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Decision Support for Lead Time and Demand Variation Reduction 

 

Abstract 

Companies undertaking operations improvement in supply chains face many 

alternatives. This work seeks to assist practitioners to prioritize improvement actions 

by developing analytical expressions for the marginal values of three parameters-- (i) 

lead time mean, (ii) lead time variance, and (iii) demand variance– which measure the 

marginal cost of an incremental change in a parameter.  The relative effectiveness of 

reducing the lead time mean versus lead time variance is captured by the ratio ofthe 

marginal value of lead time mean to the marginal value of lead time variance. We find 

that the value of this ratio strongly depends on whether the lead time mean and 

variance are independent or correlated. We illustrate the application of the results with 

a numerical example from an industrial setting. These insights can help managers 

make tradeoffs among investment decisions to modify demand and supply 

characteristics in their supply chain, e.g., by switching suppliers, factory layout, or 

investing in information systems. 
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1 Introduction 

Global competition creates a need for firms to collaborate with supply chain partners 

as well as leverage their performance by reducing demand variability(e.g., Lee et al. 

[1]; Lee et al. [2]) and supply variability (e.g., Fu and Piplani [3]; Lim [4]). Supply 

chain research has proposed a variety of models for potential supply chain 

improvements (Ganeshan et al. [5]; Swaminathan and Tayur [6]; Flynn et al. [7]). 

However, these models have limitations that restrict them from being fully exploited 

by practitioners.  
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The first limitation of existing models is that they target an optimal solution subject to 

a given set of supply and demand parameters (Silver [8]). However, in practice 

managers can often improve supply chain performance by changing these parameters. 

For instance, firms may be able to determine the cost and benefit of switching or 

consolidating suppliers, new market development, in-house capacity investment, or 

global outsourcing. These initiatives can result in significant changes to lead time as 

well as demand and supply variability. An analytical framework is needed for firms to 

understand the systematic influence of changed parameters and, consequently, to 

make better decisions on how to invest in and adapt to changing supply chain settings. 

 

Second, given limited resources, firms must often choose among alternative 

investment decisions, e.g., between focusing on reducing demand variance, lead times, 

or lead time varoamce (Smith and Lockamy [9]). These alternatives, such as lead time 

mean and variance, are often correlated, and this makes the tradeoff decision more 

complicated because the evaluation of only one improvement at a time is insufficient. 

For example, Ryu and Lee [10] and Hayya et al. [11] use exponentially distributed 

lead times for which means and variances cannot be changed independently. 

Furthermore our observations from industry suggest that the relationship between lead 

time mean and variance exists in more general settings. The following figure shows 

the predicted lead times and standard deviation of the actual lead times of 7653 orders 

placed by a major steel distributor on 22 domestic and international suppliers during a 

one year period.  
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Figure 1: Correlation between lead time mean and variation 

Each bubble in Figure 1 represents a particular supplier and a particular predicted lead 

time (horizontal axis). The number of orders is indicated by bubble size, and the 

standard deviation of the actual lead times is indicated on the vertical axis. The 

median coefficient of variation (the standard deviation divided by the predicted lead 

time) is 0.30. More than 60% of orders are in categories with coefficient of variation 

within the range 0.2-0.4.  The figure illustrates positive correlation between the 

standard deviation of lead time and expected lead time, both overall, and for a given 

supplier. As some products are sourced from multiple suppliers, the figure suggests 

that assuming one can adjust the lead time mean and variance separately may not 

always be reasonable.  A switch to a supplier with shorter lead time may reduce lead 

time variance. For other inventory improvements, such as removing outliers, 

information sharing or publicizing supplier performance, the mean and variance of the 

lead time may be reduced simultaneously. 

 

To bridge these gaps between existing models and practice, this paper aims to help 

firms determine how to allocate investment to reduce demand and supply variation. 

The study analyzes the marginal effect on cost of reductions in (i) lead time mean, (ii) 

lead time vvariance, and (iii) demand variance, in cases where the lead time mean and 

variance are either independent or correlated through a functional relationship. We 

find the results in the correlated case to be quite different from those in the 

independent case.  
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Our study is motivated by the supply chain concerns of a supplier of components in 

the truck and automotive industry. To meet the demand of its US customers, the firm 

supplies on a JIT basis from a distribution center in the Southeastern US, but sources 

components domestically, from Mexico and from offshore. Consequently, the 

component supply chain faces significant variability in lead time mean and lead time 

variance. It faces difficulties in choosing among various alternatives — using local 

production to reduce lead time and lead time variance, improving supplier relationship 

management to provide more stable quality and supply, or moving more production 

offshore. The firm does not have a good model for judging how to rank these 

alternatives and make trade-offs in its supply chain design. 

 

We develop a general analytical model incorporating demand and supply variation 

and validate our approach using industry data. To make the model more applicable in 

practice, we analyze the marginal effects in the situation where parameters may not be 

optimal -- firms can and do deviate from optimality for reasons related to the cost of 

implementation or the fulfillment of other, often strategic, business objectives. The 

results should assist organizations making practical decisions relating to changes in 

suppliers, factory layout, process improvement, and information systems investment, 

thereby improving supply chain management performance.  

 

The remainder of the paper is structured as follows. First, we review the literature on 

demand variation, supply variation, and comparisons of the effects of the two types of 

variation. We then present our research model and assumptions for a general supply 

chain with both demand and supply variation. This is followed by an analysis of the 

total inventory cost and marginal values of changing demand variation and supply 

variation patterns. Based on the analytical results, we provide a numerical example 

using operations data from a truck component manufacturer. The paper concludes by 

discussing the findings, limitations, directions for future research, and implications for 

both research and practice.  
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2 Literature Review 

Supply chain improvement alternatives can be classified into three categories: 

reducing demand variability (e.g., Lee et al. [1]), reducing supply variability (e.g., 

Zhang et al. [12]; Song et al. [13]; Qi and Shen [14]) and, reducing demand and 

supply variability simultaneously (e.g., Gerchak and Parlar [15]; Das [16]). Existing 

literature provides a foundation for our development of a general model for the 

analysis of the cost impacts of these categories of variation.  

 

The research on demand variability mainly deals with mechanisms to reduce it and an 

evaluation of the benefits of such solutions. According to Lee et al. [1], demand 

variability can be moderated through the involvement of point-of-sale (POS) systems, 

third party logistics (3PL), and other forms of sharing demand information. Wu et al. 

[17] considered the incentives for firms to share their demand information. Hosoda 

and Disney [18] studied the setting where only delayed demand information is 

available and show that different levels of the supply chain benefit differently from 

shorter time delays. These results indicate the potential benefits of methods to reduce 

demand variation.  

 

Supply uncertainty has long been identified as a fundamental factor influencing 

inventory decisions. Research has focused on inventory models with stochastic lead 

times (Bashyam and Fu [19], Bookbinder and Cakanyildirim [20]). In addition to 

these works, which are foundational to our current paper, other studies have focused 

on methods to reduce supply variability, such as order splitting - the partitioning of an 

order between two or more vendors (Hayya et al. [21]).  

 

Two concerns emerge in reducing supply variability: one focuses on reducing the 

length of the supply lead time while the other focuses on reducing the variance of the 

supply lead time. Focusing on reducing average supply lead time, Blumenfeld et al. 
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[12] developed a queuing model to analyze how manufacturing response time affects 

the inventory required at retailers. Fisher et al. [22] considered the problem of 

determining retailer replenishment order quantities to minimize the total cost of lost 

sales, back orders, and obsolete inventory. The results can be used to quantify the 

benefit of lead time reduction and thus select the best replenishment contract. 

Blackburn [23] assessed the effect on cost of both increased and decreased 

(deterministic) lead time. Recently, Garcia et al. [24] proposed a method for the online 

identification of lead times based on a multi-model scheme. Chandra and Grabis [25] 

consider the trade-off between benefits of lead-time reduction and increases in 

procurement cost. On the other hand, research dealing with the effects of lead time 

variance includes Song et al. [13] which demonstrates that ignoring lead time 

variability can be costly, but relatively simple heuristics that include lead time 

variance perform quite well. Gerchak and Parlar [15] considered the joint 

optimization of lead time vvariance, lot size and reorder point in continuous review 

inventory models. Wang and Hill [26] investigated the effects of reducing lead time 

variance on safety stock when lead time is gamma distributed. 

 

Lastly, several studies compare the relative importance of demand and supply 

variability. Paknejad et al. [27], observing the dedication of Japanese manufacturers to 

establishing long-term partnerships with their suppliers in order to reduce lead time 

variance, concluded that lead time variance was more costly than demand variance. 

Vinson [28] observed changes in optimum safety stock and inventory costs using 

different combinations of stockout cost, demand variance, lead time mean, and v lead 

time variance. He found lead time variance to be more important than either the lead 

time mean or the demand variance in explaining inventory cost behavior. However, 

Das [16] indicated that cost is more sensitive to lead time mean than it is to lead time 

variance. This apparent contradiction stems from the different inventory models and 

assumptions employed. More recently, Chopra et al. [29] indicated that there exists a 

threshold for service level, with the impacts of lead time variance and lead time mean 

differing above and below the threshold. According to He et al. [30], when demand 
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rate is constant, it is the variance and not the mean of lead time that affects the total 

relevant cost in a stochastic lead time model. 

 

The existing literature lacks an analysis of the marginal effects of simultaneous 

reductions in lead time mean, lead time variance, and demand variance in one general 

inventory system. This paper seeks to bridge this gap and help firms determine the 

best place to invest efforts in changing demand and supply parameters in their supply 

chain setting. We consider the non-optimal setting to provide a more generally 

applicable method for practical methods of inventory system improvement. 

Furthermore, the existing literature does not consider the situation when lead time 

mean and variance are explicitly correlated. The research on correlated lead time 

mean and variance is restricted to models in which lead time is exponentially 

distributed, e.g. Ryu et al. [10] and Hayya et al. [11]. Thus, they are not able to 

compare the correlated case with the case when the mean and variance are 

independent, and exponentially distributed lead time is only a special case of 

correlated lead time mean and variance. Here we explicitly compare the marginal 

values of lead time mean and lead time variance (i.e., the first derivatives of inventory 

cost with respect to lead time mean and variance) in the case when the mean and 

variance are correlated.  

 

3 Model 

We construct a model for a single product with both demand and supply variation.  

Demand per unit time is independent and identically distributed with mean D  and 

variance 2

D . The inventory system is managed by a conventional reorder 

quantity/reorder point (Q, r) policy—that is, when the inventory position (inventory 

on hand + inventory on order) falls below a level r, an order of size Q is released to 

the supplier. For organizations checking their inventory position regularly, with a 

short review period, their policy approximates that of a continuous (Q, r) policy. 

When the firm places an order, it receives products after a lead time L, which is a 
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random variable with mean L  and variance 2

L . Finally, we specify that unfilled 

customer orders are backlogged, with each generating a one-time backlog cost 

dependent on the quantity ordered (but not the backlog period). 

 

We evaluate the performance of the inventory system using total annual expected cost. 

We assume that demand over the lead time L denoted by X has mean X  and 

variance 2

X . The reorder point r is set equal to XX k   (mean + k standard 

deviations of demand during the lead time) for each product. Hereafter the inventory 

policy is denoted by (Q, k).  For greater generality we assume that neither Q nor k is 

chosen optimally and that the firm maintains a consistent inventory policy (constant k) 

as L is changed (referring to change of either mean or variance). Product quality and 

productivity are assumed to be invariant with changes in lead time L. Additional 

notation for the model is introduced below: 

A = Fixed cost component of each order; 

D = Average annual demand;      

h = Annual inventory carrying charge/unit; 

B = Backorder cost/unit. 

The expected quantity short during a lead time for reorder point level XX k   is 

σXG(k) where   duufkukG
k

)()( 


  refers to the unit linear loss integral, and f(u) 

refers to the distribution density function of 
X

XX




 (Silver et al. [31]). We restrict 

our discussion to the set of distributions of the demand over lead time X, such that G(k) 

is not a function of the demand and lead time parameters. For example, X can be 

normally distributed (Silver and Bischak [32]). 

 

Assuming that the order quantity Q has been selected, the expected annual total cost 

of a (Q, k) inventory policy is (Silver et al. [31]): 
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The total cost function is the sum of the annual ordering cost, the annual holding cost 

of cycle stock, safety stock, as well as the expected annual cost of backorders. Two 

terms in the TC expression represent the costs of a deterministic EOQ problem for the 

order quantity Q, viz. 
2

Qh

Q

AD
 . The remaining terms in (2) are the increase over the 

EOQ cost due to demand and supply variation. Then the decision of choosing the 

value of k can be viewed as a tradeoff between expected inventory holding and 

backorder costs (Blackburn [23]): 

.)]([ XkBG
Q

D
kh                                    (2) 

4 Analysis 

In this section, we develop expressions for the marginal values of three parameters: 

demand variance, lead time mean, and lead time variance, as well as relationships 

between these marginal values. We consider incentives for the firm to change these 

parameters. Further, we analyze the case in which lead time mean and variance are 

correlated and show how the result differs from the case in which lead time and 

variance are independent. 

 

4.1 Independent lead time mean and variance 

To show how total inventory costs vary with changes in demand variance, lead time 

mean and lead time variance in the case of independent lead time mean and variance, 

we establish the marginal values from the partial derivatives of TC with respect to the 

variance of demand 2

D  (MVD), lead time mean L  (MML) and variance of lead 

time 2

L  (MVL). We express X  in (2) using the variables and assumptions defined 

earlier (Silver et al. [31]): 

.
222

LDDLX                     (3) 
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One may compare the ratios of the marginal values: 
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Expression (6) indicates that 
2

2
2

D

D
D




   (the coefficient of variation of demand) can 

be used to determine whether total cost is more sensitive to changes in lead time mean 

or lead time variance. Above, we show that 2

D  is a useful indicator in both optimal 

(the result of Das [16]) and non-optimal conditions. However, note that (6) does not 

apply when there are simultaneous changes in the parameters – as may well apply for 

various improvement initiatives.   

 

It is clear from expressions (1) and (3) that both lead time mean and lead time 

variance influence the total cost only via X . In (3), the coefficient of the lead time 

mean is 
2

D  and the coefficient of the lead time variance is
2

D . Thus we can use 

222
)()( DLDL    ( L denotes the change in lead time mean and 2

L denotes 

the change in lead time variance) to measure the marginal change in performance of 

any alternative which increases or decreases the two variables simultaneously, but in 

different degrees.  
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Incentive to Change We now examine some additional properties of the marginal 

values. Furthermore, we extend the incentives to improve lead time performance 

given by Blackburn [23] to the case of stochastic lead time. 

 

The following proposition shows the effects of the changes of demand variance, lead 

time mean and lead time variance on the marginal values of the three, respectively. 

 

Proposition 1: The marginal value of demand variance (MVD) is a convex, 

decreasing function of 2

D , the marginal value of lead time mean (MML) is a convex, 

decreasing function of L , and the marginal value of lead time variance (MVL) is a 

convex, decreasing function of 2

L . 

 

All the proofs are provided in the Appendix. For a manufacturer undertaking process 

improvements to reduce lead time mean, demand variance or lead time variance, 

Proposition 1 implies that there are increasing marginal cost savings from reductions 

of all three variables, creating greater incentives for further reductions. In other words, 

greater inventory savings can be achieved for cases with faster response, less variable 

demand and a more reliable supply process.   

 

We next observe that these marginal values are minimized at the optimal value of k. 

Specifically, we make the following proposition: 

 

Proposition 2:  Let k* be the value of k at which TC(k) is minimized, then k* is the 

value of k at which the marginal value of demand variance (MVD), the marginal 

value of lead time mean (MML) and the marginal value of lead time variance (MVL) 

are simultaneously minimized. 

 

Proposition 2 implies that, compared with a firm operating optimally, a firm managing 
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inventories non-optimally gains more benefit from reducing lead time, demand 

variance and lead time variance. Furthermore, because MVD, MML and MVL are all 

convex in k, larger deviations from optimality imply larger marginal values for the 

changes. This is not, of course, a benefit of non-optimal behavior; it only suggests that 

organizations not managing inventories optimally have a greater incentive to reduce 

their lead time mean, lead time variance and demand variance. 

 

Note that in our model, the marginal value of lead time is minimized at k*. This result 

differs from that of Blackburn [23] who finds that with the assumption of constant 

lead time and normally distributed demand, the marginal value is minimized near, but 

not exactly at, k*. This difference arises since in the model of Blackburn [23] total 

cost includes the expected number of backorders outstanding. 

 

4.2 Correlated lead time mean and variance 

We now consider the case where lead time mean and variance change simultaneously.  

Industry data on lead time show the ratio between lead time standard deviation and 

mean differing little between suppliers of similar products (Silver and Robb [33]). In 

such cases it would not be reasonable to calculate the marginal value of lead time 

mean and variance separately. In general, we assume that the mean and variance (the 

standard deviation to be precise) of lead time are correlated according to the following 

relationship: 

                 LL   where 0  and 0 .                  (7) 

We then substitute (7) into (3) to derive the marginal value of lead time mean (MML) 

and the marginal value of variance of lead time (MVL) in a manner similar to that in 

the previous section, viz.,  
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The marginal values include terms additional to those in (4) and (5). When α is 

positive, these additional terms are positive, signaling the extra benefits a firm can 

gain. When the firm reduces the lead time mean, it simultaneously reduces lead time 

variance.  

 

The ratio of the marginal values is as follows, 

    

.22
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(10) 

This result is quite different from expression (6). When lead time mean and variance 

can be changed independently, the relative effect on cost depends only on the ratio of 

demand variance to demand mean. However, when the lead time mean and variance 

are correlated, the ratio becomes linear in α and is independent of β. Thus, β, which 

may be determined empirically by regressing lead time variance against the mean, has 

no bearing on the relative importance of the mean and variance. 

 

Now we consider the validity of Propositions 1 and 2 with correlated lead time mean 

and variance. Proposition 2 still holds, as )(k  is the only term containing k. 

Proposition 1 also holds, provided some constraints are placed on the value of α 

(which are sufficient). 

 

Proposition 3: (a) if ]
2

1
,0( , the marginal value of lead time mean (MML) is a 

convex, decreasing function of L ; (b) if ),
2

1
[  , the marginal value of lead time 

variation (MVL) is a convex, decreasing function of 2

L . 

 

When 
2

1
 , the first and second derivatives of both MML and MVL have the same 

sign as in the case in which lead time mean and variance are independent. For other 
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values of α, MML or MVL may not be monotone decreasing. Unlike the case in 

which lead time mean and variance are independent, the reduction in total cost may 

not increase with the reduction of lead time mean and variance. In fact, as Proposition 

4 shows below, critical points exist for lead time mean and variance at which the 

monotonicity of marginal values changes. 

 

Proposition 4: (a) For ]1,0(
 
and all 0L , the marginal value of lead time 

mean (MML) is a decreasing function of L ; For 0
 
or 1 , there exists a 

critical point *

L  at which the monotonicity of MML changes. 

(b) For 
4

1


 
and all 2

L , the marginal value of lead time variance (MVL) is a 

decreasing function of 2

L ; For 0  or )
4

1
,0( , there exists a critical point 

*2

L  at which the monotonicity of MVL changes. 

 

Proposition 4 implies that in the correlated case, evaluating the ‘incentive’ for firms 

seeking to improve their inventory performance by reducing the lead time mean or 

variance is a more complex function of lead time mean. Specifically, we have the 

monotonicity of marginal values as shown in Table 1. 

 

 Independent 
Correlated 

Value of   Below the critical point Above the critical point 

MML Decreasing 

0  Increasing Decreasing 

]1,0(  Decreasing Decreasing 

1  Decreasing Increasing 

MVL Decreasing 

0  Increasing Decreasing 

)4/1,0(  Decreasing Increasing 

4/1
 

Decreasing Decreasing 

Table 1: Changes of monotonicity of marginal values 

One may expect decreasing returns at first when seeking to reduce the lead time mean 

if the variance is very sensitive to the change of mean (i.e., with large α). On the 
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other hand, firms seeking to reduce lead time variance may obtain decreasing returns 

at first if the variance is not very sensitive to the change of mean (with small α). 

However, as illustrated by Proposition 1, the incentive for further reductions still 

exists for the correlated case in the sense that increasing returns will always be 

observed when the mean or variance is small enough. When the mean and variance 

are negatively correlated, e.g., the supplier offers slower but more reliable 

performance (it is easier for the supplier to deliver on time if it promises a longer lead 

time), they should be mindful of decreasing marginal values and potentially negative 

marginal values (as seen in the numerical example below) when the mean or variance 

is small. 

 

5 Numerical Examples 

In this section, we use a numerical example to illustrate the above results in a practical 

situation. We consider the case of Springfield Manufacturing, the truck and 

automotive component supplier first described in Section 1. In sourcing their 

components both in North America and offshore, Springfield’s supply chain has both 

demand and lead time (supply) variability. Their main customer—an assembler of 

large over-the-road trucks—provides a general forecast of the overall level of 

component demand but requires JIT shipments of components of an amount equal to 

one or two days’ demand. Springfield must make to stock as these components are 

manufactured in Mexico and shipped to a distribution site in the Southeastern US.  

 

We examine the effect of lead time on the cost of managing the inventory for one of 

their highest demand truck components. The cost of production and distribution for 

the component was $25/unit. Daily demand for the item was about 90 units with a 

standard deviation of 28 units (Weekly demand was 450 units with a standard 

deviation of 62.6). A normal distribution provided an adequate fit to demand for the 

component and no autocorrelation was found in historical data . Production order 

quantities (Q) equaled about 4 weeks demand or about 1800 units. The setup cost of a 
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production lot (A) was about $250, and the annual cost of carrying a unit in stock (h) 

was $3.75 (or about 15% of the cost of the unit). The penalty cost per unit for a 

backorder (B) was estimated to be $25. The sum of supply and production lead time 

(also approximately normally distributed) was about 30 days with a standard 

deviation of 0.3.  

 

In Table 2, we show the marginal values of lead time mean and lead time variation, 

for k from 1.9 to 2.7, obtained by substituting the Springfield data given above into 

equations (4) and (5). 

 

k MML MVL 

1.9 26.94 278.29 

2.0 25.83 266.91 

2.1 25.14 259.76 

2.2 24.78 255.98 

2.3 24.74 255.59 

2.4 24.86 256.89 

2.5 25.24 260.73 

2.6 25.77 266.26 

2.7 26.31 271.78 

Table 2: Marginal values in the independent case 

Taking one row from Table 2, we can calculate the ratio of marginal value of the lead 

time mean to that of lead time variance. For example, when k=1.9, we have

097.0
29.278

94.26
  which equates to 097.0)

90

28
()( 22 

D

D




 as in expression (6). 
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Figure 2: Total inventory cost for different values of k 

Figure 2 shows how the total inventory cost changes with respect to different k values 

(from 1.9 to 2.7). As we can see, cost is minimized with k near 2.3 and, a point at 

which MML and MVL are also minimized (from Table 2). Thus, an equivalent lead 

time reduction would yield greater benefit in a firm managing its inventory with 

non-optimal k than one managing its inventory optimally. 

 

Next we examine the case when lead time mean and variance are correlated through 

the relationship  LSLS  . We fix α at 1 and 0.5 and select β so that the original 

lead time mean and variance satisfy the correlation functions 01.0
30

3.0
1







L

L  

and 055.0
30

3.0
5.0
 . Table 3 is then obtained using equations (8) and (9). 

 

k 
α=1, β=0.01 α=0.5, β=0.055 

MML MVL MML MVL 

1.9 28.61 4767.51 27.78 9182.54 

2.0 27.44 4572.58 26.64 8807.09 

2.1 26.70 4450.05 25.93 8571.09 

2.2 26.31 4385.44 25.55 8446.65 

2.3 26.27 4378.76 25.51 8433.78 

2.4 26.41 4401.04 25.64 8476.69 

2.5 26.80 4466.76 26.02 8603.27 

2.6 27.37 4561.44 26.58 8785.63 

8050

8100

8150

8200

8250

8300

8350

1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

TC
 

k 
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2.7 27.94 4656.12 27.13 8968.00 

Table 3: Marginal values in the correlated case 

When α is positive, for a given k  the marginal value of lead time mean or variance 

is greater than is the case in Table 2. Again setting k equal to 1.9, the ratio of MML 

with respect to MVL is 28.61/4767.51=0.006 and 27.78/9182.54 =0.003, for α=1 

and α=0.5, respectively. The ratios are proportional to α and could also be 

calculated using expression (10), viz., 006.0
30

3.0
22

22


L

L




  and 003.0

30

3.0 2

 .

 

 

Finally, in Figure 3 we show that when lead time mean and variance are correlated the 

incentive for the firm to reduce lead time mean is a more complex function of lead 

time mean. Assuming that lead time mean and variance are correlated through α=-1, 

1 or 2 and β is chosen such that the original lead time mean and variance satisfy 

 LL   as above, we consider the marginal value of the mean reduction of the lead 

time.  

  

Figure 3: Marginal value of lead time mean for different values of α 

The results are consistent with Proposition 4. When lead time mean and variance are 

correlated, the monotonicity of the marginal values depends on the value of α.  

When ]1,0(  we still have increasing marginal value. When 0 , we have 

increasing marginal value at first then decreasing marginal value after a critical point. 

This indicates that the firm should be aware of the changes in monotonicity of the 
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marginal value when deciding whether to accept a proposal from its supplier for a 

more stable but longer lead time. When 1 , we have decreasing marginal value at 

first then and increasing marginal value after a critical point.  

 

6 Conclusions and Discussion 

This paper considers the marginal values of demand variance, lead time mean, and 

lead time variance. We constructed a general model dealing with both demand and 

supply variability. The model does not require an optimized inventory policy.  We 

find that benefits from improving demand or supply processes are greater for firms 

with non-optimal inventory policies (in practice, this may refer to firms that manage 

their inventories without standard policies, or by ad hoc decision making) than for 

firms that manage their inventories optimally.  

 

We compare the case in which lead time mean and variance are independent with the 

case in which they are correlated through a functional relationship. We find that in the 

independent case, the ratio of the marginal values of lead time mean and lead time 

variance is determined by the coefficient of variation of demand. This is because the 

impact of lead time mean and variance on the total inventory cost is determined by the 

demand during the lead time. On the other hand, when lead time mean and variance 

are correlated, the difference between the marginal values of the two can no longer be 

determined by the coefficient of variation of demand, but is a function of the 

coefficient of variation of the lead time. Furthermore, the benefit from a reduction in 

lead time mean or variance is more complex. Firms cannot expect increasing returns 

from reductions in lead time mean or lead time variance under all conditions. They 

should be aware of the potential for decreasing or even negative returns (in the case 

where the two are negatively correlated). 

 

The results of this paper can help decision makers and managers with limited 

resources choose among a number of inventory improvement alternatives and 
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determine where to invest their resources, even when they face poorly managed 

inventory or no standard inventory policy.  Employing data on the demand or lead 

time distributions, the results concerning marginal values provide managers with 

guidance about the effects of changing demand variation, lead time mean, and lead 

time variation. At the same time, the incentive to change reminds managers of the 

importance of inventory management improvement, especially for firms that have 

paid little attention to their inventory policies - since they stand to gain even more.   

 

We contend that many assumptions, such as requiring an optimal inventory policy, 

may not be essential for modeling purposes. As non-optimal policies are common in 

practice (e.g., the cases mentioned by Blackburn, [23]), it may prove useful to relax 

the optimality assumptions and to compare the differences. The current paper has 

made a step in this direction. 

 

The paper has some limitations that may warrant extensions. For example, we assume 

that lead time mean and variance are correlated through a deterministic equation, 

whereas in practice firms may be faced with various discrete improvement plans 

reflected by a different α and β, in which case our continuous model may not be a 

good fit. We plan to test this issue in future research. 
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Appendix 

Proof of Proposition 1: 
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Since the first and second partial derivatives of MVD, MML and MVL with respect to

2

D , L  and 2

L  are, respectively, negative and positive, the convex and decreasing 

characters of the functions are established. Q.E.D. 

 

Proof of Proposition 2:   
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Therefore, MVD is minimized at k*. For MML and MVL, the proof is identical. Q.E.D. 

 

Proof of Proposition 3: 
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Q.E.D.

 

 

Proof of Proposition 4: 

 (a) Consider the first derivative of MMLE to calculate the critical point for L : 
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After simplification, we have  
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For 1 , define 2212

DL   . Then one can view the above as a quadratic 

function of   with 2
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 D  and discriminant 

4422 )1(16)1(64 DD   , where 21,  are the two real roots of the function. 
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Then, if )1,0( , the function has no positive roots and 0




L
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 for all 0L . 

If 0
 

or 1 , the function has one positive root *  ( *

L  accordingly). Then 

L

MML




 changes sign at that point.  

 

(b) The proof is similar, with the simplified equation: 
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Then we can define 2/112/12 )(' DL     and obtain the required result. Q.E.D. 


