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Supply Chain Strategies for Perishable Products: The Case of Fresh Produce 
 

Abstract 
 

 This paper examines supply chain design strategies for a specific type of 

perishable product—fresh produce, using melons and sweet corn as examples.  Melons 

and other types of produce reach their peak value at time of harvest; product value 

deteriorates exponentially post-harvest until the product is cooled to dampen the 

deterioration.  Using the product’s marginal value of time, the rate at which the product 

loses value over time in the supply chain, we show that the appropriate model to 

minimize lost value in the supply chain is a hybrid of a responsive model from post-

harvest to cooling, followed by an efficient model in the remainder of the chain.  We also 

show that these two segments of the supply chain are only loosely-linked, implying that 

little coordination is required across the chain to achieve value maximization.   The 

models we develop also provide insights into the use of a product’s marginal value of 

time to develop supply chain strategies for other perishable products.   

(Supply Chain Management; Perishable Products; Fresh Produce; Marginal Value 
of Time; Harvest Strategy) 
 
History: Received August 2003; Revised: July 2004, September 2007, April 2008, June 
2008, August 2008; Accepted: August 2008 
 



 3 

Supply Chain Strategies for Perishable Products: The Case of Fresh Produce 
 

1.  Introduction 
 

This paper considers the problem of designing and managing effective supply 

chains for a specific type of perishable product, fresh produce.  The challenge for 

managing fresh produce is that  product value deteriorates significantly over time in the 

supply chain at rates that are highly temperature and humidity dependent.  We show that 

these changes in product value make conventional supply chain strategies inappropriate.    

For many products, a decision about supply chain strategy involves a choice 

between responsiveness and efficiency. The appropriate choice depends on how the 

product changes in value over the time interval between production and delivery to the 

customer.  To clarify, we define the term marginal value of time (MVT) to be the change 

in value of a unit of product per unit time at a given point in the supply chain.  MVT 

measures the cost of a unit time delay in the supply chain. When the MVT remains 

relatively stable over time in the supply chain, then a single design choice of either 

responsiveness or efficiency is appropriate.  However, for fresh produce, we show that 

because of dramatic changes in the MVT and hence in the cost of time delays, no single 

design choice is appropriate for the entire chain.  

In this study, we develop a hybrid strategy that is a combination of speed and 

efficiency.  We use fresh melons and sweet corn as representative examples of perishable 

products because they exhibit a rapid decline in value over time under certain conditions 

and have limited shelf-life.   We also model the effects on supply chain performance of 

actions taken to decrease the loss in value due to perishability.  The results we obtain 



 4 

offer useful insights for using the MVT of a product to optimize supply chain 

performance.    

 The structure of the paper is as follows.  First, we present a review of relevant 

literature.  The third section describes the problem of maximizing value in the supply 

chain for fresh melons and sweet corn along with a summary of design strategies that 

have been suggested for conventional supply chains.  We then reinterpret those strategies 

in terms of the MVT in supply chains and show that the appropriate supply chain for 

these products is a hybrid of conventional strategies.  Finally, we analyze the specific 

design problems posed in different segments of the supply chain and discuss 

implementation issues. 

2.  Literature Review 
 
 In developing supply chain strategies for perishable food products, we build upon 

two distinct research streams: models for perishable inventory management and supply 

chain design structures.  We summarize the most relevant research in each of these 

streams and integrate the concepts into a more general model for the supply chain for 

perishable products.     

Numerous models for managing the inventory of a perishable product have been 

developed (see Nahmias (1982) for a thorough review of the early literature).  Of 

particular relevance to the current study are models that deal with degradation of product 

quality and value over time.  In most early studies on perishable inventory, perishability 

is defined as the number of units of product that outdate (perish).   Hence, the decay is 

not in terms of value, but in the number of units, and the decay is modeled with a 

probability distribution.  For example, Ghare and Schrader (1963) develop an EOQ 
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model for products in which the number of usable units is subject to exponential decay.  

Covert and Philip (1973) and Philip (1974) extend this model, but use the Weibull 

distribution to model item deterioration.  Shah (1977) extends the model to allow for 

shortages and backlogging, and Tadikamalla (1978) examines the case of Gamma-

distributed deterioration.   Giri and Chaudhuri (1978) and Chakrabarty et al. (1978) 

extend these models to include situations in which demand rate is dependent upon either 

the inventory level or time. 

      Some papers do consider deterioration in product value over time. Weiss (1982) 

examines a situation where the value of an item decreases non-linearly the longer it is 

held in stock.  Fujiwara and Perera (1993) develop EOQ models for inventory 

management under the assumption that product value diminishes over time according to 

an exponential distribution.  However, they assume that the rate of deterioration of 

product value increases with the age of the inventory.  Goh (1994) allows holding cost to 

vary based upon on-hand inventory levels.  More recently, Ferguson et al. (2006) apply 

Weiss’ model to optimal order quantities for perishable goods in small to medium size 

grocery stores with delivery surcharges.  Research on the perishability of fresh produce 

indicates that, unlike these models, the loss in product value and quality is at its highest 

rate immediately post-production (at harvest), and the rate of loss in value declines until 

the produce finally “spoils” (Hardenburg et al. 1986, Appleman and Arthur 1919).  Using 

this information, we extend the EOQ models for perishable inventory.   

To date, the perishability models that have been developed only consider 

inventory management: determining appropriate levels of perishable stock to meet 

demand.   Ferguson and Ketzenberg (2006) and Ketzenberg and Ferguson (2008) 
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examine the value of information sharing between retailers and suppliers for perishable 

products.  The first study considers a supplier sharing age-dependent information with 

retailers, and the more recent paper considers the sharing of information on ageing and 

demand by the retailer with the supplier.  Ferguson and Koenigsberg (2007) study the 

effects of firms selling leftover perishable products at a lower price in competition with 

fresh product.   But no studies consider broader supply chain design issues, which are the 

focus of this paper.  We build a model of perishability for fresh produce to examine how 

these products should be managed throughout the supply chain. 

A number of frameworks have been proposed for supply chain design.  One of the 

first was introduced by Fisher (1997), who devises a taxonomy for supply chains based 

on the nature of the demand for the product.  For functional products (stable, predictable 

demand, long life cycle, slow “clockspeed”) Fisher argues that the supply chain should be 

designed for cost efficiency; for innovative products (volatile demand, short life cycle, 

fast “clockspeed”)  he maintained that the supply chain should be designed to be fast and 

responsive.  Lee (2002) expands upon Fisher’s taxonomy by suggesting that the supply 

process could be either stable or evolving.   A stable supply process has a well-

established supply base and mature manufacturing processes.  In an evolving supply 

process, technologies are still early in their development with limited suppliers. Kopczak 

and Johnson (2003) extend the framework to include coordination of activities across 

companies, improving information flows, and collaborative redesign of the supply chain 

as well as its products and processes.  

Feitzinger and Lee (1997) introduce the concept of delayed product 

differentiation, or postponement.  They showed that delaying final product definition 



 7 

until further downstream in the chain reduces variety in the early stages (in effect, 

making the product more functional).  This creates opportunities for supply chain designs 

that can be efficient in the early stages and responsive in the final stages.  In their studies 

of reverse supply chains, Blackburn et al. (2004) find that, for returned products that lose 

value rapidly over time, the supply chain should be responsive in the early stages and 

efficient in later stages. These studies suggest that supply chain strategies based on a 

simple choice between efficiency and response can be inappropriate when the product 

undergoes substantial differentiation or change in value as it moves through the chain. 

We show that this is the case for perishable produce: the value of the product changes 

significantly, and the appropriate supply chain structure is one that is responsive in the 

early stages and efficient in the later stages.   

3.  Managing the Supply Chain for Melons 
 

Figure 1 is a schematic of the sequence of activities in the supply chain for 

melons, from seed production to ultimate consumer purchase either through the retail or 

food service channels.  For most fresh produce, the maximum quality (and value) of the 

product is largely determined by actions taken in the early stages of the process: seed 

production, growing conditions, planting practices, and harvesting methods.  Value is 

typically defined by sugar levels which begin to deteriorate immediately upon harvest 

and the supply chain management problem is to control the loss in value over the 

remaining stages in the chain—from the field to the consumer. The focus of our study is 

optimization of the supply chain post-harvest; we do not explore the agricultural issues 

surrounding seed production and the growing operations.   
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Figure 1 
A Schematic of the Melon Supply Chain 

 

 

 

 

 

 

 

In the large produce operations we have observed in California, melons and sweet 

corn are picked by hand and field packed, an extremely labor-intensive process.  Melons 

are picked by multiple teams of workers (10-20 workers) who move through the field 

behind a trailer pulled by a tractor.  As melons are picked, they are tossed to workers on 

the trailer who sort and  pack them into cartons according to size (of up to 30 melons).   

Picking rates by a team average about 50-60 cartons per hour.   Cartons are stacked onto 

pallets, 42 cartons per pallet, and trailers can hold about 12-14 pallets, or up to about 590 

cartons of melons.  Periodically, these pallets are transferred to a nearby truck. In the 

peak season, a truck is filled with melons in about three to four hours, with multiple 

teams harvesting a given field.  When full, the truck is driven to the cooling shed, where 

the melons are hydro, forced-air or vacuum cooled to preserve product quality.   The 

process for sweet corn is similar. 

Cooling sheds are located throughout a growing region and serve as both a 

cooling facility and as a consolidation point for outbound truck shipments.  Cooling sheds 

serve several growers in a region and are typically owned and operated separately from 
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the growing operations.  Thus, the location of these facilities is not considered here.  The 

time and cost to transfer a batch of cartons from the field to the cooling shed depends on 

the location of the field. Transfer time to the cooling sheds is assumed to be independent 

of the transfer batch size, except in the unlikely event that the transfer batch size exceeds 

the capacity of the trailer. We neglect the small effects of batch size on the time to load 

and unload the batch.  The time to transfer melons from the field to a cooling shed can 

vary from 15 minutes to an hour.  

Freshly-picked produce begins a chemical process of respiration.  Respiration not 

only generates carbon dioxide (CO2) and heat, but it also converts sugar to starch, causing 

the product to lose sweetness and quality.  Figure 2 displays laboratory measurements of 

the rate of respiration for melons and sweet corn, showing that the respiration rate (and 

loss in sugar content) increases significantly with temperature (Hardenburg et al. 1986), 

and that sweet corn has higher respiration rates than melons.  Appleman and Arthur 

(1919) (see Figure 3) show the effect of respiration on quality (and value) and that the 

loss of sweetness in corn over time follows an exponential decay function whose decay 

rate increases dramatically with temperature (melons exhibit a similar functional 

relationship between sweetness, time and temperature (Suslow, Cantwell and Mitchell 

2002)). 
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Figure 2 
Respiration Rate for Melons and Sweet Corn 
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Figure 3 
Sucrose Depletion in Sweet Corn 

At Four Temperatures 
(Appleman and Arthur 1919) 

 

 
 

 
Because freshly-picked produce can have an internal temperature reaching 30-35 

degrees Centigrade, quickly removing field heat is critical to maintaining product quality.  

Therefore, it is very important to move the product rapidly from the field to a cooling 

shed to preserve product quality (Jobling 2002 and Sargent et al. 2000).  Hartz, Mayberry 

and Valencia (1996) observe that rapid removal of field heat maximizes post-harvest life.  

Once the melon or corn reaches the cooling shed and has been cooled to a temperature a 
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few degrees above freezing, product deterioration occurs at a much lower rate.  The 

product value (its taste and appearance) can be maintained for several weeks, provided 

that the “cold chain” is maintained throughout the remaining stages of the chain (Perosio 

et al. 2001). 

  We consider how to minimize total cost in the entire post-harvest time interval: 

before and after the “cold chain” is established.   In doing so, we seek to maximize the 

value of the product delivered to the customer, net of the cost of managing the supply 

chain process. Figure 4 shows schematically how the typical product loses value over 

time in the supply chain:  in the critical time period between picking and cooling (t0 to t1 

in Figure 4), product loses value at a rapid, exponential rate and the supply chain must be 

responsive. In the interval post-cooling (t1 to t2 in Figure 4), the product’s value declines 

at a much slower rate and the supply chain can designed for cost efficiency. 
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In the analysis that follows, we demonstrate that design decisions for the 

responsive and efficient segments of the chain are only weakly linked, and the problem 

effectively separates into the design of each segment. We first develop an expression for 

minimizing cost in the responsive segment of the chain (from harvest to cooling), and 

then link this model to the design of the efficient segment of the chain. 

 

3.1 Modeling the Responsive Segment of the Chain 

 

The total cost between picking and cooling can be modeled as an economic batch 

production model in which the key decision variables are the size of the batch of product 

to be transferred for cooling and the picking rate.  Since loss in product value is well-fit 

by an exponential decay function, we assume a unit of product has value V at time of 

picking and degrades according to a function tVe α− , where t denotes the time the unit is 

held at “field heat” and the decay parameter α depends on both the product and the 

temperature (as was shown in Figure 3).    Table 1 displays the observed α values at 

various temperatures for melons and sweet corn (Suslow, Cantwell and Mitchell 2002; 

Appleman and Arthur 1919).   

Table 1 
Rate of Exponential Decay in Product Value 

Field Temp, °C. Melons Sweet Corn 
0 0.001 0.005 

10 0.003 0.015 
20 0.006 0.027 
30 0.030 0.130 
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Figure 5 is a schematic depicting the tradeoff facing the grower and distributor in 

the selection of the optimal transfer batch size, Q.  The loss in product value is a concave 

increasing function of Q, and the cost of transferring batches of product to the cooling 

facility involves a fixed transfer cost that is analogous to the setup cost in a conventional 

lot-sizing problem.   

 
Figure 5 

Transfer Batch Cost Tradeoff for Perishable Products 

 
We assume that the unit of analysis for product is a carton; individual units of 

product can vary significantly in size and cartons are the standard transfer quantity. We 

introduce the following additional notation:  let 
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Q = transfer batch size in cartons;  
V = maximum value of a carton of product at time t=0; 
p = picking rate (cartons per hour); 
α = deterioration rate in value of product per hour;  
K= batch transfer cost in dollars (assumed to be independent of the lot size); 
tr = transfer time (in hrs) from field to cooling shed. 
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We assume continuous time by eliminating from consideration time intervals 

when picking does not take place (there is no loss in product value for product remaining 

“on the vine” overnight).  Then the harvest period is of duration D/p, during which D/Q 

batches of product are picked. We assume that the total field harvest D and demand are 

equivalent and that D is determined exogenously.   The decisions of interest are the batch 

size Q and picking rate p that minimize the total cost over the harvest period. 

To construct the cost function, consider the qth unit picked in a batch Q. The qth 

unit is held in the field for a time ( ) /t Q q p= − plus a fixed transfer time tr to move the 

batch to the cooling shed.  The loss in value for the qth unit equals ( )/1 rtQ q pV e e αα −− − −  . 

Define rt
r e ατ −= , and then the loss in value of a batch of size Q can be expressed as 

( )( )/ /

0
/ (1 )

Q Q q p Q p
r rQV Ve dq QV p V eα ατ τ α− − −− = − −∫     (1) 

 
The total cost per harvest period is simply the sum of the transfer costs QKD / , 

the cost in “loss in value” per batch incurred QD /  times, and a picking cost. The total 

picking costs are closely approximated by a scalar multiple of demand, cD.  This cost is 

independent of Q and p because doubling the picking rate would be accomplished by 

doubling the number of workers with virtually no change in the total cost of picking D 

cartons.    This yields the following expression for total cost during the responsive 

segment of the chain: 

( )( )( )/( , ) / / / 1 Q p
rTC Q p KD Q DV D Q p V e cDατ α −= + − − + .                  (2) 

Equation (2) is structurally similar to the traditional economic order quantity (EOQ) 
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problem:  the sum of a setup cost term (KD/Q) and an expression that captures the loss in 

value while product is held in stock. We omit a traditional inventory carrying cost from 

the total cost expression because, given the short time interval (hours), the inventory 

carrying cost as a function of the batch size Q is negligible.  However, including such a 

cost in the model would be trivial.   

3.2  Modeling the Efficient Segment of the Supply Chain 

We now complete the total cost model for the entire supply chain from harvest to 

retailer by incorporating the costs of transferring the product from cooling shed to 

retailer.  Once the “cold chain” has been established, the product will remain stable for 

two to three weeks and will lose value at a much slower exponential rate tVe β− , where 

β α<< and V = value of a unit at the time the cold chain is established.   

The choices of transportation mode or carrier in the efficient segment of the chain 

are typically made from a small, finite set of size n; there is not a continuum of cost/time 

choices.  The cost and time to transport the product are essentially determined by the 

mode of transportation.  Hence, we simply assume that there are n possible logistics 

choices. To incorporate these choices into a total cost expression for the supply chain 

design, let  

j = the transportation mode j (=1,…n); 
 tj = transportation time for mode j; 
 Cj = cost of transportation mode j. 
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Since refrigerated truck is the most common option used for the transport of fresh 

produce, our model allows for the possibility of alternative truck carriers with different 

time and cost profiles, each identified as a different mode j.   

To include the loss in value over the “efficient” segment of the chain, we assume 

that the time each carton spends in this segment is tj.  That is, any small cost differences 

in transportation from cooling to retailer due to batching in truck loading are ignored.  

Including the loss in value over this segment of the chain and the transport cost, we 

define τj  = jte β−  and modify (2) to obtain the following total cost expression:  

( )( )( )/( , , ) / / / 1 Q p
j r jTC Q p j KD Q DV D Q p V e cD Cατ τ α −= + − − + + .                         (3) 

Since demand is exogenous, expression (3) implies that the minimization of TC is 

independent of the value of D and is equivalent to the following: 

min ( )( )( )/( , , ) / 1/ / 1 Q p
j r jTC Q p j K Q Q p V e Cατ τ α −= − − +   subject to , 0Q p ≥ .        (4) 

 

3.3 Optimizing the Supply Chain Design 

 

For each j, the optimal transfer batch Q and picking rate p are independent of the value of 

Cj and the only interaction between the two decisions is captured in the factor jτ . 

 However, because β  tends to fall between 0.01-0.02 per day,  0.9jτ ≥ , and the 

interaction is minimal.  The transportation choice j has little effect on the decisions (Q, p) 

made in the responsive segment of the chain. With only a finite set of transportation 

choices, it is feasible to evaluate (4) for each j to determine the optimal design for both 

segments of the chain. 
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 For a given j, the minimization of total cost in the supply chain is equivalent to 

the following:  

( )( )( )/min ( , , ) 1/ ( / ) 1 Q p
j rTC Q p j Q K p V e ατ τ α −= − −  subject to , 0Q p ≥                     (5) 

We show in Appendix 1 that for a given p the optimal Q satisfies the following 

expression: 

/Q p

j r

p K pQ e
V

α

α τ τ α
 

= − −  
 

               (6) 

This expression has a unique solution that can be found by using a spreadsheet Solver 

routine.  We further show in Appendix 1, Proposition 1.2 that the following lower bound, 

reminiscent of the classical EOQ formula, provides a good approximation to the optimal 

value:  2

j r

pKQ
Vατ τ

≥ . 

 However, the joint minimization of ( , )TC Q p  does not have a finite solution.  In 

Appendix 2 we show that although ( , )TC Q p  is convex in p for any value of Q, 

( , ) 0TC Q p
p

∂
<

∂
 and

,
lim ( , ) 0

p Q
TC Q p

→∞
= .  That is, ( , )TC Q p is non-increasing in p and the 

functions tends to zero asymptotically as ,p Q → ∞ .  

Although ( , )TC Q p  has no finite solution, in practice the picking rate is 

constrained by the physical limitations of the number of workers that can pick efficiently 

in coordination with a truck moving through the fields. For any batch size Q, if we denote 

the upper limit on the efficient picking rate as p , then the optimal solution to (5) subject 

to p p≤  is ,p p= and /Q p

j r

p K pQ e
V

α

α τ τ α
 

= − −  
 

.  

 



 19 

3.4  Example: Applying the Model in the Responsive and Efficient Segments 

 

We describe an example for the harvesting of canteloupes in Central California to 

illustrate how the model can be used to determine optimal harvesting strategy and the 

sensitivity of the solution to problem parameters. Using University of California 

agricultural data for melon values and our own field research for representative parameter 

values,  we have the following inputs: V, the value of a carton of melons at time of 

picking, = $7.00. At a field temperature of 30 oC,  α = 0.03. The maximum picking rate p 

= 60 cartons per hour.  The batch transfer transfer time, tr, is 0.5 hours and with cost, K, 

of $75.  In the efficient segment of the chain, jt = 5 days, 0.02β =  per day, and 

jτ = 0.91. 

Using equation (6) we find that the optimal transfer batch size from field to 

cooling shed equals 227 cartons.  To see that the time in the efficient segment of the 

chain has little effect on the optimal batch size, if we choose the batch transfer size based 

only on the total cost over the responsive segment (set 1jτ = ), then the optimal transfer 

batch size is reduced slightly to 217 cartons .  In either case, the cost minimizing strategy 

is to transfer a batch to cooling about once every 3 ½ hours.  

To examine the effect of the transportation mode, we observe that doubling tj to 

10 days for transportation mode j only increases the optimal Q value to 239.   For field 

managers, the appropriate decision is still to transport product to the cooling shed 

approximately every 3-4 hours (at a 60 carton/hr picking rate).  The solution is quite 

robust with respect to the choice of transportation mode, and the decisions made in the 
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efficient and responsive chain can be decoupled without significant deviation from 

optimality.  

The optimal transfer batch size is sensitive to the decay rate α, a value that varies 

with harvest temperature (and with produce type).  Figure 6 displays optimal values of Q 

for our example over a range of α values.  When the deterioration rate is as low as α = 

0.01 (corresponding to a field temperature of about 21 oC), the optimal batch quantity for 

a single picking team is about 60% of a full trailer quantity.  The deterioration rate would 

need to be as low as .005 to justify transferring a full trailer batch of 590 cartons. 

Figure 6 
Optimal Transfer Batch Size for Melon Example 
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 Figure 7 indicates how the total cost per carton is affected by the choice of the 

transfer batch size (at different values of α ).  The shapes of the total cost functions are 

similar to those for the traditional EOQ model: that is, the total cost is relatively 

insensitive to the choice of transfer batch size, when it is near the optimum. We observe, 

however, that as α  increases, the total cost becomes more sensitive to the choice of Q.  
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When α is small, filling a truck completely with 600 cartons incurs a relatively small cost 

penalty.  For α =0.03, the penalty is only about $.40 per carton or $240 for a full 

truckload.  For α =0.01, the penalty is only $30 for the full truckload.  So the cost effect 

of filling a truck is relatively small for very low deterioration rates. 

Figure 7 
Total Cost per Carton vs. Transfer Batch Size 
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Because the product deteriorates at a much slower rate after the “cold chain” is 

established, the choice of transportation mode j for the efficient segment of the chain is 

insensitive to the shipment time. To evaluate alternative modes of transport, the marginal 

value of time for the product may be used to impute the cost of an additional day of 

shipping time.  To compute the marginal cost in lost product value  of an additional day 

of shipping time, we take the partial derivative with respect to tj of ( , , )TC Q p j , as given 

in (3), yielding  
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/( , , ) ( ) (p V / )(1 ) Q p
j r

j

TC Q p j D e
t Q

αβτ τ α − ∂
= − ∂  

.           (7)   

 To calculate the marginal cost of an additional day of transportation time, we 

assume a six week harvest season, picking for eight hours per day,  giving D = 20,200 

cartons of melons. Using (7) and our example data, the incremental lost product value of 

an additional day of transportation time is $90.  On a per unit basis, this is $0.004, or less 

than a half cent per carton.  Given that the cost in lost product value of an additional day 

in shipping is so small, the choice of shipping mode should be based primarily on 

reliability (maintaining the cold chain) and cost of shipment. 

4.  Summary and Conclusions 

 This paper examines a supply chain design problem for fresh produce, an example 

of a perishable product whose value declines exponentially post-production and can then 

be stabilized.  By using the marginal cost of time for a product to develop a supply chain 

strategy, significant differences emerge between conventional supply chain strategies and 

those needed for perishable products.  The supply chain for melons and sweet corn 

separates into two essentially independent segments: a “responsive” segment in which 

product deterioration rates are high and an “efficient” segment with lower deterioration 

rates.   

An important result of this paper is that the decisions in each segment of the 

supply chain do not need to be coordinated to achieve supply chain optimization.  The 

loose linkage between the responsive chain segment and the efficient segment means that 

each can be “designed” without a major effect on the other, or the overall quality of the 

product.  By managing the process from picking through cooling, growers can maximize 

product value in the responsive segment of the chain by implementing optimal transfer 
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batch sizes.   Shipping decisions can be based on cost efficiency, subject to the constraint 

that the “cold chain” is maintained throughout.  The quantity shipped can, of course, be a 

much larger number than the transfer batch size, Q, in the responsive segment. 

Although we have specifically modeled the supply chain for melons and corn, we 

note that our model also applies with minor modification to other fresh produce products 

that mature in the field and reach their peak value at time of harvest.  Other products, 

notably flowers and seafood, have time-value patterns in the supply chain that are similar 

to melons and so our general results about supply chain strategy also apply to these 

perishable products.  For perishable products whose loss in value cannot be stabilized, 

but continue to lose value at an exponential (or linear) rate, the model we develop for the 

responsive segment of the chain can be used for supply chain optimization. 

 This study introduces the concept of the marginal cost of time for a product as a 

tool to analyze supply chain strategy.  We have begun to explore extensions of this 

concept to other product classes with different cost/time profiles.  For example, other 

types of fresh produce, such as tomatoes and bananas, are often picked before maturity 

and allowed to ripen to their peak quality (and value) post-harvest.  Designing a supply 

chain for this type of product poses additional interesting questions about the timing of 

production (or harvesting), managing the time interval while the product ripens to its 

peak value, and preserving the product value throughout the rest of the chain.  The 

development of a supply chain strategy for such products with more complex time-value 

profiles is an interesting future research topic. 
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Appendix 1:  Minimizing ( , )TC Q p  and a Lower Bound on Optimal Value of Q  
 
Proposition 1.1: For a given picking rate p (>0), the function ( , )TC Q p  :  
 

(1) is unimodal in Q;  

(2) has a unique minimum /Q p

j r

p K pQ e
V

α

α τ τ α
 

= − −  
 

. 

 
Proof: First observe that the cost expression 

( ) ( )( )/( , ) 1/ / 1 Q p
j rTC Q p Q K p V e ατ τ α − = − −  is not necessarily convex in Q  because 

it is the sum of a convex function K/Q and an expression that is concave decreasing in Q.  
To find a local minimum for this function, we take 
 

( ) ( )( ) ( )2 / /( , ) 1/ / 1 /Q p Q p
j r j r

TC Q p Q K p V e V Q e
Q

α ατ τ α τ τ− −∂  = − − − − ∂
.   

Setting ( , )TC Q p
Q

∂
∂

=0, we find that 

  /Q p

j r

p K pQ e
V

α

α τ τ α
 

= − −  
 

 .       (A1) 

 
However, the second partial derivative with respect to Q is not necessarily non-negative:  
 

2
/ / /

2 3 2

2( , ) 2 j r j rQ p Q p Q p
j r

V VTC Q p K Q Ve e e
Q Q Q pQ

α α ατ τ τ τ α
τ τ − − − ∂  = − + +  ∂  

                  (A2)                 

 
can take on negative values for some (rare) combinations of Q and K.    
 
Although not necessarily convex, ( , )TC Q p  is unimodal. To show this, we let Q = Q* 
denote the solution to (A1) and show that Q* is also the global minimum of ( , )TC Q p .  
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We observe that (A1) ⇒   ( )* */ /1j r Q p Q p
j r

Vp
K e VQeα ατ τ

τ τ
α

− −= − − , and substituting for K  

in (A2), we have  

( ) ( )
* * *

2
/ / /

3 22 ** *
*

2( , ) 2 j r j rQ p Q p Q p
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Q Q

V VTC Q p VQe e e
Q pQQ Q

α α ατ τ τ τ α
τ τ − − −
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 ∂   = − + +   ∂
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  =
* /

*
j r Q pV

e
pQ

ατ τ α − >0. 

 

Therefore, when ( , )TC Q p
Q

∂
∂

=0, the second partial derivative is positive, and we conclude 

that the first partial derivative changes sign at most once; the solution to (A1) is a global 
minimum.   
 
Deriving a Lower Bound for the Optimal Value of Q 
 
Proposition 1.2:  When /p Qα <<1, we have the following lower bound on Q*, the 

value of Q that minimizes ( , )TC Q p . * 2

j r

pKQ
Vατ τ

≥ . 

 

Proof:  From (A1), 
** /Q p

j r

p K pQ e
V

α

α τ τ α
 

= − −  
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or 
*

*
/1 1Q p

j r

Q Ke
p p V

αα α
τ τ

− 
+ = − 

 
. 

Replacing 
* /Q pe α− by its infinite series expansion and substituting gives the following: 

 

( ) ( ) ( ) ( )
2 32 3 4 5* * * *
2 3

2 2 1 1 ...
3 4 15j r

pKQ Q Q Q
V p p p

α α α
ατ τ
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When */p Qα <<1, the terms in the expansion diminish rapidly and we have that 
 

* 2

j r

pKQ
Vατ τ

≥ . 

 
Appendix 2 
 
Proposition 2.1: For fixed Q, ( , )TC Q p is convex with respect to p.   
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Proof:  Taking partial derivatives, we have 
 

( )/ /( , ) 1j r j rQ p Q pV VTC Q p e e
p Q p

α ατ τ τ τ
α

− −∂
= − − +

∂
 

and ( )
2

/
2 3

( , ) j r Q pV QTC Q p e
p p

ατ τ α −∂
=

∂
≥ 0.  

Therefore, ( , )TC Q p  is convex in p.  
 
Proposition 2.2:  For fixed Q, ( , )TC Q p  is non-increasing in p and

,
lim ( , ) 0

p Q
TC Q p

→∞
= . 

 

Proof: Setting ( , )TC Q p
p

∂
∂

=0 and solving for p yields the following:  

( )
/

/1

Q p

Q p

ep Q
e

α

α
α

−

−
=

−
.         (A3) 

Let /Q p xα = , then (A3) can be rewritten as 1xx e= − , which has a unique solution, 
0x =  and  no finite value of p satisfies expression (A3).  Given the convexity of 

( , )TC Q p , this implies that ( , )TC Q p  is non-increasing in p and tends to 0 as ,Q p ↑ ∞ . 
 
 


