for the existing network is:  

 

   

   2

( , )  in net

[ ] [ ] (1 ) [ ] [ ]

      [ ] [ ] (1 ) [ ] [ ]

      ,

ceW

r fs r r fs

r loop r m fs c m fs cm

ij ij r e r r

i j

t P t W p v t P t W e

p v t W v t p P t W W v t W W

c h h

     

 

  


       

         

  

 (1) 

 The terms in (1) represent sales revenue for   r  products sold at a unit price [ ]fsP t W  at the 

retailer, variable production cost at the factory at time t, credit issued for r  returns ceW  time units 

after they were sold at time fst W , difference in variable costs for new returns (i.e. new returns were 

produced at loopW  time units before other non-returned products and hence at a higher cost), unit 

margin for remanufactured products (unit price 2[ ]m fs cP t W W   minus unit production cost 

[ ]m fs cmv t W W  ), sum of transportation costs across all network arcs, handling costs at the 

evaluating facility and retailer, respectively. 

 The total discounted profit over the steady state period is 
0

[ ]
T tt e dt    , resulting in  

 

     

 2( ) ( )

( , )

1 1

      (1 )

      ,

fs fs loopce

m fs c m fs cm

W W WW

r r

W W W W

r m m

ij ij r r r e
i j

Pe v Pe e pv e

p P e v e v

c h h

  

 

  



  

  

   

      

   

  

 (2) 

where, for notational convenience, we define    ( )[0] 1 /TP P e        , 

   ( )[0] 1 /Tv v e         ,     ( )
[0] 1 /m T

m m mv v e
    

   , 

   ( )
[0] 1 /m T

m m mP P e
    

   , (1 ) /T

ij ijc c e    , and (1 ) /T

i ih h e    .  Thus, P  is the 

total discounted revenue (including discounting and time–value decay) for the new product over the 

life cycle T at a sales rate of one unit per unit time; the other “tilde” parameters are defined similarly.      
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 The terms in (2) represent, discounted over T, the net margin for (net) new products sales 

(revenues are “discounted” by the delay between production and sale), the “interest” gained by the 

manufacturer as a result of returns (credit of returns to retailer is issued later than sale), the difference 

in variable costs for new returns, the margin for remanufactured products, transportation and handling 

costs. 

 For the remainder of the analysis, we introduce, for tractability, an approximation: 

Assumption 4-2: Approximate 1ijW

ije W





  ; similar approximations are made for 

, , ,  and m ij m ij ij ijW W W W
e e e e
   

.   

 Assumption 4-2 is reasonable because for real-life parameters 1ijW   (similarly for 

, , ,  and m m    )–– this approximation implies a maximum error of 0.5% for the numerical examples 

of §7.  We do not use an approximation for , , , ,m m ijP v P v c  and ih  above because T is considerably 

larger than any delay ijW  in the network; thus ijT W  .   

 Substituting loop ce ed dsW W W   , cm ce em mmW W W   , and 2 2 22c cm mW W W    into (2), 

and regrouping the terms:  

 

   

    

    
     

( , )

2 22

(1 )

    (1 )

    (1 )

    (1 ) (1 ) .

r m m ij ij r r r e
i j

ed ds r fs r m m m m

ce r m m m m

em mm r m m m m m r m m

P v p P v v c h h

W p v W P p P v

W P pv p P v

W p P v W p P

    

       

    

      

         

     

     

      

 (3) 

 An analysis of (3) allows for an easy visualization for the sources of revenues and costs in the 

network, as well as the monetary effects of network delays.  The first row indicates the steady state 

discounted profit without accounting for delays of new and returned products in the network: total 

discounted new product margins, remanufactured product margins, transportation and handling costs.  

Equation (3) reveals that this base profit is decreased by the delays in the network:  

(i) The delay of new returns until sale (they are delayed by the loop shown in Figure 3).  Thus, a 

one–day increase in ed dsW   decreases expected profit by rp v  , corresponding to the daily 
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decrease in total discounted variable production costs.  Delays in other components of the loop 

also affect new products, as explained in (ii) below.  

(ii) The delay of new products to reach the consumer fsW .  Thus, a one–day increase in the path 

between factory and distributor decreases expected profit by  (1 ) r m m m mP p P v       , 

corresponding to the daily decrease in total discounted revenues for new and remanufactured 

products.  A one–day increase in the path from distributor to sales decreases expected profit by 

a higher amount  (1 ) r m m m m rP p P v p v           due to its effect on new returns.   

(iii) The delay of returned products to reach the evaluating facility ceW .  Thus, a one-day increase in 

the path from consumer to evaluating facility decreases expected profit by 

    (1 )r m m m mP pv p P v         .  The time–lag for credit issuance to retailers has a 

positive effect on expected profit.  The difference in variable cost for new returns and the daily 

decrease in the remanufactured product value have negative effects on expected profit. 

(iv) The transportation between the evaluating facility and remanufacturing, and remanufacturing 

delay em mmW  .  Thus, a one–day increase in the path from the evaluating facility to 

remanufacturing decreases expected profit by  (1 ) r m m m mp P v    , corresponding to the 

daily decrease in total discounted net revenues for remanufactured products sold in the 

secondary market.  

(v) The delay incurred for transportation and sales in the secondary market 2 22m W  .   Thus, a 

one–day increase in the path from the remanufacturing facility to the secondary market  

decreases expected profit by (1 ) r m mp P  , corresponding to the daily decrease in total 

discounted sales revenues for remanufactured products sold in the secondary market. 

 We note that the value of one–day reduction in delays for the reverse network (iii)–(v) depends 

on the following parameters: return rate r, decay parameters for the remanufactured product price m 

and variable cost m, proportion of new returns p, remanufactured product revenue [0]mP  and 

variable cost [0]mv , variable production cost [0]v , and decay parameter for variable production cost  
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(the term P  is numerically small in our experience).  These parameters are all drivers of 

responsiveness in the reverse network.  To gain a better intuition, consider the special case where all 

value decay parameters are equal (this is the case of HP and Bosch, studied in §7), which we denote 

by .  Then, the value of one day in the different links of the reverse network (iii)–(v) become 

    (1 )r m mP pv p P v        ,  (1 ) r m mp P v   , and (1 ) r mp P  .  In short, ignoring the 

(numerically small) term P pv  , a day in the reverse network is more valuable if the return rate is 

higher, fewer new returns are diverted directly into the forward chain, the value decay parameter is 

higher, the remanufactured product profit margin is higher, and the remanufactured product value is 

higher.  To put it differently, time compression is important in the reverse network for product returns 

with high recoverable value, high value decay parameter, and high volume of remanufacturing.   

 In our simulation model we examined the impact of batching at the retailer, evaluation and 

remanufacturing facilities and observed longer delays and, as a result, greater value decay in 

products. We also examined the impact of capacity constrained facilities and the results again showed 

significantly longer delays.  These results support the insights gained from the analytical model, and 

we therefore restrict our attention to the analytic model in the remainder of the paper. 

5 Improving Network Responsiveness 

 The preceding analysis demonstrates the monetary benefits of decreasing delays in different 

parts of the network.  It allows for a time-cost analysis of responsive network designs.  In this section, 

we provide a simple analysis of the optimal level of responsiveness in the network.  To provide 

closed–form expressions, we model the delay at each node by the expected flow time through an 

M/M/1 queue, except for the delay at the customer, sales at the retailer and in the secondary market, 

where the delay is a constant value.  Our choice of M/M/1 queues for the nodes captures the 

significant congestion effects observed in practice for the relevant processing facilities and it has 

been used before in supply chain modeling (e.g., Toktay, Wein and Zenios 2000; Iyer and Jain 2003).  
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It also means that there is no overtaking, that is, all products go through the supply chain on a first–

in–first–out (FIFO) mode.  We note, however, that other delay expressions are possible (e.g., M/M/S 

queue), although they prevent closed-form expressions.  Our deterministic flow model with delays 

now becomes equivalent to an M/M/1 queuing network model with the expected value substituted for 

the random flow time in each node to compute the total expected profit over T.        

 Denoting by i the mean processing rate at node i, and using the expressions for expected flow 

time for an M/M/1 queue, the expected delays Wij are computed as follows:  
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 After substituting (6)–(8) into (3), we obtain: 
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 To improve network responsiveness we can increase i at each node (retailer, evaluating and 

remanufacturing facilities), and decrease the average transportation times ij  (by co–location of 

facilities, or faster transportation modes).  Before analyzing these alternatives, we note that  is a 
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separable function in each delay variable i (that is, 2 / 0i j       for i j ), and thus a sufficient 

condition for (9) to be jointly concave in i, for all i, is that 2 2/ 0i     for all i.    

5.1 Increasing Processing Rate of Returns at the Retailers or Evaluating Facilities 

 Improving responsiveness r  at the retailer requires investments by the manufacturer according 

to the unit handling cost [ ]r rh  , where we make explicit the dependence of the handling cost with the 

processing rate. At Bosch the returns are held at the retailer until a Bosch representative makes a 

disposition and shipment decision.  Bosch can increase the processing rate at each retailer by 

increasing the number of visits, which may require more service personnel. Similarly the 

manufacturer can also improve the processing rate of returns at the central evaluating facility e .  

This would again involve investments in workforce for parallel processing, or investments in sorting, 

picking, and routing technology.   

 To find the optimal level of responsiveness *

i , we apply the first order condition to (9), 

recalling that  , ,i i r e   impacts ceW  according to (5): 
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Sufficient conditions for (3) to be jointly concave (such that the solution to (10) is sufficient for 

optimality) are that (i) [ ]i ih   be a convex function (including a linear function which is a reasonable 

assumption as stated below), and (ii) that  (1 ) m m m mp P v P pv       , that is, remanufacturing 

margins are higher than the net (negative) impact of the time lag for returns (i.e., difference between 

time–value of money for credit issuance and production cost lag for new returns), since 
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which is strictly negative if these two conditions are satisfied.   
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 Now, assume a linear function for the unit handling cost as a function of the processing rate for 

returns, i.e., [ ]i i i i ih a b   .  This linear function can be justified because return handling 

operations are labor intensive (Davey 2001).  Then, [ ]i i i i ih a b   , where (1 ) /T

i ia a e     and a 

similar expression holds for ib .  For this linear cost case, (10) yields:  
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 We note that (11) has the solution form of a classic queuing design problem: find the optimal 

processing rate at an M/M/1 queue that minimizes the expected cost rate (see, e.g., Gross and Harris 

1998, p. 304), with waiting cost rate    (1 ) m m m mp P v P pv        and service cost rate r ia .  

Only a fraction 1 – p of all returns r  are remanufactured and sold at a revenue of mP  with an 

“interest rate” m . This revenue is decreased by the total discounted variable remanufacturing costs 

mv , which decrease at a rate m . In addition, the waiting cost rate should be decreased by the time–

value of money amount corresponding to the daily profit increase of a delayed credit issuance to 

retailers P , but increased by the daily decrease in total variable cost of production for new returns.  

The optimal return processing rate at either retailer or evaluating facility is not influenced by 

transportation costs, but it is directly influenced by the remanufactured product margin. Low margins 

result in designs with a low level of responsiveness.  A higher remanufacturing price decay parameter 

m  and a higher variable cost decay parameter  (higher clockspeed) increase the waiting cost rate 

(numerator in the square root of (11)). This increases processing capacity (lowers the waiting time) 

leading to a more responsive returns network design.   

 A similar analysis can be conducted for the optimal level of responsiveness in the forward 

distribution network, i.e., i ,  , ,i f s d . However, this requires modeling specific costs associated 

with a level of responsiveness at the factory (increased transportation frequency to the distributor), 

distributor (more frequent deliveries to retailers), and retailer (advertising, promotion, and pricing), 

and the focus of this paper is not on forward supply chains.   
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5.2 Increasing Transportation Responsiveness 

 Transportation responsiveness in the network can be influenced by design choices such as co-

location of facilities or selecting faster transportation. For example, if the firm co–locates the 

remanufacturing and the evaluating facilities, then em  = 0, and profits increase by 

 (1 )em r m m m mp P v     , according to (3).  

 Regarding transportation modes, each of the unit cost parameters ijc  (or ijc ) is a function of 

transportation time ij , that is, [ ]ij ijc  .  Consider the design option of moving from ground to air 

transportation.  The savings may be computed as the product of the value of a one–day delay 

reduction on that corresponding arc of the network (§4) and the number of days saved.  The 

computed savings may be compared with additional transportation costs of going from ground to air.   

6 Preponement: Decentralized Returns Network 

 In this section we analyze the drivers of alternative structural designs. Figure 3 represents the 

typical centralized industrial returns evaluation and credit issuance network design where all 

commercial returns are shipped to a central facility for economies of scale.  The benefits in 

economies of scale for evaluation and credit issuance are clear.  Alternatively, consider an innovative 

design where new returns are sorted and immediately re–stocked at the retailer. This decentralized 

design reduces transportation costs, utilization at the central evaluation facility, and consequently the 

delay of other returned products. This, in turn, increases their value in the secondary market. We call 

this decentralized design concept preponement (or early product differentiation) to distinguish it from 

postponement (or late product differentiation), typical in forward supply chains.  Both HP and Bosch 

are considering the use of preponement. 

 With preponement, additional work is required at the retailer to handle and re–package the 

returns.  Without any capacity adjustment from the existing configuration, the processing rate at the 

retailer with preponement is evidently lower than in the existing configuration; thus a capacity 
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increase may be warranted.  The retailer may need to hire and train workers to perform this task and 

maintain extra packaging material at the stores.  To gain retailer cooperation, the manufacturer may 

need to offer incentives.  Alternatively, the manufacturer could periodically send workers to the 

retailer’s site to handle the returns, similar to Vendor Managed Inventory (VMI).   

 With preponement, there is no need to separate new returns from other returns at the evaluating 

facility, although the facility still has to issue credit to returns and route them to the appropriate 

remanufacturing facility.  Further, that node experiences a lower flow of products ( (1 )p

re rp    as 

opposed to re r  ).  Without any capacity adjustment from the existing configuration, the 

processing rate at the evaluating facility with preponement is evidently higher; thus, a capacity 

decrease may be attractive.       

 The decentralized design network is shown in Figure 4.  We use a superscript p to denote, when 

different, parameters for this proposed preponement network. The flow rates between each pair of 

nodes are p

rs rp  , (1 )p

re rp   , (1 )p

ds rp     , and 0p

ed  ; other flows are as before.  As in 

§4, we do not assume any functional form for the delays at the nodes to keep our results general.     

 

 Figure 4: Closed-loop supply chain with preponement: new returns handled at retailer 
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  An analysis similar to that performed in §4 provides the total discounted profit over the steady 

state period of the lifecycle:   
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 We do not include in (12) the incentive, if any, paid by the manufacturer to the retailer, or the 

extra VMI cost. Our analysis focuses on the total benefits of the proposed network.  This benefit can 

be weighed against these extra monetary incentives or costs.  Relative to the centralized network of 

Figure 3, the three delays that are different in the preponement network of Figure 4 are: the delay for 

the returned product between the consumer and the evaluating facility p

ceW , the delay for the new 

product between factory and sales p

fsW , and the delay of returns at the retailer p

rrW .  

 Taking the difference (12) – (3), and defining i  as the difference in delay at node i between 

the existing and preponement networks (e.g., p

r rr rrW W   ), we state, after some algebra, the 

monetary benefits of the proposed decentralized network:  
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   The terms in (13) indicate, respectively:  

(i) The increased value obtained from remanufactured products if they reach the 

secondary market earlier,  

(ii) the decrease in profit since there is no time lag for credit issuance for new returns in 

the preponement network,  

(iii) the savings in variable production cost for new returns since they are re-sold faster,  

(iv) the decrease in transportation cost for new returns in the preponement network,  

(v) the difference in handling cost at the retailer and evaluating facility, and 
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(vi) The increased value of new product sales due to reduced delay at the distributor, as a 

consequence of new returns no longer being routed there.   

 With the exception of the last term dP  , which is likely to be small in practice since new 

returns constitute a small percentage of the flow of products through the distributor in the existing 

network ( d  is a small number), the return rate r  multiplies the entire right–hand side of (13), that 

is, r  is a scaling parameter for the benefits of preponement. Drivers of the attractiveness of 

preponement design include, as before, decay parameters for the remanufactured product price m 

and variable cost m, the decay rate for variable production cost , proportion of new returns p, the 

revenue and costs parameters [0]mP , [0]mv , [0]v , transportation and handling costs (again, the term 

P  is numerically small in our experience).  We develop two general propositions providing insights 

into three major drivers of attractiveness of the preponement design, i.e., the continuous-time variable 

production cost decay parameter  , the variable cost v[0], and the proportion of new returns, p .  

Proposition 1: The benefits of preponement p   are increasing in  and v[0] if the time 

difference for restocking a new return between the existing network (via the evaluating facility) and 

the preponement network (at the retailer only) is positive, that is: 

 0re ee ed dd ds rK W W         . (14) 

 

Proof: The third term of (13) can be written as r pv K   or 
 ( )1

[0]
Te

r pv K
 

 
 

 


, where K is the term 

in parenthesis that multiplies pv  in (13).  This term, the only in p   that includes  and v[0], is 

increasing in  and v[0] if K > 0, which results in (14), after we write    p

e ee eeW W . 

 It is possible that the benefits of preponement p   be positive (or negative) for all 

meaningful values of ; otherwise Proposition 1 implies that there is a such that a decentralized 

(preponement) network design is preferred if ; else a centralized network is appropriate.  

Condition (14) holds for most returns networks because it only requires that all the delays for new 

returns in the original network exceed the delay at only the return node in the preponement network.  

A similar result can be derived for the other design driver p:  
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Proposition 2: If Proposition 1 holds and the total benefits from preponement (time value, 

transportation and handling savings) outweigh the potential foregone time value from putting new 

returns on the secondary market faster, then the benefits of preponement p   are increasing in p.           

Proof:  Simple algebra shows that the term that multiply p in the right–hand–side of (13) is  

   ( )( ).p

ds re ed e d r e m m m mv K c c c h P v            

   The fist term is positive because of Proposition 1. The second term represents the transportation 

and handling savings from preponement.  The last term represents the time value gained by selling 

new returns on the secondary market faster with preponement; that value, however, is foregone 

because new returns go to the primary market.  The last term is the only (potentially) negative term 

that multiplies p in p  .   

 Again, it is possible that the benefits of preponement p   be positive (or negative) for all p 

 [0,1]; otherwise Proposition 2 implies that there exists a p
*
 such that a decentralized network is 

preferred if p  p
*
.    

 Assuming M/M/1 delay expressions at the nodes, and a linear unit handling cost function as 

before [ ]p p p p p

i i i i ih a b   , we perform a similar analysis to §5.1 to find the optimal processing 

capacities at the retailer and evaluating facility.  Then,   

 
   

*
(1 )

  
m m m mp

r r p

r

p P v P pv

a

   
 

   
  , and  (15) 

 * (1 )p m m m m
e r p

e

P v P
p

a

  
 

 
   . (16) 

 It is reasonable to expect that the preponement design option will have higher variable handling 

costs at the retailer (because of extra tasks) and lower variable handling costs at the evaluation 

facility (because of less tasks), i.e., p

r ra a  and p

e ea a .  Thus, * *p

r r  , since (15) only differs from 

(11) in the denominator inside the square-root.  Because the handling cost increases linearly with the 

processing rate at the retailer, and this rate of increase is higher in the preponement scenario, the 

optimal processing capacity is smaller in the preponement scenario.  Comparing *p

e  and *

e  is not as 
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straightforward since the lower value of p

ea  tends to increase *p

e  relative to *

e . However, the lower 

flow of returns (1 ) rp   through the evaluation facility tends to decrease *p

e  relative to *

e .  For 

larger values of p, it is clear that the lower flow effect will tend to dominate (16). In the limit, when p 

= 1, *p

e = 0, and * *p

e e   clearly holds.     

  In the next section, we apply our theoretical results to HP and Bosch, and perform a 

sensitivity analysis on the key drivers of responsiveness and preponement design alternatives.        

7 Application of Model Results  

 In this section, we apply the theoretical results to actual data from HP and Bosch. The main 

differences in parameter values for the two firms are product value, life cycle length, value decay 

parameters, demand, and return rates.  Many of the parameter values are approximately equal for 

both firms, and for reasons of confidentiality, we use common representative numbers assumed fixed 

throughout the numerical analysis: a 25% gross margin for new products ( [0]/ [0]v P  = 0.75), a 15% 

price discount for the remanufactured product relative to the new product ( [0]/ [0] 0.85mP P  ), and a 

5% yearly discount rate ( = 1.4x10
-4

).     

 The price decay parameters for remanufactured and new products are approximately the same 

( m  ) within each company, albeit different between companies.  Although different components 

decay at different rates, we estimate that the overall manufacturing cost of a product decays at a rate 

roughly equal to the final product’s price decay, that is, m m      . For this reason, we use a 

single value decay parameter  for each company.  This assumption brings parsimony to the analysis 

without compromising insights or the order of magnitude of the results. The units of analysis 

throughout are a full truckload of returned products and a time of one day. 

7.1 Hewlett-Packard Inkjet Printers 

 A delivery truck contains an average of 250 inkjet printers.  The median price of an HP inkjet 

printer is $200, and thus P[0] = 250$200 = $50,000.  For inkjets, T = 395 days (13 months), returns 
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are 5% of net sales, so / 0.05r   .  The daily return rate averages r  = 6.67 trucks, p = 1/3, and the 

common value decay parameter is  = 1.43x10
-3

 (1% per week).  The remanufacturing cost is 

approximately 7.5% of the retail price of a new product, that is, [0]/ [0]mv P  = 0.075.     

 Our analysis shows the values of a one–day reduction between different facilities in the returns 

network: $35,069 between the evaluating facility and distributor, $93,797 between the customer and 

evaluating facility, $72,475 between the evaluating facility and remanufacturing, and $79,489 

between remanufacturing and the secondary market, respectively. Managers indicate that lead–time 

reduction in the forward network is currently being pursued at the level of hours, not days.  However, 

opportunities for significantly reducing lead–times abound in HP’s reverse supply chain. The sojourn 

time at retailers, delay between retailers and process completion at the evaluating facility, and delay 

between the evaluating facility and remanufacturing completion average 10, 8 and 40 days 

respectively.  We analyze each opportunity separately below.   

 First, consider the retailer returns processing capacity.  For a more realistic analysis, consider 

multiple retailers. For example, using 1,000 identical retailers with an average sojourn time of 10 

days, and assuming M/M/1 delays at the retailer implies 1/( /1000)r r   = 10, or a current return 

processing capacity of r = 0.1067.  If we decrease the average sojourn time by two days (and save 

approximately $180,000) with the same rate of returns, this implies r  = 0.1317, or a 23% increase 

in returns processing capacity.  To find the optimal processing capacity (11), we require an accurate 

estimate of handling costs at the retailers.
1
   

 Second, consider transportation to, and sojourn time at, the evaluating facility.  Managers at HP 

believe that this delay can be cut from its current 8 days to 2 days, resulting in lifecycle savings of 

approximately half a million dollars.  Finally, the largest opportunity lies in the long delays for 

shipment from the evaluating facility until completion of the remanufacturing operation, which is 

                                                 
1
 We note that the conditions (i) and (ii) for optimality of (11), which are described in the paragraph after (10), are both 

satisfied.  Condition (i) is naturally satisfied because (11) assumes linear handling costs.  Condition (ii) is satisfied 

because  (1 ) m m m mp P v    = 10,866 > P pv   = –3,189. 
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currently 40 days.  Management believes that a reasonable goal for this delay is 20 days. Achieving 

this goal implies a lifecycle savings of $1.45 million.  We note that our estimates are conservative, 

since we do not explicitly account for savings in working capital and the corresponding reduction in 

inventory holding costs.  Thus, it appears worthwhile for HP to consider a responsive network design. 

 We estimate the current discounted lifecycle value of preponement for HP (13) to be roughly 

$4.0 million, using the following assumptions: (i) retailers are situated at an average of 1000 miles 

from the evaluating facility; (ii) the truckload transportation rate is $1.3/mile
2
; (iii) the likely increase 

in handling cost at the retailer is offset by the likely decrease in handling cost at the evaluating 

facility, and, consequently, the difference in total handling costs (across retailer and evaluating 

facility) between the current and preponement scenarios is negligible, and (iv) the difference in 

delays between the current and preponement scenarios is negligible (i.e., 0r e   ; 0d  ).  Of 

these $4.0 million, roughly 20% are related to the time value savings in variable costs for new returns 

(third term in (13)), 82.7% are related to savings in transportation costs (fourth term in (13)); the 

second negative term in (13) is small at –2.7%; the first and last two terms in (13) are zero by our 

assumptions. It should be clear from these rough-cut calculations that HP has a keen interest in a 

more detailed analysis of the practical implications of the preponement option.  In a more detailed 

analysis, HP would also need to estimate the possible increase in total handling costs with 

preponement, which we assumed to be negligible in the above calculation.  We note that HP has 

developed a hand-held IT device that shows the condition of the returned product.  Other firms, such 

as Pitney-Bowes and ReCellular, Inc., use visual grading standards to provide guidance in grading 

product returns.  Both of these actions reduce the reliance on skilled labor and may make 

preponement a more attractive alternative.        

                                                 
2
 This estimate of transportation rate is based on a US DOT report http://ops.fhwa.dot.gov/freight/documents/bts.pdf 

http://ops.fhwa.dot.gov/freight/documents/bts.pdf
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7.2 Bosch Power Tools 

 A delivery truck contains an average of 500 power tools.  The average price of a Bosch power 

tool is $50, and thus P[0] = $25,000.  For power tools, T = 1,675 days (55 months). Return rate is 

2.6% of net sales ( / 0.026r   ), r  = 1.5, p = 0, and the common value decay parameter is  = 

3.5x10
-4

 (1% per month).  The remanufacturing cost is approximately 7.5% of the retail price of a 

new product, that is, [0]/ [0]mv P  = 0.075.     

 The value of reducing one day between the customer and evaluating facility (which is co-

located at the new products factory) ceW  is $5,624. The value of one-day reduction between the 

evaluating facility and remanufacturing, and between remanufacturing and the secondary market are 

$11,623 and $12,748, respectively.  Given these results, is appears that Bosch should consider an 

efficient reverse supply chain network to handle returns.  

 At Bosch, preponement is a much less viable option than at HP. This is easily explained by the 

major drivers: a much smaller return rate containing very few new returns and therefore smaller 

potential transportation cost savings, and a considerably smaller value decay over time yielding even 

smaller savings in variable production costs for new returns. Setting up decentralized low touch 

remanufacturing facilities (thereby approximating the idea of preponement) would be relatively 

costly as well, even if all 40% of non-defective returns (Table 2) could be handled decentrally (and 

thereby avoid larger transportation costs).     

7.3 Sensitivity Analysis 

 In order to gain general insights in the drivers of reverse supply chain design, we performed a 

sensitivity analysis. Using the base numbers for HP’s product value, life cycle length, and demand 

volume, we vary the values for the key drivers of reverse supply chain design: the return rate r , the 

common value decay parameter , the proportion of new returns p, and the remanufactured product 

profit margin [0] [0]m mP v   (since [0] 0.85 [0]mP P  is fixed, we vary [0]/ [0]mv P ).   We also 

examine the effect of changes in the lifecycle length T (demand volume does not impact the reverse 
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network design.)  We selected the range for these parameters based on representative values for 

products in a wide range of industries.  That is, r   [0, 15], corresponding to a return rate between 

0% and 12% of net sales;   [0.0001, 0.004], corresponding to monthly value decay rates between 

0.3% and 12%; p  [0, 0.75]; [0]/ [0]mv P   [0.025, 0.50], corresponding to a remanufacturing cost 

between 2.5% and 50% of the new product price; and T  [180, 1675], corresponding to a lifecycle 

length between 6 and 55 months.  The analyses assume that every unit decrease in returns results in 

one more unit of net sales, that is, r   is kept constant at 140 truckloads per day.   We focus on the 

value of a one-day reduction between the evaluating facility and remanufacturing completion, since 

this segment has the largest delays.  Additional sensitivity analyses were performed for the other 

segments of the reverse supply chain (e.g., customer and evaluating facility) and the results were 

similar to the ones discussed here and therefore omitted. 

 Figure 5 shows the value of one–day time reduction between the evaluating facility and 

remanufacturing completion as a function of the return rate r  and the time value decay parameter .  

The marginal value of time becomes important for higher values of the return rate. In those cases, 

e.g., companies like HP, there are substantial benefits to be gained from considering a responsive 

reverse supply chain design. Conversely, when return rates are low a cost-efficient reverse supply 

chain is favored, even when the marginal value of time is high.  Since both returns and the marginal 

value of time are increasing at a rapid pace globally and across industries, managers need to be aware 

of the growing potential benefits of adopting a responsive reverse supply chain design.  

 Figure 6 shows that, for those companies where both return rates and time value decay are 

considerable (using HP’s 5% return rate), the proportion of new returns has a negative linear impact 

on the value of a one-day time reduction between remanufacturing and sales at the secondary market; 

this is a result of a lower flow of products that are remanufactured as p increases.  However, as 

mentioned previously, the proportion p is a driver of a decentralized preponement returns network.  

Figure 7 shows that the value of a one–day reduction increases at a decreasing rate with the lifecycle 
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length T; this is because of discounting and decreasing product values with time.  Figure 8 shows the 

value of one–day between evaluating facility and remanufacturing completion as a function of the 

normalized remanufacturing variable cost; the impact is linear and more significant at high value 

decay rates.   

 Finally, Figure 9 shows the value of preponement as a function of the proportion of new returns.  

The preponement value is more sensitive to p because approximately 80% of the value of 

preponement for HP is derived from savings in transportation costs for new returns as compared to 

20% derived from the time value––mostly from variable cost savings in new returns––captured by 

the value decay parameter.  It should also be clear from Figure 9 and (13) that if return policies 

become even more lenient, i.e. both return rate and percentage new returns increase, and clockspeed 

continues to increase as well, preponement solutions involving close collaboration with channel 

partners may become imperative in order to maintain profitability in small margin businesses. In 

other words, many of today’s centralized returns handling networks may have to be reengineered in 

the future.     
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Figure 5: Value ($) of One–Day Delay Reduction Between Evaluating Facility and Remanufacturing Completion 

as a Function of Value Decay Parameter   and Return Rate r  
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Figure 6:  Value ($) of One–Day Delay Reduction Between Evaluating Facility and Remanufacturing Completion 

as a Function of Value Decay Parameter   and Proportion of New Returns p 
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Figure 7: Value ($) of One–Day Delay Reduction Between Evaluating Facility and Remanufacturing Completion 

as a Function of Value Decay Parameter   and Lifecycle Length T 
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Figure 8: Value ($) of One–Day Delay Reduction Between Evaluating Facility and Remanufacturing Completion 

as a Function of Value Decay Parameter  and Remanufacturing Variable Cost [0]/ [0]mv P  
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Figure 9: Preponement Benefit 
p
 –  ($) as a Function of Value Decay Parameter   and Proportion of New 

Returns p 
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8 Conclusion 

We begin this paper by stating that almost all reverse logistics networks today are driven by 

efficiency: centralized and focused on economies of scale (local cost minimization through bulk 

transportation, batching in remanufacturing, large central facilities focused on high utilization and the 
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like).  This paper shows that there are an increasing number of cases where a centralized efficiency-

driven reverse network is no longer appropriate. Companies should reconsider the structure of their 

network, especially if they face large and increasing return rates and high recoverable product value. 

Return rate and recoverable product value are scale effects; i.e., they impact the magnitude of the 

costs of the reverse network and therefore the profitability of the business.  

The major parameters driving reverse network design are the time value decay φ, and the 

proportion of new returns p. Centralized efficient reverse networks are appropriate when both φ and p 

are relatively low; that is when the proportion of unused returned products is low and the product 

price is relatively stable over time. If we increase the rate at which products lose value over time, it 

becomes more interesting to consider responsive decentralized return networks and to further 

increase responsiveness by speeding up transportation, increasing surge capacity at facilities and 

reducing batching both in transportation and remanufacturing. Saving time will save value and, at 

some point, will compensate for the losses in economies of scale.  

The rate of new returns p acts as a moderator in that higher values of p reduce the value of 

responsiveness in the part of the network between the evaluating facility and the secondary market.  

On the other hand, higher values of the proportion of new returns p increase the attractiveness of 

preponement, since these larger quantities of unused products can then be returned to the forward 

supply chain faster. Preponement retains the product value of new returns and avoids unnecessary 

transportation to an evaluating facility before reintroduction in the forward supply chain. The time 

value decay parameter φ acts as an amplifier since the speed of reintroduction in the forward supply 

chain is more critical for products that lose value very quickly.  The above insights are qualitatively 

illustrated in Figure 10.   

Our analytic model is quite robust; our simulation built to test the model’s robustness simply 

show that the effects are amplified when capacitated facilities or batching are introduced. The latter 

tend to slow down the process and therefore cause greater loss of value when time decay is 
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considerable. Note also that while our model allows for macro managerial design insights, it can also 

be used for more detailed scenario analyses for a particular company, as we have shown for the HP 

and Bosch cases.  

 

Figure 10: Drivers of Reverse Network Designs 
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The major design drivers p and φ are influenced by sales conditions (i.e., how liberal are the 

return policies) and by technological progress (i.e., how fast is technology changing), respectively. 

Companies may not be able to influence these parameters to a great extent. Both parameters may 

increase over time as the speed of technological evolution and the intensity of market competition 

become more critical for many sectors and products in our global economy.  

The implications for management are clear: companies with high return rates and considerable 

recoverable value should seriously consider redesigning their return networks from a focus on 

centralization and efficiency to a focus on responsiveness (speed, decentralization) when the rate at 

which their products lose value is high. If, in addition, many returned products are unused, they 

should also consider preponement. 
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