
Investigating Operational Predictors of Future
Financial Distress in the US Airline Industry

Yasin Alan, Michael A. Lapr�e*
Owen Graduate School of Management, Vanderbilt University, 401 21st Avenue South, Nashville, Tennessee 37203, USA,

yasin.alan@owen.vanderbilt.edu, michael.lapre@owen.vanderbilt.edu

W e investigate the predictive power of operational performance on future financial distress in the context of the US
airline industry. We focus on four areas of operational performance: revenue management, operational efficiency,

service quality, and operational complexity. Using quarterly data from 1988 through 2013, we find that airlines that have
inferior revenue management, lower aircraft utilization, and higher operational complexity face higher future financial dis-
tress. Interestingly, average service quality, measured by on-time performance and mishandled baggage rate, is not associ-
ated with future financial distress, but extreme service failures, measured by long delays (over two hours) and passenger
complaints with the government regarding mishandled bags, have a positive association with future financial distress.
Using the association between current operational performance and future financial distress, we build a model to predict
financial distress. Out-of-sample analyses show that our forecasting model outperforms a financial ratio-based benchmark
model up-to eight quarters before the measurement of financial distress. Our findings inform firms, regulators, and inves-
tors by demonstrating that operational performance metrics contain useful information to predict future financial distress.
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1. Introduction

Financial distress predictions provide early warning
signals regarding a firm’s future financial health.
Early warning signals are useful for firms as well as
their outside stakeholders (e.g., regulators and inves-
tors), especially in turbulent industries characterized
by occasional bankruptcies and large financial losses.
The US airline industry is one such industry. US airli-
nes lost nearly $60 billion since deregulation of the
industry in 1978–2009 (Borenstein 2011). Since 1978,
more than 100 carriers have filed for bankruptcy, and
many airlines have ceased to exist including well-
known airlines such as Pan Am and TWA (Gritta
et al. 2008). Given the importance of air transporta-
tion and the data availability, scholars have studied
airline bankruptcies and airlines’ restructuring efforts
while operating under bankruptcy protection. How-
ever, scholars have largely overlooked whether
operational performance can predict future financial
distress.
Airline financial distress studies build on the

broader bankruptcy literature. In the bankruptcy lit-
erature, Altman’s (1968) classic paper introduced
the use of financial ratios to predict corporate bank-
ruptcy. Other scholars have advanced the field of
bankruptcy prediction by (i) developing duration
models instead of static models (Shumway 2001),
(ii) examining industry effects (Chava and Jarrow

2004) and estimating industry-specific models, e.g.,
Becchetti and Sierra (2003) for manufacturers and
Lu et al. (2015) for airlines, and (iii) expanding the
phenomenon of binary bankruptcy classification to
a more nuanced phenomenon of financial distress
(Bharath and Shumway 2008). The bankruptcy pre-
diction literature has often found that firms are less
likely to go bankrupt if firms have (i) high sales to
total assets, (ii) high retained earnings to total assets
as well as high earnings before interest and taxes to
total assets, (iii) high working capital to total assets,
and (iv) high book value (or market value) of
equity to total liabilities (Altman and Hotchkiss
2010).
Airline financial distress studies have proposed

other financial ratios and industry-specific metrics to
better capture operational and financial dynamics in
the airline industry. For instance, Chow et al. (1991)
demonstrate that high interest expense to total liabili-
ties and low operating revenues to total miles flown
are associated with higher bankruptcy risk. Subse-
quent research has established associations between
some operational factors, such as fleet and labor pro-
ductivity, and distress (e.g., Gudmundsson 2002,
2004). See Gritta et al. (2008) for a review of airline
financial distress studies. These studies identify con-
temporaneous associations between an airline’s oper-
ational performance and binary distress status (e.g.,
bankrupt vs. non-bankrupt), yet they do not perform
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out-of-sample forecasts to test the external validity of
their findings. Hence, it is unclear whether such asso-
ciations can be used to predict future financial dis-
tress. Moreover, binary classification models may not
distinguish between healthy airlines and airlines on
the verge of bankruptcy. Another stream of literature
focuses on how airline bankruptcies affect pricing,
capacity, and service quality. Airlines under bank-
ruptcy protection offer lower prices (Borenstein and
Rose 1995), reduce capacity, and downsize flight net-
works (Ciliberto and Schenone 2012). During restruc-
turing efforts, airlines improve on-time performance
and reduce mishandled baggage rates (Phillips and
Sertsios 2013). Studies of bankruptcy episodes gener-
ate insights regarding firms’ operations under bank-
ruptcy protection, but do not reveal whether current
operational performance can predict future financial
distress.
More accurate financial predictions enable inves-

tors to make better investment decisions (Altman and
Hotchkiss 2010). Similarly, such predictions allow
regulators to better monitor the overall health of an
industry. For instance, the Department of Transporta-
tion (DOT) monitors the financial strength of US airli-
nes, using the Pilarski score model (Pilarski and Dinh
1999), which is a variant of the Altman’s model (Gritta
et al. 2008). However, the Pilarski score model relies
solely on financial ratios. Hence, it is of interest to aca-
demics, practitioners, and regulators to test whether
operational variables can be used to predict future
financial distress. Accordingly, our main objective in
this study is to examine whether current operational
performance can predict future financial distress in
the US airline industry. We identify four areas of
operational performance: revenue management, oper-
ational efficiency, service quality, and operational
complexity. We study the predictive power of all four
areas on future financial distress using quarterly data
from 1988 through 2013.
In a preliminary analysis, we focus on airline bank-

ruptcy as an extreme form of financial distress.
Extending existing binary bankruptcy classification
models, we show that augmenting financial ratios
with operational variables improves model fit. Subse-
quently, we focus on a more nuanced phenomenon of
financial distress and use stock price data to measure
financial distress with Bharath and Shumway’s (2008)
na€ıve distance to default (NDD). Linking operational
performance to future NDD, we find that airlines that
have inferior revenue management, lower aircraft uti-
lization, and higher operational complexity face
higher future financial distress. Interestingly, service
quality is only associated with future financial dis-
tress if we consider extreme service failures. Average
service quality, measured by on-time performance
and mishandled baggage rate, is not associated with

future financial distress. However, extreme service
failures, measured by long delays (over two hours)
and passenger complaints with the government
regarding mishandled bags, are associated with
future financial distress. Robustness tests show that
these findings are not driven by the differences
between legacy carriers (e.g., American, Delta) and
low-cost carriers (e.g., JetBlue, Southwest) or the
superior operational and financial performance of
Southwest. Lastly, we use the above associations to
perform out-of-sample forecasts of future financial
distress. We show that our operational performance-
based forecasting model outperforms a financial
ratio-based benchmark model up-to eight quarters
before the measurement of financial distress.
Joglekar et al. (2016, p. 1980) state that “the focus

on context-rich industry data offers new and more
nuanced theories of operations, and also strengthens
the linkages between operations and sister disci-
plines like marketing and finance.” As such, our
paper contributes to the growing body of empirical
literature that links operational performance to finan-
cial performance in different industries. For instance,
in the pharmaceutical industry, failure of new drug
development projects in the clinical trial stage
decreases firm value (Girotra et al. 2007). In the air-
line industry, the stock market punishes long delays
and flight cancellations (Ramdas et al. 2013). In the
retail industry, inventory productivity predicts
future stock returns (Alan et al. 2014). Despite the
empirical evidence linking operational performance
to stock performance, empirical association between
operational performance and future financial distress
is lacking.
To delineate our contribution, Table 1 compares

our study with two research streams. Financial dis-
tress prediction studies in the broader finance litera-
ture (Panel A in Table 1) typically perform analyses in
three steps. First, they propose potential predictors of
future financial distress. Second, they perform regres-
sion analyses to test associations between the lagged
values of those predictors and financial distress.
Third, they compare the forecast accuracy of their
models with a benchmark model (e.g., Altman 1968)
through out-of-sample forecasting. These studies typ-
ically analyze large samples with firms from different
industries. They do not test whether operational per-
formance can predict future financial distress,
because the determinants of operational success vary
considerably across industries (e.g., inventory perfor-
mance in the retail industry vs. new product develop-
ment capabilities in the pharmaceutical industry).
Some of the airline financial distress studies listed

in Panel B of Table 1 do pay attention to operational
performance. However, these studies typically test
associations between a small number of operational
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predictors and binary distress status (e.g., bankrupt
vs. non-bankrupt). More importantly, they deviate
from the three-step approach used in the broader
finance literature in two important ways. First, they
test contemporaneous associations between their pre-
dictors and financial distress. Hence, it is unclear
whether such associations can be used to predict
future financial distress. Second, as we discuss in sec-
tion 4.3, applying a binary classification model to a
small sample prevents these studies from comparing
the forecast accuracy of their models with a bench-
mark model through out-of-sample forecasting. Thus,
it is unclear whether these models can outperform a
benchmark model that does not use operational
predictors.
We contribute to the literature by combining the

three-step empirical approach used in the broader
financial distress literature with context rich industry
data and thereby demonstrating that all four areas of
operational performance contain information useful
to predict future financial distress in the US airline
industry. More specifically, we identify four areas of
operational performance, yielding a comprehensive
set of 11 potential operational predictors of future
financial distress. In addition, we overcome the limi-
tations of previous airline financial distress studies by
(i) using a continuous financial distress metric, (ii)
establishing associations between lagged values of
operational predictors and financial distress, and (iii)
showing the superior predictive power of our model
compared to a financial ratio-based benchmark model
with out-of-sample forecasting.
The study is organized as follows. In section 2,

we develop hypotheses associating operational

performance with future financial distress. Section 3
describes our data collection and variable construc-
tion. In section 4, we present a preliminary analysis of
airline bankruptcies as well as limitations of using
bankruptcy as the dependent variable. In section 5,
we overcome these limitations in our analysis of
financial distress. In section 6, we perform out-of-
sample forecasts of future financial distress. In section
7, we generate managerial insights by comparing and
contrasting two legacy carriers (i.e., American and
Delta) and two low-cost carriers (i.e., JetBlue and
Southwest). Lastly, in section 8, we close with a dis-
cussion of our contribution and questions for future
research.

2. Identifying Operational Predictors of
Financial Distress

In this section, we hypothesize associations between
four areas of operational performance –revenue man-
agement, operational efficiency, service quality, and
operational complexity– and financial distress. These
associations enable us to identify possible operational
predictors of financial distress in the context of the US
airline industry.

2.1. Revenue Management
The basic idea behind yield management is “selling
the right capacity to the right customers at the right
prices” (Smith et al. 1992, p. 8). Airlines have exten-
sively used yield management, also frequently
referred to as revenue management, to maximize rev-
enue given the fixed seat capacity of a plane (Bodea
and Ferguson 2014, Talluri and Van Ryzin 2005).

Table 1 Comparison of Our Study with the Financial Distress Literature

Financial distress
Lagged operational predictors

Benchmarking
metric (binary
or continuous?)

Revenue
management?

Operational
efficiency?

Service
quality?

Operational
complexity?

via out-of-sample
forecasting?

Panel A: General studies
Altman (1968) Binary No No No No No**
Shumway (2001) Binary No No No No Yes
Chava and Jarrow (2004) Binary No No No No Yes
Bharath and Shumway (2008) Both No No No No Yes
Panel B: Airline industry studies
Chow et al. (1991) Binary No* No No No No**
Borenstein and Rose (1995) Binary No* No No No No
Pilarski and Dinh (1999) Binary No No No No No**
Gudmundsson (2002) Binary No* No* No No* No
Gudmundsson (2004) Binary No* No* No No* No
Ciliberto and Schenone (2012) Binary No* No No No* No
Phillips and Sertsios (2013) Both No* No* No* No* No
Lu et al. (2015) Binary No No No No No
Our study Both Yes Yes Yes Yes Yes

Notes. *denotes that the paper uses an operational metric or multiple operational metrics to report a contemporaneous relation between this operational
dimension and financial distress but does not explore whether current operational performance is associated with future financial distress. **denotes that
the paper performs out-of-sample forecasting but does does not compare the forecast accuracy of its model with a benchmark model.
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Yield management systems typically comprise several
elements such as overbooking, capacity allocation,
and differential pricing (Metters et al. 2008). Airlines
engage in overbooking –i.e., selling more reservations
than seats available– to counter customer cancella-
tions and no-shows. American Airlines estimated that
15% of seats on sold-out flights would be empty with-
out overbooking (Smith et al. 1992). Low revenue pas-
sengers make reservations far in advance, whereas
high revenue passengers make reservations much clo-
ser to flight departure. Hence, airlines engage in
capacity allocation –reserving capacity for high rev-
enue passengers– by denying reservations to low rev-
enue passengers. Airlines charge different fares to
different customer segments using restrictions such
as number of days of advance purchase, ease of can-
cellation and refund policies, Saturday overnight
stays, etc.
Optimally determining overbooking, capacity allo-

cation, and differential pricing is very difficult. For-
mer CEO of American Airlines, Bob Crandall (Smith
et al. 1992, p. 31): “[Y]ield management is the single
most important technical development in transporta-
tion management since we entered the era of airline
deregulation in 1979. ... We estimate that yield man-
agement has generated $1.4 billion in incremental
revenue in the last three years alone. ... We expect
yield management to generate at least $500 million
annually for the foreseeable future.” Crandall’s esti-
mates imply that successful yield management has
become a necessary condition to turn an operating
profit. Indeed, by 1997 American estimated that yield
management generated almost $1 billion in incremen-
tal annual revenue, whereas 1997 was the only year in
American’s history with operating profit approaching
$1 billion (Cook 1998).
Airline industry practitioners use yield (unit rev-

enue) and load factor (the degree to which an airline
fills up planes with revenue paying passengers con-
trolling for both seats and miles flown) as proxies to
assess an airline’s revenue management capabilities.
For instance, Garvett and Hilton (1999, p. 181) state
that “good revenue maximizers seek to obtain the best
possible yields and load factors given the circum-
stance. Yet it is easy to get high yields by excessively
raising fares and limiting the availability of discounts
—and in the process ensuring nearly empty flights.
Similarly, it is easy to maximize load factors by giving
the product away. Neither strategy will lead to prof-
itability. There are plenty of examples of both prof-
itable and unprofitable low-load-factor airlines and
vice versa. The same is true for yields. The art is to
obtain both high load factors and high yields at the
same time.” Airlines with low yields and load factors
could incur operating losses, which in turn could
increase financial distress. Hence, using yield and

load factor as proxies for revenue management, we
test:

HYPOTHESIS 1. Successful revenue management is nega-
tively associated with future financial distress.

2.2. Operational Efficiency
Collier and Evans (2014, p. 55) define operational effi-
ciency as “the ability to provide goods and services
with minimum waste and maximum utilization of
resources.” Companies from different industries such
as Toyota Motor Corporation, Wal-Mart Stores Inc.,
and Southwest Airlines are considered best-in-class
because their successful business practices drive
operational efficiency, which in turn positively affects
financial performance (Alan et al. 2014 and references
therein).
We use fleet utilization and fuel efficiency as proxies

for an airline’s operational efficiency. Fleet utilization
assesses effective capacity of planes –the percent of
the time planes are used transporting passengers
between departure at the gate of origin and arrival at
the gate of destination. Higher fleet utilization allows
an airline to operate more flights with the same num-
ber of aircraft. So, higher fleet utilization reduces
investments in aircraft and at the same time increases
revenue generating opportunities per aircraft. Both
effects could reduce financial distress. Effective capa-
city is less than 100% because of (i) time spent turning
around planes at the gate in between flights, (ii) idle
time between the last flight of the day and the first
flight of the next day, (iii) maintenance, and (iv) flying
planes without passengers (to re-position planes).
Southwest became known in the industry for its fast
turnaround times keeping planes in the air where they
make money (Gittell 2003). In contrast, legacy airlines
–airlines serving inter-state routes at the time of
deregulation, such as American and Delta– operate
hub-and-spoke systems where planes arrive in banks
of flights. Planes wait to allow for all possible connec-
tions before departure, leading to complex flight
schedules (Atkinson et al. 2016). Thus, fleet utilization
is lower for legacy airlines.
Our second measure for operational efficiency is

fuel efficiency – the number of miles flown per gallon
of fuel. The International Council on Clean Transpor-
tation (ICCT) performs benchmarking studies to com-
pare fuel consumption across major US airlines. ICCT
ranks American as the least efficient US airline, but
also acknowledges that American has improved its
fuel efficiency in recent years by phasing out fuel inef-
ficient aircraft (e.g., Boeing 767-200 and MD-80) from
its fleet. ICCT’s findings indicate that Alaska Airlines
consistently outperforms the rest of the industry in
fuel efficiency and that there is a positive link between
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an airline’s fuel efficiency and profitability (Li et al.
2015). Hence, increasing fuel efficiency could boost
operating profitability, which in turn could reduce
financial distress. Using fleet utilization and fuel effi-
ciency as proxies for operational efficiency, we test:

HYPOTHESIS 2. Operational efficiency is negatively asso-
ciated with future financial distress.

2.3. Service Quality
Poor service quality can lead to immediate extra costs.
Whenever a service failure occurs, organizations
engage in service recovery efforts, which require
resources such as time spent by frontline employees
and compensation expenses. In addition to immediate
extra costs, there are also long-term, reputational con-
sequences of poor service quality. Heskett et al. (1997)
established a link between quality and profitability in
their service-profit-chain framework. High service
quality leads to customer satisfaction. Customer satis-
faction, in turn, leads to repeat purchase and profit-
ability. Conversely, poor service quality hurts repeat
purchase and profitability, which in turn could
increase financial distress.
In the airline industry, service quality is often mea-

sured by on-time performance and mishandled bag-
gage (Phillips and Sertsios 2013). Late arrivals might
misconnect, which could require costly re-booking of
passengers on other flights of the same airline or even
on flights of another airline. Tsikriktsis (2007) found
that on-time performance improved profitability.
Ramdas et al. (2013) estimated that the average cost
of a flight delay for a US airline is $220 per minute.
Mishandled bags need to be recovered. Airlines incur
costs locating mishandled bags and delivering recov-
ered bags to passengers. According to an industry
report, between 2007 and 2016, the total cost of
mishandled baggage for the airline industry was
$27 billion (SITA 2017). Hence, poor service quality
has a negative impact on financial performance.
Service failure severity affects satisfaction, trust,

commitment, and negative word-of-mouth (Weun
et al. 2004). Put differently, not all service failures are
equal. Service failures that are more severe will be
more harmful to the firm. Ramdas et al. (2013) investi-
gated the impact of service quality on stock returns.
The authors found that long delays (over two hours
delayed) reduce contemporaneous stock returns,
whereas late flights (over 15 minutes late) do not
affect stock returns; that is, financial markets show a
strong reaction to extreme service failures but not to
average service quality.
After the occurrence of a service failure, an airline

has an opportunity to engage in service recovery
(Heskett et al. 1997, Lapr�e 2011). For example, if a

passenger reports to the airline that she lost a bag, the
airline has a chance to apologize, locate the missing
bag, and deliver the bag to the owner. If customers
are extremely dissatisfied after service recovery, they
can engage in negative word-of-mouth. In the airline
industry, passengers who are extremely dissatisfied
have the option to file a complaint with DOT. DOT
publishes the rate of consumer complaints (i.e., com-
plaints per 100,000 passengers) against each major air-
line. Forbes (2008) found that consumers are more
likely to complain to DOT if their expectations are not
met. Behn and Riley (1999) found that consumer com-
plaints increase operating expenses and decrease
operating revenues and operating income. Luo (2007)
found that consumer complaints to DOT about poor
service by airlines harm future stock returns. Lapr�e
(2011) decomposed the rate of baggage complaints
(i.e., baggage complaints divided by the number of
passengers) into two factors: the rate of mishandled
bags (i.e., mishandled bags divided by the number of
passengers) and the propensity to complain (i.e., bag-
gage complaints divided by mishandled bags). Com-
paring mishandled baggage rates with the propensity
to complain, the author found that airlines showed
much more variation in the propensity to complain.
That is, despite having similar mishandled baggage
rates, some airlines are significantly better than others
in terms of their service recovery capabilities. Based
on negative consequences of poor service quality
observed by Tsikriktsis (2007) and Heskett et al.
(1997), we use two proxies of service quality – on-time
performance and mishandled baggage rate – to test:

HYPOTHESIS 3A. Higher service quality is negatively
associated with future financial distress.

Because extreme service failures can have a stron-
ger association with an airline’s financial performance
(e.g., Ramdas et al. 2013), we test an alternative to
Hypothesis 3A using two proxies of extreme service
failures – long delays and propensity to complain to
DOT after a mishandled baggage experience:

HYPOTHESIS 3B. Extreme service failures are positively
associated with future financial distress.

2.4. Operational Complexity
Skinner’s (1974) classic article introduced the notion of
a focused factory. A factory that focuses on a narrow
product mix for a particular market niche will outper-
form a plant that attempts a broader mission. Simpli-
city, repetition, experience, and task homogeneity
build competence resulting in better performance. The
concept of focus has also been extended to services.
According to Heskett et al. (1997), service firms
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achieve higher profitability by having either market
focus (focusing on specific target market segments) or
operating focus (focusing the operations on servicing
a narrow product mix). Firms that achieve both mar-
ket and operating focus are nearly unbeatable. Lack of
focus, on the other hand, leads to operational com-
plexity, which in turn leads to additional operating
expenses. Next, we discuss three elements that contri-
bute to operational complexity in the airline industry.
One element that can contribute to significant com-

plexity for an airline is operating a heterogenous fleet.
Southwest grew from a local airline operating three
routes in Texas to the largest US airline with just a sin-
gle plane type – Boeing 737. Operating a single plane
type reduces costs related to maintenance, gate con-
figurations, training, servicing equipment, etc. At its
inception, JetBlue copied the single-plane focus. How-
ever, in 2005, JetBlue added a second plane type to its
fleet. Even just one additional plane type caused
operational complexity and confusion related to new
training programs, increased scheduling complexity
due to reduced interchangeability for planes and
pilots, greater task variety in servicing aircraft, more
complex human resources issues, and the need to
manage relations with multiple suppliers (Huckman
and Pisano 2011). Costs associated with operational
complexity are exacerbated for legacy carriers, which
operate much more heterogeneous fleets compared to
low-cost carriers, such as JetBlue (Atkinson et al.
2016).
A second element that contributes to operational

complexity is flying to primary airports as opposed to
secondary airports, which tend to be less congested.
Southwest, for example, has traditionally chosen to
operate out of secondary airports such as Chicago
Midway and Dallas Love Field instead of Chicago
O’Hare and Dallas Fort Worth (Gittell 2003). Operat-
ing out of less congested airports makes airlines less
susceptible to costly service failures (Atkinson et al.
2016). Bonnefoy and Hansman (2004) provide a case
study of the Boston regional airport system to illus-
trate how Southwest avoided the complexities asso-
ciated with flying to the region’s primary airport,
Logan. In 1997, Logan reached 85% of its passenger
capacity, leading to severe scheduling challenges and
flight delays. Until entering Logan in 2009, Southwest
avoided those problems by serving the Boston region
from Providence and Manchester airports.
A third element that increases operational complex-

ity is the extent to which a network of routes is sparse.
A sparse network looks like a hub-and-spoke system
with hubs that are connected to most spokes, whereas
spokes have very few connections – typically to hubs.
Legacy carriers use hub-and-spoke systems to allow
for many connections. Connections require more cus-
tomer contact points and extra baggage handling.

Connections also increase dependencies. Hence, con-
nections can lead to extra costs. Indeed, legacy car-
riers place a higher emphasis on the cost of flight
delays (Deshpande and Arikan 2012). Even if an air-
line does not rely on connecting passengers, a sparse
network can still suffer from dependencies. In 2007,
JetBlue’s network relied heavily on five key cities such
as New York and Ft. Lauderdale. All destinations
could only be reached from these key cities. A highly
publicized Valentine’s Day Crisis showed the adverse
effects of dependencies. On February 14, 2007 a bad
winter storm in New York crippled JetBlue’s opera-
tions leading the airline to cancel 40% of its flights,
affecting more than 131,000 customers (Huckman and
Pisano 2011). In contrast, point-to-point systems –such
as Southwest’s route network– tend to connect many
city pairs to offer more direct flights. Relying less on
hubs or key cities reduces operational complexity and
subsequently reduces costs. Since operational com-
plexity carries additional costs, we use three proxies
of operational complexity – fleet heterogeneity, use of
primary airports, and network sparsity – to test:

HYPOTHESIS 4. Operational complexity is positively asso-
ciated with future financial distress.

3. Data

Our main data sources are DOT, Compustat, and
the Center for Research in Security Prices (CRSP).
All US airlines are required to report financial and
operating data on Form 41 to DOT. Form 41 is our
source for quarterly data on revenue, cost, and
transportation statistics. We obtain quality perfor-
mance statistics from Air Travel Consumer Reports
(ATCRs). Since October 1987, DOT has required
major US airlines (airlines with at least 1% of US
domestic passenger revenues) to file data on quality
performance. DOT started publishing these statistics
in ATCRs. Initially, there was some variation in
reporting systems across airlines. The first quarter of
1988 was the first quarter for which quality perfor-
mance could be compared across airlines (Lapr�e
2011). Consequently, we use quarterly data from
1988 to 2013. We collect flight level data from the
DOT Bureau of Transportation Statistics website.
We collect the financial data necessary to compute
our financial distress metric from Compustat and
CRSP. These data are accessed through Wharton
Research Data Services.

3.1. Airlines
Our study requires operational, quality performance,
and stock market data. Accordingly, our dataset is
restricted to publicly traded major US airlines. Table 2
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provides a summary of the airlines in our study. We
have 25 airlines (10 legacy and 15 low-cost) and 1395
firm quarters. The number of quarters per airline var-
ies from 7 (Piedmont Aviation) to 104 for the six air-
lines present during the whole time frame (Alaska,
American, Delta, Southwest, United, and US Air-
ways). Nineteen airlines entered the study after the
first quarter of 1988 and/or left the study before the
last quarter of 2013. Eight airlines in our study never
declared bankruptcy. Fifteen airlines declared one
bankruptcy, whereas two airlines, Trans World Air-
lines and US Airways, had multiple bankruptcy epi-
sodes. In total, our dataset includes 20 bankruptcies
and 127 firm-quarters in which airlines stayed in
bankruptcy. We obtained airline bankruptcy filing
dates from the Airlines for America web site and cross
checked the dates using the UCLA-LoPucki Bank-
ruptcy Research Database, other airline studies such
as Ciliberto and Schenone (2012), as well as the air-
lines’ official web sites and Wikipedia pages.1

3.2. Dependent Variables
We study two dependent variables: Bankruptcy Indica-
tor. Bankruptit is an indicator variable that equals 1 if
airline i is bankrupt in quarter t and 0 otherwise. We

use this dependent variable in our preliminary bank-
ruptcy analysis presented in section 4.
Distance to Default. We measure financial distress

using the na€ıve distance to default metric constructed
by Bharath and Shumway (2008). This metric is a sim-
plified version of the Merton distance to default (DD)
model, which applies Merton’s (1974) bond pricing
framework to model the evolution of a firm’s debt
and equity over time. Formally, the probability of
bankruptcy implied by the Merton DD model can be
written as

N � ln V=Fð Þ þ l� 0:5r2V
� �

T

rV
ffiffiffiffi
T

p
� �

; ð1Þ

where Nð�Þ is the cumulative standard normal dis-
tribution function, V is market value of the firm (i.e.,
the sum of the market values of the firm’s debt and
equity), F is the book value of the firm’s debt, T is
the time horizon, l is the firm’s expected return,
and rV is the volatility of firm value.
Computing a firm’s implied probability of bank-

ruptcy via equation (1) is non-trivial because the mar-
ket value of the firm’s debt and its volatility are
difficult to estimate. See Bharath and Shumway (2008)

Table 2 Airlines in the Dataset

No. Airline First qtr in the sample Last qtr in the sample Qtrs in the sample No. of bankruptices
No. of qtrs

in bankruptcy

1 AirTran Airways 2003 Q1 2012 Q1 37 0 0
2 Alaska Airlines 1988 Q1 2013 Q4 104 0 0
3 America West Airlines 1988 Q1 2005 Q4 72 1 14
4 American Airlines* 1988 Q1 2013 Q4 104 1 9
5 American Eagle Airlines* 2001 Q1 2013 Q4 52 1 9
6 American Trans Air 2003 Q1 2006 Q4 16 1 6
7 Atlantic Southeast Airlines 2003 Q1 2013 Q4 43 0 0
8 Comair* 2004 Q1 2010 Q3 28 1 7
9 Continental Airlines* 1988 Q1 2011 Q3 96 1 11
10 Delta Airlines* 1988 Q1 2013 Q4 104 1 7
11 ExpressJet Airlines 2003 Q1 2011 Q3 35 0 0
12 Frontier Airlines 2005 Q3 2013 Q4 34 1 6
13 Hawaiian Airlines 2004 Q1 2013 Q4 40 1 6
14 Independence Air 2003 Q1 2005 Q4 12 1 1
15 JetBlue 2003 Q1 2013 Q4 44 0 0
16 Mesa Airlines 2006 Q1 2013 Q4 32 1 5
17 Northwest Airlines* 1988 Q1 2009 Q4 88 1 7
18 Pan Am. World Airways* 1988 Q1 1991 Q3 15 1 3
19 Piedmont Aviation 1988 Q1 1989 Q3 7 0 0
20 Pinnacle Airlines 2007 Q1 2013 Q4 20 1 2
21 Skywest 2003 Q1 2013 Q4 44 0 0
22 Southwest Airlines 1988 Q1 2013 Q4 104 0 0
23 Trans World Airlines* 1988 Q1 2001 Q4 56 3 11
24 United Airlines* 1988 Q1 2013 Q4 104 1 15
25 US Airways* 1988 Q1 2013 Q4 104 2 8

Total 1395 20 127

Notes. Our dataset consists of publicly traded major US airlines. We report each airline’s name as well as the first and the last quarter (qtr) in which it
appears in our sample. We also report the number of bankruptcy filings and the number of quarters each airline stayed in bankruptcy. For instance, US
Airways filed for bankruptcy twice and spent a total of eight quarters in bankruptcy. * indicates a legacy carrier.
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for the derivation of equation (1) and a discussion of
the Merton DD model’s underlying assumptions and
computational hurdles. Bharath and Shumway (2008)
propose an alternative, easy to compute distance to
default metric called na€ıve distance to default (NDD),
and show that NDD performs better in out-of-sample
forecasts than the Merton DD model. Because of its
simplicity and superiority to the Merton DD model,
the recent finance literature uses NDD to measure
financial distress (e.g., Campello and Gao 2017, Chava
and Purnanandam 2011, Phillips and Sertsios 2013).
We use NDD as our dependent variable in our finan-
cial distress analysis.
Revisiting equation (1), Bharath and Shumway

(2008) approximate the market value of debt with its
face value F. Consequently, the authors set V = E + F,
where E is the market value of the firm’s equity. The
authors approximate the volatility of the firm’s debt
as rD = 0.05 + 0.25rE, where rE is the volatility of the
firm’s equity. Thus, the volatility of the firm’s market
value can be approximated by rV ¼ E

EþF rEþ
F

EþF rD ¼ E
EþFrE þ F

EþF ð0:05 þ 0:25rEÞ. Lastly, the
expected return, l, is approximated as the firm’s stock
return in the last period. Replacing each term in equa-
tion (1) with these approximations yields the bank-
ruptcy probability,Nð�NDDÞ, where NDD is:

NDD

¼
ln EþF

F

� �þ l� 0:5 E
EþFrEþ F

EþF 0:05þ 0:25rEð Þ
h i2� �

T

E
EþFrEþ F

EþF 0:05þ 0:25rEð Þ
h i ffiffiffiffi

T
p :

ð2Þ
We compute NDDit for airline i in quarter t as
follows. Following Vassalou and Xing (2004) and
Bharath and Shumway (2008), we compute the face
value of debt, Fit, as debt in current liabilities (Com-
pustat item DLCQ) plus one-half of long-term debt
(Compustat item DLTTQ). We compute the mean
and the standard deviation of an airline’s quarterly
return using its daily stock price information from
CRSP. Following Phillips and Sertsios (2013), we
require at least 25 daily stock price observations for
these computations. We compute the market value
of equity as the number of shares outstanding times
the closing stock price in quarter t. Because our time
horizon is one quarter (i.e., T = 1), Nð�NDDÞ is the
probability of declaring bankruptcy within a quarter.
A complication arises when a parent corporation

owns more than one airline in the sample because the
association between an airline’s operational perfor-
mance and the parent company’s financial distress
may be weak. For instance, prior to its bankruptcy,
AMR Corporation owned both American and
American Eagle. It is unclear whether the smaller

airline (i.e., American Eagle) had a significant impact
on the parent company’s financial distress. In our main
model, we follow Phillips and Sertsios’s (2013)
approach. That is, when a corporation owns more than
one airline in the sample, we use the parent company’s
NDD for all airlines owned by that company. In robust-
ness tests, we define a smaller sample in which we only
keep the largest airline the parent company owns and
link the parent company’s financial distress to its lar-
gest airline’s operational performance. For instance, in
our main model, we computeNDD for AMR and use it
for both American and American Eagle. In robustness
tests, we drop American Eagle from our dataset, and
link AMR’s NDD to American’s operational perfor-
mance. We adopt the same approach when two airlines
merge or one airline buys another airline.
Figure 1 shows the average probability of bank-

ruptcy implied by the na€ıve distance to default metric
in the US airline industry over time. In order to gener-
ate this figure, we first compute the probability of
bankruptcy for airline i in quarter t as Nð�NDDitÞ.
Next, we take a simple average over all publicly
traded airlines in quarter t. Despite only using stock
market and debt data, this metric captures the nega-
tive impact of important events that have affected the
airline industry. For example, spikes in the average
probability of bankruptcy occur during the Gulf War,
the terrorist attacks of September 11, 2001 (9/11), and
the financial crisis in 2008.

3.3. Operational Performance Metrics
Revenue Management. We use yield to assess pricing.

Yield is defined as passenger revenues divided by
revenue passenger miles (RPMs). One RPM is flying
one passenger over one mile in revenue service. We
adjust yield for inflation, using the 2000 consumer
price index, as we do for all other variables measured
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Figure 1 The Average Probability of Bankruptcy in the US Airline
Industry

Notes. We compute the probability of bankruptcy for airline i in quarter t
using Bharath and Shumway’s (2008) na€ıve distance to default metric.
We compute the average probability of bankruptcy in quarter t by taking
a simple average over all publicly traded airlines in our dataset.

Alan and Lapr�e: Predictors of Future Financial Distress
Production and Operations Management 27(4), pp. 734–755, © 2017 Production and Operations Management Society 741



in dollars in our dataset. We use load factor, the stan-
dard measure in the industry, for utilization of effec-
tive capacity. Load factor captures the degree to
which an airline fills up planes with revenue paying
passengers controlling for both seats and miles flown.
Load factor is defined as revenue passenger miles
divided by available seat miles (ASMs). One ASM is
flying one seat over one mile available for revenue
service.
Operational Efficiency. We use fleet utilization to

assess effective capacity of planes. Fleet utilization is
the percent of time planes are used transporting pas-
sengers between departure at the gate of origin and
arrival at the gate of destination. We use fuel effi-
ciency to assess raw materials usage. Fuel efficiency is
defined as ASMs divided by gallons of fuel used.
Service Quality. We use on-time performance and

mishandled bags to measure the service quality of an
airline. Following DOT’s definitions, we measure on-
time performance as the proportion of flights arriving
less than 15 minutes after the scheduled arrival time
(Ramdas et al. 2013) and mishandled bags as the
number of mishandled baggage reports per 1000 pas-
sengers (Lapr�e 2011). Airlines receive these reports
from passengers concerning lost, damaged, delayed,
or pilfered baggage.
Extreme Service Failures. We measure extreme ser-

vice failures using long delays and propensity to com-
plain. Following Ramdas et al. (2013), we measure
long delays as the percentage of flights that are 120 or
more minutes late. Following Lapr�e (2011), we define
propensity to complain as the number of baggage
complaints filed with DOT per 1000 mishandled bag-
gage reports.
Operational Complexity. To capture complexity asso-

ciated with managing a diverse fleet, we use fleet
heterogeneity, measured with the Blau index (Staats
and Gino 2012) as one minus the sum of squared pro-
portions of different aircraft types within an airline’s

fleet. For instance, if an airline in a quarter has only
two types of aircraft with a 40–60% split, then the
airline’s fleet heterogeneity is computed as
1 � (0.42 + 0.62) = 0.48. To capture complexity associ-
ated with flying to primary airports, we use landing
fees, measured as the average landing fee per landing.
Landing fees are higher for primary airports (e.g.,
Chicago O’Hare) compared to secondary airports
(e.g., Chicago Midway). Lastly, to measure complex-
ity associated with concentrating flights in a few
major hubs or key cities rather than operating a point-
to-point network, we use network sparsity measured
as the sum of squared proportions of flights originat-
ing from each airport in an airline’s network. Airlines
with sparse networks have higher network sparsity
scores. For instance, if an airline in a quarter serves
ten airports with an equal proportion of flights (i.e.,
10%) originating from each airport, then the network
sparsity variable equals 10 9 0.12 = 0.1. Conversely,
if 50% of flights originate from a focus city, whereas
the remaining 50% is equally distributed among the
remaining nine airports, then the network sparsity
variable equals 0.52 + 9 9 (0.5/9)2 = 0.28.

3.4. Summary Statistics
Table 3 provides an overview of the variables we use
in our financial distress analysis, while Panel A in
Table 4 reports summary statistics. Although we
report 1395 firm-quarter observations in Table 2, we
report summary statistics for the independent vari-
ables based on the 1267 firm-quarters we use in our
regression analysis. In our preliminary analysis of
airline bankruptcies presented in section 4 and finan-
cial distress analysis presented in section 5, we lose
100 firm-quarters (i.e., the first four quarters for each
airline) because we lag independent variables by
four quarters. We lag independent variables by four
quarters for two reasons. First, some operational
metrics (e.g., on-time performance) have quarterly

Table 3 Variables Used in Financial Distress Analysis

Variable Formula Data source

NDD Equation (2) in section 3.2 Compustat and CRSP
Yield Passenger revenues/revenue passenger miles Form 41
Load factor Revenue passenger miles/available seat miles Form 41
Fleet utilization Block hours/(24 9 Aircraft days) Form 41
Fuel efficiency Available seat miles/Gallons of fuel used Form 41
On-time performance Proportion of flights arriving less than 15 minutes after the scheduled arrival time Air Travel Consumer Reports
Mishandled bags The number of mishandled baggage reports/Total number of passengers (1000s) Air Travel Consumer Reports
Long delays Proportion of flights arriving more than 120 minutes after the scheduled arrival time DOT On-Time Performance Data
Propensity to complain Number of baggage complaints filed with DOT/Number of mishandled baggage reports

(1000s)
Air Travel Consumer Reports

Fleet heterogeneity Blau index computed from the proportion of different aircraft types within an airline’s
fleet (raw data: aircraft days by equipment type)

Form 41

Landing fees Total landing fees/Total number of flights Form 41
Network sparsity Sum of squared proportions of flights originating from each airport in an airline’s

network
DOT On-time Performance Data
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seasonality. Second, and more importantly, lagging
operational variables by four quarters eliminates a
potential look-ahead bias and provides sufficient
time to airlines and regulators to take actions based
on the early warning signals the operational vari-
ables generate. Moreover, section 6 shows that the
operational variables convey useful information up-
to eight quarters before the measurement of financial
distress and thereby demonstrates the robustness of
our findings with respect to the time lag between
operational performance and future financial
distress.
We lose 28 firm-quarters due to missing data. We

use all 1395 � (100 + 28) = 1267 firm-quarter obser-
vations in our preliminary analysis presented in the
next section. However, we can calculate NDD and the
corresponding probability of bankruptcy for only
1047 firm-quarters because stock price information is
unavailable in firm-quarters during which an airline
was either privately owned or operating under bank-
ruptcy protection. Panel B in Table 4 shows the corre-
lations among our variables. Because we lag
independent variables by four quarters in sections 4
and 5, we report the correlations between na€ıve dis-
tance to default and the four-quarter lagged values of
the independent variables.

4. Preliminary Analysis of Airline
Bankruptcies

In this section, we provide preliminary evidence
regarding the role of operational performance in
financial distress models. We test whether operational

characteristics can improve model fit in bankruptcy
classification analyses.

4.1. Methodology
Modeling corporate bankruptcies has been an active
research domain in accounting, economics, and
finance since the early 1960s. A large body of litera-
ture uses binary classification models to identify
financial ratios that explain corporate bankruptcies.
In his seminal work, Altman (1968) applied multiple
discriminant analysis to a matched sample of bank-
rupt and non-bankrupt firms to identify financial
ratios that capture a firm’s financial status. Because
there are two distinct groups (bankrupt vs. non-
bankrupt), the classification analysis can be trans-
formed into a discriminant function of the form
zn = bxn, where zn is the z-score for the nth observa-
tion in the sample and xn is the corresponding vector
of firm specific variables. The goal is to estimate the
coefficient vector b such that every firm is correctly
identified as bankrupt or non-bankrupt based on its
z-score.
Altman (1968) identified five variables that perform

well in firm classification: working capital to total
assets (WC/TA), retained earnings to total assets
(RE/TA), earnings before interest and taxes to total
assets (EBIT/TA), market value of equity to total lia-
bilities (ME/TL), and sales to total assets (S/TA). In a
subsequent study, Altman (1993) replaced ME/TL
with book value of equity to total liabilities (BE/TL),
which facilitates the computation of a z-score for firms
without stock price data. We use the independent
variables of this alternative model, known as the

Table 4 Summary Statistics and Correlation Matrix

Panel A Panel B

N Mean SD 1 2 3 4 5 6 7 8 9 10 11 12

1 NDD 1086 5.59 5.10 1
2 Yield 1267 13.16 3.86 0.00 1
3 Load factor 1267 0.73 0.08 �0.15 �0.58 1
4 Fleet utilization 1267 0.42 0.05 0.23 �0.42 0.13 1
5 Fuel Efficiency 1267 18.38 3.52 �0.14 0.70 �0.40 �0.60 1
6 On-time perf. 1267 0.79 0.06 0.20 �0.13 0.06 �0.08 �0.21 1
7 Mishandled bags 1267 5.50 2.56 �0.15 0.59 �0.30 �0.32 0.63 �0.42 1
8 Long delays 1267 0.01 0.01 �0.31 �0.15 0.40 0.09 0.06 �0.68 0.22 1
9 Prop. to complain 1267 0.43 0.48 �0.17 �0.16 0.02 0.00 �0.15 �0.04 �0.16 0.01 1
10 Fleet heterogeneity 1267 0.53 0.24 �0.35 0.22 �0.06 �0.33 0.17 �0.14 0.16 0.02 0.18 1
11 Landing fees 1267 270 151 �0.17 �0.39 0.24 0.20 �0.39 0.02 �0.35 0.04 0.48 0.25 1
12 Network sparsity 1267 0.10 0.05 �0.23 �0.33 0.33 0.13 �0.28 0.11 �0.13 0.02 0.09 �0.07 0.10 1

Notes. In Panel A, we present the number of observations, mean, and standard deviation (SD) for the na€ıve distance to default (NDD) and the
independent variables we use in our financial distress analyses presented in section 5 and 6. Na€ıve distance to default, fleet heterogeneity, and network
sparsity are scalars. Yield and OR/ASM are expressed in 2000 US cents per seat mile. Load factor, fleet utilization, on-time performance, and long delays
are fractions. Fuel efficiency is expressed as miles per gallon. Mishandled bags are expressed as the number of mishandled baggage per 1000
customers. Propensity to complain is expressed as the number of baggage complaints with DOT per 1000 mishandled bags. Landing fees are expressed
in 2000 US dollars per landing. In Panel B, we report the correlation between na€ıve distance to default and the independent variables lagged by four
quarters used in our financial distress analyses presented in section 5 and 6. Because the independent variables shown in rows and columns 2–12 are
lagged by four quarters, we report their contemporaneous pairwise correlations.
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z
0
-score private firm model, in our first base model

because stock price data are unavailable for firm quar-
ters during which the firm is in bankruptcy. Both z
and z

0
score models are still widely used by academics

and practitioners to assess a firm’s financial distress
(Altman and Hotchkiss 2010).
While Altman’s z and z

0
scores are useful in terms

of identifying the financial ratios that explain corpo-
rate bankruptcies, their model coefficients are typi-
cally specified using a sample of firms from different
industries. Thus, they may not be able to capture
dynamics that are specific to the airline industry. In
order to overcome this hurdle, researchers have pro-
posed variables that are specific to the airline indus-
try. One airline industry specific model is the
Airscore model (Chow et al. 1991). The independent
variables of the Airscore model are market value of
equity to total liabilities (ME/TL), interest expense to
total liabilities (IE/TL), and operating revenues to
total miles flown (OR/TMF). Although the first two
variables of this model are generic, the last variable is
industry specific, and serves as a proxy for an airline’s
revenue generation capabilities. We use the Airscore
model’s independent variables in our second base
model after replacing ME/TL with BE/TL so that we
can calculate an Airscore in the absence of stock price
information.
We test four versions of the Altman’s z

0
score model

in our preliminary analysis. Model 1 includes the Alt-
man’s z

0
score model’s independent variables, all

computed from Compustat data. Model 2 expands
the set of independent variables of the z

0
score model

by adding OR/ASM (which is yield 9 load factor),
mishandled bags, fleet utilization, and fleet hetero-
geneity. Model 3 expands Model 2 by adding a legacy
dummy that takes a value of 1 if airline i is a legacy
carrier and 0 otherwise. Given that 14 out of 20 bank-
ruptcy episodes presented in Table 2 belong to legacy
airlines, Model 3 allows us to test whether operational
variables are associated with bankruptcy classifica-
tion rather than the higher financial distress of legacy
carriers compared to low-cost carriers. Lastly, Model
4 has the same independent variables as Model 3, but
excludes Southwest. Comparing Model 4 with Model
3 allows us to check whether our findings are driven
by the superior operational and financial performance
of Southwest. We follow a similar approach with four
versions of the Airscore model: Models 5–8. We com-
pute the Airscore model’s independent variables BE/
TL and IE/TL from Compustat data and OR/TMF
from Form 41 data.
The discriminant analysis approach can be con-

sidered as a single period model that uses only one
observation from each firm (typically the last obser-
vation in the data). Shumway (2001) demonstrates
that this approach leads to biased and inconsistent

coefficient estimates due to its static nature, over-
looking data on healthy firms that eventually go
bankrupt. A more appropriate approach is a dura-
tion model (also known as a hazard model), which
captures the dynamic nature of bankruptcy risk.
Shumway (2001) and Chava and Jarrow (2004) show
that the likelihood function of a discrete-time haz-
ard model is identical to that of a multi-period logit
model and that a discrete-time hazard model can be
estimated via logistic regression. We adopt the same
approach and seek to classify firm-quarter observa-
tions via logistic regression. In the logit model,
PrðBankruptit ¼ 1Þ ¼ 1

1þexpð�bXi;t�4Þ, where Xi,t�4

denotes the vector of independent variables lagged
by four quarters.

4.2. Results
Table 5 shows the results of our preliminary bank-
ruptcy analysis. All independent variables except
WC/TA are significant at p = 0.05 in Model 1. Consis-
tent with Altman’s findings, we find that lower RE/
TA, EBIT/TA, BE/TL, and S/TA are associated with
higher future financial distress. The insignificance of
WC/TA is consistent with Shumway (2001), who doc-
uments the insignificance of this variable using a
broader sample of firms.
A likelihood ratio test between Models 1 and 2 has

a p-value of 0.002. So, adding revenue management,
operational efficiency, service quality, and opera-
tional complexity to the Altman’s z

0
score model

leads to a statistically significant improvement in
model fit. Model 2 indicates that lower operating
revenue per ASM, lower fleet utilization, and higher
fleet heterogeneity are associated with higher future
financial distress. Despite having the correct sign,
mishandled bags is statistically insignificant. Replac-
ing mishandled bags with propensity to complain
does not change our results. A likelihood ratio test
between Models 2 and 3 has a p-value of 0.247, indi-
cating that controlling for the low-cost–legacy differ-
ence does not improve model fit. A comparison of
the estimates of Models 2 and 3 reveals that the
addition of the legacy fixed effect does not change
the statistical significance (or insignificance) of
Model 2’s independent variables. Moreover, the
legacy fixed effect is statistically insignificant in
Model 3. The estimates of Model 4, which excludes
Southwest, are qualitatively similar to Model 3. Esti-
mating the Airscore model leads to similar insights
(Models 5–8).
Our preliminary analysis shows that operational

performance metrics can improve goodness of fit in
bankruptcy classification models and that this
improvement is not driven by the low-cost–legacy dif-
ference or a Southwest effect. In particular, we find
support for Hypotheses 1, 2, and 4, whereas we do
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not find a link between service quality (Hypothesis
3A) or extreme service failures (Hypothesis 3B) and
bankruptcy in subsequent quarters.

4.3. Limitations
Despite their widespread use in the airline bank-
ruptcy literature (e.g., Chow et al. 1991, Gritta et al.
2008, Lu et al. 2015), binary classification models have
some significant limitations. First, bankruptcy is an
extreme form of financial distress. By labeling airlines
as bankrupt vs. non-bankrupt, binary classification
models may not distinguish between healthy airlines
and airlines that are on the verge of bankruptcy.
Moreover, out-of-sample evidence is necessary to
establish the empirical reliability of a forecasting
model (Rapach et al. 2010). However, the binary clas-
sification models in the airline industry rely on a

small number of bankruptcy filings, which prevents
researchers from testing the out-of-sample forecast
accuracy. Consequently, inferences from binary clas-
sification models regarding the association between
operational performance and future financial distress
may be inaccurate.
Second, a general rule of thumb in logistic regres-

sion is to have at least 10 events per parameter in
order to have reliable parameter estimates (Hosmer
and Lemeshow 2004). Because we only have 120
bankrupt quarters in our logistic regression sample,
we should have fewer than 12 independent variables.
Therefore, we attempt to capture the association
between each area of operational performance and
future financial distress with only variable (e.g., OR/
ASM to proxy revenue management) rather than
using multiple variables (e.g., yield and load factor).

Table 5 Logistic Regression Results

Altman’s z
0
model Airscore model

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

(Intercept) �1.726*** 1.910 2.003 2.071 �0.718 1.601 1.786 1.789
(0.292) (1.704) (1.704) (1.703) (0.541) (1.362) (1.366) (1.364)

WC/TA 0.696 0.965 0.899 0.827
(0.833) (0.938) (0.935) (0.942)

RE/TA �3.289*** �3.596*** �3.692*** �3.703***
(0.589) (0.609) (0.624) (0.623)

EBIT/TA �17.940*** �12.905** �13.384** �13.321**
(4.133) (4.526) (4.532) (4.523)

BE/TL �1.396* �0.922 �0.974 �0.910 �3.676*** �3.508*** �3.397*** �3.378***
(0.578) (0.571) (0.575) (0.584) (0.390) (0.402) (0.412) (0.415)

S/TA �2.837** �3.231** �3.482** �3.523**
(0.995) (1.189) (1.221) (1.222)

OR/ASM �0.237*** �0.230** �0.230**
(0.071) (0.071) (0.071)

Fleet utilization �6.417* �6.727* �6.716* �6.080* �5.712* �5.680*
(3.019) (3.017) (3.002) (2.788) (2.806) (2.802)

Mishandled bags 0.065 0.068 0.066 0.063 0.065 0.065
(0.054) (0.053) (0.053) (0.050) (0.051) (0.051)

Fleet heterogeneity 1.353* 1.766* 1.662* 3.175*** 2.713*** 2.680***
(0.680) (0.776) (0.791) (0.688) (0.779) (0.784)

IE/TL 45.343* 37.248 33.891 33.700
(21.742) (22.728) (23.035) (23.029)

OR/TMF �1.032** �2.463*** �2.698*** �2.693***
(0.356) (0.455) (0.499) (0.499)

Legacy �0.359 �0.348 0.405 0.410
(0.308) (0.308) (0.339) (0.339)

# of airlines 25 25 25 24 25 25 25 24
# of observations 1267 1267 1267 1167 1267 1267 1267 1167
# of bankrupt qtrs. 120 120 120 120 120 120 120 120
# of non-bankrupt qtrs. 1147 1147 1147 947 1147 1147 1147 947
AIC 620.128 611.310 611.969 611.340 657.502 634.738 635.281 635.070
BIC 743.594 817.086 838.323 834.077 739.813 778.782 799.902 797.061
Pseudo R2 0.293 0.317 0.319 0.301 0.231 0.264 0.277 0.255
Log likelihood �304.064 �295.655 �294.984 �294.670 �324.751 �310.369 �309.641 �309.535
Likelihood ratio test 16.819 (p = 0.002) 28.764 (p < 10�3)
Likelihood ratio test 1.341 (p = 0.247) 1.457 (p = 0.227)

Notes. Standard errors in parentheses. *, **, and *** indicate statistical significance at 0.05, 0.01, and p = 0.001, respectively. The dependent variable is
Bankruptit. All explanatory variables except the legacy dummy are lagged by four quarters. We perform parameter estimation via logistic regression. In
Models 4 and 8, we drop the Southwest observations.
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Furthermore, we cannot introduce parameters to cap-
ture airline or time specific effects that may influence
financial distress. Not being able to incorporate fixed
effects impedes the reliability of inferences in indus-
try-specific studies (Joglekar et al. 2016). For instance,
we do not find support for Hypothesis 3B (extreme
service failures) in our preliminary analysis of airline
bankruptcies, but we do find support for this hypoth-
esis in the next section, where we control for airline
and time specific effects.
Lastly, as discussed in Phillips and Sertsios (2013),

the weights assigned to each financial ratio (i.e., the
estimated coefficients of each financial ratio) can be
quite unstable in a binary classification model because
of industry trends that systematically change those
ratios. As a result, the estimated z–scores can be unre-
liable. In the next section, we overcome these hurdles
by replacing the binary classification with a continu-
ous financial distress metric. Consequently, we can (i)
distinguish between healthy airlines and financially
distressed but non-bankrupt airlines, (ii) jointly test
the significance of a relatively large number of inde-
pendent variables, and (iii) perform out-of-sample
forecasts.

5. Financial Distress Analysis

In this section, we examine the association between
operational performance and future financial distress.
Section 5.1 explains our methodology, and section 5.2
discusses our results and robustness of our findings.

5.1. Methodology
Our model specification has the following form:

�NDDit ¼ ai þ ct þ
X
k

bkxk;i;t�4 þ h �NDDi;t�4

� �þ uit;

ð3Þ
where ai is the airline dummy, ct is the time
dummy, xk,i,t�4 are the lagged values of operational
variables, and uit is the error term. We use
�1 9 NDD (rather than NDD) as our dependent
variable to ensure that the estimated coefficient
signs are consistent with the ones we obtained in
section 4.
Many economic and financial variables dynami-

cally evolve over time. In empirical settings, dynamic
relationships are captured by the presence of a lagged
dependent variable among the independent variables.
(See Baltagi (2008, ch. 8) for an overview of dynamic
panel data models and their applications in eco-
nomics.) Accordingly, we use �NDDi,t�4 as an inde-
pendent variable to capture the dynamic nature of
financial distress. Another reason to use �NDDi,t�4 as
an independent variable is a potential link between

an airline’s financial distress state and operational
performance. A financially distressed airline could
also anticipate financial distress in future periods and
thereby take actions that could influence our opera-
tional predictors. For instance, a financially distressed
airline could lower its ticket prices, reduce its capac-
ity, downsize its flight networks, and/or lower its ser-
vice quality to improve its short-term liquidity.
Including �NDDi,t�4 allows us to test whether opera-
tional performance is associated with future financial
distress after controlling for an airline’s financial
distress state at the time we measure operational
performance.
We test seven models. Model 1 is the base model

with airline and time dummies. Model 2 expands
Model 1 by adding yield, load factor, on-time perfor-
mance, mishandled bags, fleet utilization, fuel
efficiency, fleet heterogeneity, landing fees, and net-
work sparsity. Model 3 expands Model 2 by adding
NDDi,t�4. To test whether our findings are driven by
the superior operational and financial performance of
Southwest, Model 4 has the same independent vari-
ables as Model 3, but excludes Southwest. In Models
5–7, we replace the service quality variables in Models
2–4 (on-time performance and mishandled bags) with
the extreme service failure variables (long delays and
propensity to complain).
Models 1, 2, 3, 5, and 6 have 25 airlines, whereas

Models 4 and 7 have 24 airlines due to the exclusion
of Southwest. The number of quarters per airline var-
ies from 3 to 100 in all seven models. Thus, we have
unbalanced time-series cross-section (TSCS) data,
which is different from panel data (Beck 2001). In
panel data, the asymptotics are in the number of
units. In TSCS data, the units are fixed, there is no
sampling, and we are interested in specific units. The
asymptotics are in time periods. Consequently, the
estimation method needs to deal with panel
heteroskedasticity (E½u2it� ¼ r2i 6¼ E½u2jt� ¼ r2j for
i 6¼ j), contemporaneous correlation (E[uitujt] = rij),
and autocorrelation (uit = qiui,t�1 + eit).

2 Following
Beck and Katz (1995), we use Prais–Winstein regres-
sion with a single first-order autoregressive process
common to all airlines and estimate panel-corrected
standard errors, which account for panel hetero-
skedasticity and contemporaneous correlation.3 Other
airline industry studies that use our estimation
methodology include Lapr�e and Tsikriktsis (2006)
and Lapr�e (2011).

5.2. Results
Table 6 shows the regression results. Models 1
explains 57.6% of the variation in financial distress,
whereas Model 2 explains 61.3%. Both revenue
management variables, yield and load factor, are neg-
atively associated with future financial distress.
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Among the operational efficiency variables, fleet
utilization is negative and significant, whereas fuel
efficiency is statistically insignificant. Both ser-
vice quality variables, on-time performance and mis-
handled bags, are statistically insignificant at p = 0.05.
All three operational complexity variables (fleet
heterogeneity, landing fees, and network sparsity) are
statistically significant with the expected signs. Model
3 explains 64.8% of variation in financial distress. The
lagged value of NDD is significant indicating that the
current financial distress state is an important deter-
minant of the future distress state. The addition of the
lagged NDD in Model 3 does not change the signifi-
cance findings for the operational variables in Model
2. The coefficient estimates of Model 4, which
excludes Southwest, are qualitatively similar to those
of Model 3 indicating that our findings are not driven
by the superior operational and financial performance
of Southwest.
Model 5 explains 62.4% of the variation in financial

distress. Unlike service quality variables, extreme

service failure variables are significant. Both long
delays and propensity to complain are positively
associated with future financial distress. Replacing
service quality with extreme service failures does not
change the significance findings for the other opera-
tional variables in Model 2. Model 6 explains 65.6% of
the variation in financial distress. Lagged NDD is sig-
nificant. The addition of the lagged NDD does not
change the significance findings in Model 5 for the
operational variables. Lastly, the estimates of Model
7, which excludes Southwest, are qualitatively similar
to Model 6.
In sum, our findings from Models 1–7 are consis-

tent. We find support for Hypothesis 1, i.e., lower val-
ues of yield and load factor are associated with higher
future financial distress. We find partial support for
Hypothesis 2, as low fleet utilization is associated
with higher future financial distress, whereas fuel
efficiency is not significant. The insignificance of fuel
efficiency is primarily driven by the lack of contempo-
raneous heterogeneity among airlines. In a given

Table 6 Financial Distress Regression Results

Average service quality Extreme service failures

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Yield �0.314*** �0.277*** �0.240*** �0.311*** �0.275*** �0.241***
(0.072) (0.067) (0.065) (0.071) (0.066) (0.065)

Load factor �10.569* �9.354* �11.884** �11.559** �9.967* �12.320**
(4.484) (4.387) (4.256) (4.408) (4.314) (4.158)

Fleet utilization �12.071* �12.766** �10.897* �12.954* �13.373** �11.024*
(5.169) (4.895) (4.791) (5.127) (4.859) (4.756)

Fuel efficiency 0.084 0.070 0.039 0.050 0.043 0.015
(0.081) (0.077) (0.078) (0.081) (0.078) (0.079)

On-time perf. �0.029 �0.028 �0.026
(0.026) (0.026) (0.025)

Mishandled bags �0.161 �0.155 �0.137
(0.097) (0.091) (0.092)

Long delays 48.528** 41.955* 40.837*
(17.851) (17.820) (17.821)

Prop. to complain 1.287** 1.208** 1.253**
(0.407) (0.402) (0.392)

Fleet heterogeneity 4.294** 3.473** 3.574** 3.679* 2.937* 2.989*
(1.450) (1.309) (1.331) (1.432) (1.307) (1.330)

Landing fees 0.011*** 0.010** 0.007* 0.011*** 0.009** 0.007*
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Network sparsity 27.450** 24.706** 16.233* 26.495** 23.649** 15.673*
(8.441) (7.683) (7.750) (8.284) (7.622) (7.766)

Lagged NDD 0.190*** 0.177*** 0.180*** 0.166***
(0.038) (0.038) (0.038) (0.038)

# of airlines 25 25 25 24 25 25 24
# of observations 1047 1047 1047 947 1047 1047 947
R2 0.576 0.613 0.648 0.600 0.624 0.656 0.608
Autocor. coeff., q 0.512 0.437 0.360 0.369 0.419 0.351 0.361

Notes. The dependent variable is �NDDit. All independent variables are lagged by four quarters. Because �NDDi,t�4 is unavailable in 39 firm-quarters,
Models 1, 2, 3, 5, and 6 have 1086�39 = 1047 observations. Because Models 4 and 7 exclude Southwest, they have 24 airlines and 947 observations.
All models have airline and time dummies. We do not report the coefficient estimates for airline and quarter dummies due to space limitations. We
perform parameter estimation via Prais-Winsten regression with panel-corrected standard errors and a single first-order autoregressive process common
to all airlines, i.e., uit = qui,t�1 + eit. Panel-corrected standard errors, which correct for panel heteroskedasticity and contemporaneous correlation, are in
parentheses. *, **, and *** indicate statistical significance at 0.05, 0.01, and 0.001, respectively.
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quarter, there is very little variation among airlines in
terms of their fuel efficiencies. We do not find support
for Hypothesis 3A. Service quality, measured by on-
time performance and mishandled bags, does not
have a significant association with future financial
distress. However, we do find support for Hypothesis
3B. Extreme service failures are associated with
higher future financial distress. Lastly, we find sup-
port for Hypothesis 4 as fleet heterogeneity, landing
fees, and network sparsity are associated with higher
future financial distress.
We conducted several tests to assess the robustness

of our findings. Recall from section 3 that when a cor-
poration owns more than one airline in the sample,
we use the parent company’s NDD for all airlines
owned by that company. We test the robustness of
our findings by replicating Models 1–7 on a smaller
sample in which we only keep the largest airline
owned by the parent company. Our findings regard-
ing the associations between four operational dimen-
sions and future financial distress remained
unchanged in the smaller sample. In addition, we
tested different versions of our models with only one
variable for each operational dimension. For instance,
we used either on-time performance or mishandled
bags to measure service quality. The impact of rev-
enue management, operational efficiency, service
quality (or extreme service failures), and operational
complexity remained qualitatively unchanged under
those alternative specifications. Furthermore, we

introduced additional variables (fuel cost, labor cost,
market share) to control for an airline’s cost structure,
size, and pricing power. These variables were
insignificant. More importantly, they did not change
the associations between operational variables and
future financial distress. Several studies (e.g., Hofer
et al. 2009, Phillips and Sertsios 2013) document con-
temporaneous endogeneity between revenue man-
agement variables (yield and load factor) and
financial distress. We checked the robustness of our
coefficient estimates by estimating two-stage regres-
sions. We used five-quarter lagged values of yield as
an instrument for four-quarter lagged values of yield
and verified through Durbin–Wu–Hausman tests that
the coefficient estimates reported in Table 6 do not
suffer from endogeneity. We reached the same con-
clusion using this approach for load factor. See
Table 7.
Unobservable shocks may have a differential impact

on the low-cost and legacy carriers’ financial distress.
Although we cannot introduce a legacy fixed effect
due to the presence of airline dummies, we can control
for the potential differences between the low-cost and
legacy carriers by fitting separate time fixed effects.
Fitting separate time fixed effects for the low-cost and
legacy carriers did not change the associations
between operational variables and future financial dis-
tress. We also tested whether the inclusion of airlines
with short time series affected our results. Dropping
American Trans Air, which had 12 firm-quarters in

Table 7 Endogeneity Tests

Revenue management variables

Yield Load factor

Model in
Table 6

First stage
F test

Durbin–Wu–Hausman
v2 test

Wu–Hausman
F test

First stage
F test

Durbin–Wu–Hausman
v2 test

Wu–Hausman
F test

Model 2 2040.770 1.747 1.065 366.130 2.220 1.968
(0.186) (0.302) (0.136) (0.161)

Model 3 2006.270 1.370 0.821 359.684 1.653 1.440
(0.242) (0.365) (0.198) (0.230)

Model 4 1928.090 1.347 0.778 355.040 1.824 1.577
(0.246) (0.378) (0.177) (0.210)

Model 5 2095.692 1.432 0.950 373.685 1.862 1.704
(0.231) (0.330) (0.172) (0.192)

Model 6 2060.897 1.050 0.684 368.056 1.586 1.425
(0.305) (0.408) (0.208) (0.233)

Model 7 1977.870 1.003 0.644 362.067 1.715 1.550
(0.317) (0.423) (0.190) (0.213)

Notes. We check the endogeneity of yield in Model 2 in Table 6 as follows. First, we estimate a two-stage regression model, where we used Yieldi,t�5 as
an instrument for Yieldi,t�4 in the first stage. Second, we check the relevance of the instrument using an F test. The F statistic of 2040.770 is much
higher than the rule of thumb threshold of 10 indicating that we have a valid instrument. Third, we use the Durbin–Wu–Hausman and Wu–Hausman tests
to compare our original coefficient estimates with the two-stage estimates. The results show that we do not reject the null hypotheses. Thus, we
conclude that the coefficient estimates we report in Table 6 do not suffer from endogeneity. We repeat the same steps for all model (Models 2–7 in
Table 6) – revenue management variable (yield and load factor) combinations. We report the test statistics for the first stage F-test, Durbin-Wu-Hausman
test, and Wu–Hausman test for each model–revenue management variable combination. p values for the Durbin-Wu–Hausman and Wu–Hausman tests
are in parentheses.
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our models after dropping the first four quarters due
to lagging, Independence Air (8 firm-quarters), and
Piedmont Aviation (3 firm-quarters) did not change
our findings. Lastly, in case an airline declared
bankruptcy, exited bankruptcy, and started trading
later, we fitted separate firm dummies for pre- and
post-bankruptcy quarters, which allows us to treat
the pre- and post-bankruptcy episodes as two
separate firms. Once again, our findings remained
unchanged.

6. Out-of-Sample Forecasts of Future
Financial Distress

In this section, we switch our focus from testing asso-
ciations to generating out-of-sample forecasts to
investigate whether operational performance can be
used to predict future financial distress. Section 6.1
explains our methodology, and section 6.2 presents
our findings.

6.1. Methodology
We generate out-of-sample forecasts of NDD using
a recursive estimation window for different lags.
Recursive forecasting models are commonly used
in economics and finance to test the predictive
ability of a variable of interest (e.g., Goyal and
Welch 2003, Rapach et al. 2010, and references
therein). To test of the robustness of our findings,
we perform sensitivity analyses with different lag
periods.
In order to generate out-of-sample forecasts, we

first divide our study period of 104 quarters into an
in-sample portion consisting of the first 40 quarters
(from the first quarter of 1988 until the last quarter of
1997) and an out-of-sample portion consisting of the
last 64 quarters (from the first quarter of 1998 until the
last quarter of 2013). We generate out-of-sample fore-
casts for the first quarter of 1998 (i.e., t = 41) as fol-
lows. Let l denote the time lag between the
operational variables and future financial distress. For
l = 1, ⋯, 8, we use data from the first 40 quarters and
the estimation methodology described in section 5 to
estimate the coefficients of the model specification
described as Model 6 in section 5 as

�NDDis ¼ a½OM;40;l�
i þ c½OM;40;l�

s þ
X
k

b½OM;40;l�
k xk;i;s�l

� h½OM;40;l�NDDi;s�l þ u
½OM;40;l�
is ;

ð4Þ
where s 2 {5, ⋯, 40} and the superscript [OM, 40, l]
indicates that we estimate the coefficients of an
operational performance model (OM) using data
from the first 40 quarters. Then, for l = 1, ⋯, 8, we

predict na€ıve distance to default for airline i at
t = 41, dNDD

½OM;l�
i;41 , as

dNDD
½OM;l�
i;41 ¼ �

 ba½OM;40;l�
i þ bc½OM;40;l�

41�l

þ
X
k

bb½OM;40;l�
k xk;i;41�l � bh½OM;40;l�NDDi;41�l

!
;

ð5Þ

where ba½OM;40;l�
i , bc½OM;40;l�

41�l , bb½OM;40;l�
k , and bh½OM;40;l�

denote the coefficient estimates. Because we esti-
mate model coefficients of equation (4) using data
from the first 40 quarters, and because the right-
hand side of equation (5) has the lagged values of
independent variables, dNDD

½OM;l�
i;41 is an out-of-sam-

ple forecast.
We generate out-of-sample forecasts for the remain-

ing quarters of the out-of-sample portion of our data
in a recursive manner. Specifically, in order to gener-
ate forecasts for quarter t = 41, ⋯, 104, we first esti-
mate the coefficients of the model specified in
equation (4) using data up to quarter t � 1. We then
use the estimated model coefficients, ba½OM;t�1;l�

i ,bc½OM;t�1;l�
t�l , bb½OM;t�1;l�

k , and bh½OM;t�1;l�, and calculate a
one-step ahead forecast for airline i at lag l and time t
as

dNDD
½OM;l�
i;t ¼ �

 ba½OM;t�1;l�
i þ bc½OM;t�1;l�

t�l

þ
X
k

bb½OM;t�1;l�
k xk;i;t�l � bh½OM;t�1;l�NDDi;t�l

!
:

ð6Þ
Given the observed distance to default, NDDit, and

the corresponding forecast, dNDD
½OM;l�
it , we calculate

the forecast error of our model for airline i at lag l and
time t as

e
½OM;l�
it ¼ N �NDDitð Þ � N � dNDD

½OM;l�
it

� �
: ð7Þ

We calculate forecast errors based on the observed
and predicted bankruptcy probabilities (rather than
the observed and predicted distance to default val-
ues) because forecast errors are easier to interpret in
the probability domain as they lie in the interval
[�1, 1]. For each lag (l = 1, ⋯, 8), we compare the
performance of our forecasting model with a bench-
mark model.
Our benchmark model combines the Altman vari-

ables with the lagged value of NDD. Using data up to
period t � 1, we first fit the following benchmark
model (BM):
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�NDDis ¼ a½BM;t�1;l�
i þ c½BM;t�1;l�

s þ
X5
k¼1

b½BM;t�1;l�
k xk;i;s�l

� h½BM;t�1;l�NDDi;s�l þ u
½BM;t�l�
is ;

ð8Þ

where x1,i,s�l, ⋯, x5,i,s�l denote the l-quarter lagged
values of WC/TA, RE/TA, EBIT/TA, BE/TL, and S/
TA for airline i, respectively. Then, we calculate our
forecast as

dNDD
½BM;l�
i;t ¼ �

 ba½BM;t�1;l�
i þ bc½BM;t�1;l�

t�l

þ
X5
k¼1

bb½BM;t�1;l�
k xk;i;t�l � bh½BM;t�1;l�NDDi;t�l

!
;

ð9Þ

where ba½BM;t�1;l�
i , bc½BM;t�1;l�

t�l , bb½BM;t�1;l�
k , and bh½BM;t�1;l� are

the coefficients estimated using data up to t � 1.
For lag l = 1, ⋯, 8, the forecast error of the
benchmark model for airline i at time t is
e
½BM;l�
it ¼ N �NDDitð Þ � N � dNDD

½BM;l�
it

� �
.

6.2. Results
We use absolute forecast errors (i.e., absolute devia-
tions) and squared errors, which take values between
0 and 1, to assess forecast accuracy. Panel A in Table 8
reports results based on the absolute deviations of our
model as well as the benchmark model for each lag.
Due to data availability, the number of observations
decreases as the time lag increases. For instance, we
generate forecasts for 818 firm-quarters when l = 1
and 703 firm-quarters when l = 8.
To formally compare our model with the bench-

mark model, we follow Kesavan’s et al. (2010)
approach of assessing forecast accuracies with three
statistical tests. First, we test whether our model gives
a lower mean absolute deviation (MAD) than the
benchmark model using one tailed t-tests. The differ-
ences between our model’s MAD and the benchmark
model’s MAD for lags 1, ⋯, 8 are all statistically
lower than zero at p = 0.001. Second, we use
Johnson’s skewness-adjusted t-test (Johnson 1978) to
ensure that a potential skewness in the difference
between absolute deviations obtained from two dif-
ferent forecasting models does not influence our find-
ings. The skewness-adjusted t-statistics indicate that
our model’s MAD is statistically lower than that of
the benchmark model for l = 1, ⋯, 8. Third, we test if
our model performs better than the benchmark model

Table 8 Comparison of Our Model’s Forecast Accuracy Against a Benchmark Model

Lags

1 2 3 4 5 6 7 8

Panel A: Absolute Deviations
No. of observations 818 798 779 761 743 727 714 703
Our model’s MAD 0.131 0.129 0.131 0.128 0.125 0.141 0.154 0.118
Benchmark model’s MAD 0.173 0.162 0.164 0.162 0.184 0.174 0.213 0.181
DMAD �0.042 �0.033 �0.034 �0.034 �0.059 �0.033 �0.059 �0.062
t-stat �4.614*** �3.876*** �3.821*** �3.820*** �6.887*** �4.498*** �7.635*** �6.698***
Skewness adjusted t-stat �4.929*** �4.087*** �4.065*** �4.030*** �8.230*** �4.842*** �9.376*** �7.632***
% of observations where our
model gives lower absolute deviations

70.05 65.79 65.47 68.20 67.97 67.81 73.67 74.96

p-value for binom. sign test <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Panel B: Squared Errors
No. of observations 818 798 779 761 743 727 714 703
Our model’s MSE 0.093 0.094 0.096 0.094 0.092 0.095 0.108 0.084
Benchmark model’s MSE 0.119 0.111 0.114 0.112 0.133 0.121 0.160 0.131
DMSE �0.026 �0.017 �0.018 �0.018 �0.041 �0.027 �0.052 �0.047
t-stat �2.932** �2.144* �2.251* �2.231* �5.189*** �3.712*** �6.972*** �5.548***
Skewness adjusted t-stat �3.037** �2.195* �2.329* �2.297* �5.963*** �3.971*** �8.624*** �6.272***
% of observations where our
model gives lower squared errors

73.84 72.68 72.27 73.19 75.64 76.20 78.01 79.52

p-value for binom. sign test <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Notes. In Panel A, we use absolute deviations to compare our model’s out-of-sample forecast accuracy with that of the benchmark model. The DMAD
row reports the difference between the mean absolute deviations (MADs) obtained from our forecasting model and the benchmark model. In Panel B, we
use squared errors to compare our model’s out-of-sample forecast accuracy with that of the benchmark model. The DMSE row reports the difference
between the mean squared errors (MSEs) obtained from our forecasting model and the benchmark model. In both panels, we report the t statistic of a
one tailed t-test. We also report the t statistic obtained from a skewness adjusted t-test to ensure that a potential skewness does not affect our findings.
Lastly, we use the binomial sign test to test if the benchmark model is more likely to produce absolute deviations that are lower than the ones our model
generates. *, **, and *** indicate statistical significance at 0.05, 0.01, and 0.001, respectively.
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for more than half of the forecasts (e.g., if it gives a
lower absolute deviation for more than 818/2 = 409
data points when l = 1). We perform this analysis
using a non-parametric binomial sign test. Our
model generates lower absolute deviations than the
benchmark model. The difference from 50% is statis-
tically significant at p = 0.001 for all l = 1, ⋯, 8.
Panel B in Table 8 reports results based on the
squared errors of our model as well as the bench-
mark model for each lag, l = 1, . . ., 8. Performing
forecast comparisons between our model and the
benchmark model based on squared errors does not
change our findings.
Our analyses indicate that our model is more

likely to generate smaller forecast errors than the
benchmark model, on average. Similarly, our non-
parametric analyses show that for a randomly picked
firm-quarter observation, our model is more likely to
generate a more accurate forecast than the bench-
mark model. These results are robust to the time lag
between predictive variables and future financial dis-
tress. Thus, we conclude that operational perfor-
mance can contribute to predicting future financial
distress.

7. Managerial Insights

Our findings suggest that airlines and outside stake-
holders (e.g., regulators) can use operational perfor-
mance to generate early warning signals regarding
future financial distress. Additionally, our empirical
model can be used for comparative purposes. To fur-
ther illustrate these ideas, we compare and contrast
four major players in the US airline industry, Ameri-
can, Delta, JetBlue, and Southwest, in terms of their
financial distress and ability to manage key opera-
tional variables post 9/11. The US airline industry
experienced a major shock from the terrorist attacks
of September 11, 2001. Figure 1 shows that the aver-
age bankruptcy probability exceeded 0.50 for several
quarters after 9/11, primarily due to high volatility
and steep declines in stock prices. Both American and
Delta felt the negative impact immediately with their
stock prices declining more than 35% within a week
of the attacks. While most carriers were downsizing
their workforce and flight schedules after 9/11,
Southwest and JetBlue did the opposite by moving
into markets deserted by their competitors. Shortly
after 9/11, Southwest became the third airline after
American and Delta in terms of the number of
enplaned passengers, and JetBlue gained major airline
status. In light of these observations, we examine
American, Delta, JetBlue, and Southwest during the
period 2005–2013. Starting in 2005 enables us to
exclude the industry-wide effect of 9/11 observed for
a few years after the attacks and examine JetBlue after

it obtained a relatively large market share in the
industry.
Figure 2 shows the average probability of bank-

ruptcy for airlines between 2005 Q1 and 2013 Q4.
Southwest is clearly superior to its competitors in
terms of financial stability. Its average probability of
bankruptcy is less than 0.01. JetBlue also has a rela-
tively low average bankruptcy probability of 0.04,
whereas the average bankruptcy probabilities equal
0.23 and 0.15 for American and Delta, respectively.
Our empirical model specification (equation 3)
implies a non-linear relationship between operational
variables and the probability of bankruptcy, because
we transform NDD to Nð�NDDÞ. Consequently, our
bankruptcy probability estimates are more sensitive
to operational performance for airlines with distance
to default values between �2 and 2. As illustrated in
Figure 2, the slope of the bankruptcy probability
curve is steepest in this range.
Figure 3 shows how four operational variables

yield, load factor, fleet utilization, and fleet hetero-
geneity affect bankruptcy probability estimates. Fig-
ure 3a captures the sensitivity of our estimates to
yield. We generate Figure 3a by using the coefficient
estimates of Model 6 reported in Table 6. Estimating
airline fixed effects enables to us derive a separate
bankruptcy probability curve for each airline. We esti-
mate bankruptcy probabilities by replacing the actual
value of yield with numerous yield values varying
between 7 and 14 ¢/ASM while keeping the original
values of the remaining explanatory variables. (See
the notes to Figure 3 for the details of our methodol-
ogy.) Although high yield is associated with lower
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Figure 2 The Average Probability of Bankruptcy and the Corresponding
Na€ıve Distance to Default by Airline Between 2005 Q1 and
2013 Q4

Notes. We compute the probability of bankruptcy for airline i in quarter t
using Bharath and Shumway’s (2008) na€ıve distance to default, NDD
metric. We compute the average probability of bankruptcy for airline i by
taking a simple average over all quarters in which the airline was publicly
traded between the first quarter of 2005 and the last quarter of 2013. We
plot �1 9 NDD on the x-axis to be consistent with our regression model
specifications.
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financial distress, it is worthwhile to note that JetBlue
has the lowest average yield among the four carriers
we examine. Nonetheless, its financial distress is
lower compared to American and Delta in part
because it compensates in other dimensions (high
load factor and high fleet utilization). Bankruptcy
probability estimates for American and Delta are sen-
sitive to yield. For instance, if American with an aver-
age yield of 10.62 ¢/ASM had Delta’s average yield of
10.12 ¢/ASM, then American’s bankruptcy probabil-
ity estimate would change from 0.23 to 0.25.

Southwest’s bankruptcy probability estimate is insen-
sitive to yield, because Southwest is on the very flat
left tail of the curve in Figure 2.
Figure 3b illustrates the sensitivity of bankruptcy

probability estimates to load factor. Among the four
carriers, JetBlue has the highest load factor. If Jet-
Blue’s average load factor declined from 0.82 to
Southwest’s average load factor of 0.75, then JetBlue’s
bankruptcy probability estimate would go up from
0.04 to 0.07. Similarly, the bankruptcy probability esti-
mate would increase by more than 0.05 for both
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Figure 3 Sensitivity Analysis

Notes. Figures (a)–(d) demonstrate the sensitivity of our bankruptcy probability estimate to yield, load factor, fleet utilization, and fleet heterogeneity,
respectively. We use the coefficient estimates of Model 6 in Table 6 to generate these figures. The vertical dashed lines show the average value of the
operational variable (e.g., yield) for each airline for the period between the first quarter of 2005 and the last quarter of 2013. We generate the sensitivity
curves for yield as follows. For each airline, we first replace the realized value of yield with a fixed value (e.g., 7) in each quarter. Then we compute the
fitted na€ıve distance to default, using the new value of yield while setting all other variables equal to their realized values. Lastly, we convert the fitted
na€ıve distance to default values to bankruptcy probabilities, and compute the average probability of bankruptcy between the first quarter of 2005 and the
last quarter of 2013. Repeating these steps for a range of yield values between 7 and 14 leads to the curves depicted in Figure (a). We generate the
sensitivity curves in Figures (b)–(d) using the same approach.
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American and Delta if they had Southwest’s average
load factor. Despite having a low load factor, South-
west has no financial distress in part because it com-
pensates in other dimensions (e.g., low operational
complexity).
Figure 3c shows the sensitivity of bankruptcy prob-

ability estimates to fleet utilization. Among the four
carriers, JetBlue has a clear fleet utilization advantage
due to its high proportion of red-eye flights
(Huckman and Pisano 2011). In contrast, American
and Delta have relatively low fleet utilization in part
due to their hub-and-spoke systems. It is unlikely for
legacy carriers to achieve JetBlue’s fleet utilization.
However, if American increased its average fleet uti-
lization from 0.41 to Delta’s average utilization, 0.43,
American would lower its bankruptcy probability
estimate from 0.23 to 0.20. Lastly, Figure 3d shows the
sensitivity of bankruptcy probability estimates to fleet
heterogeneity. American and Delta have relatively
high fleet heterogeneity scores in part due to serving
both small and large markets with different aircraft
types. Nonetheless, American has lower fleet hetero-
geneity than Delta. If American’s average fleet hetero-
geneity increased from 0.62 to Delta’s average, 0.75,
American’s bankruptcy probability estimate would
increase from 0.23 to 0.28. Among the low-cost carri-
ers, JetBlue’s average fleet heterogeneity score is 0.29
due to the introduction of a second plane type in
2005. If JetBlue had not introduced the second plane
type, its average fleet heterogeneity would have been
zero, and its bankruptcy probability estimate would
have been 0.01 instead of 0.04.
In summary, our analyses demonstrate how ana-

lysts and regulators can use operational variables for
comparative and predictive purposes. When examin-
ing an association between an operational variable
(e.g., yield) and future financial distress, one should
keep airline fixed effects and other operational dimen-
sions (e.g., operational complexity) in mind. Under-
performing in one dimension (e.g., yield for JetBlue)
does not necessarily imply that an airline will face
financial distress, especially if that airline is overper-
forming in other operational dimensions.

8. Conclusion

Financial distress models are useful for firms and
their outside stakeholders, such as regulators and
investors, because such models provide early warn-
ing signals regarding a firm’s future financial health.
Despite the abundance of financial distress studies,
the literature has largely overlooked whether opera-
tional performance can predict future financial
distress. We identify four areas of operational perfor-
mance, yielding a comprehensive set of 11 potential
operational predictors of future financial distress. In

addition, we overcome the limitations of previous air-
line financial distress studies by (i) using a continuous
financial distress metric, (ii) testing associations
between lagged values of operational predictors and
financial distress, and (iii) showing the superior pre-
dictive power of our model compared to a financial
ratio-based benchmark model with out-of-sample
forecasting. Thus, we contribute to the literature by
combining the three-step empirical approach used in
the broader financial distress literature with context-
rich industry data and thereby demonstrating that all
four areas of operational performance contain infor-
mation useful to predict future financial distress in
the US airline industry.
The superior predictive ability of our model implies

that financial metrics do not fully explain the future
financial performance of a firm and that operational
performance can be a leading indicator of financial
performance. Consequently, firms and their outside
stakeholders should pay close attention to operations
as operational performance can help better predict
future financial distress. For instance, our model can
help a regulatory agency, such as DOT, to monitor the
health of airlines by not only tracking operational per-
formance but also deciphering time trends and airline
fixed effects, which play important roles in industry
studies (Joglekar et al. 2016).
Future industry studies can use our dependent vari-

able to investigate the predictive ability of operational
characteristics on future financial distress in other
contexts. Another avenue for future research is to
identify operational variables that predict the timing
of corporate bankruptcies. Even though our logistic
regressions show an association between operational
performance and bankruptcy status, our dataset with
only 20 bankruptcy filings is not large enough to
develop a forecasting model that predicts the timing
of bankruptcy filings and conduct formal statistical
tests to measure its out-of-sample forecast accuracy.
Studying bankruptcy prediction in an industry with a
larger number of bankruptcy filings (e.g., manufactur-
ing) should lead to insights regarding operational
variables that predict the timing of bankruptcy. Hope-
fully, studies along these lines can advance our under-
standing of the relationship between operational
performance and financial performance.
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Notes

1The list of bankruptcies in the US airline industry is
available at the Airlines for America web site, http://air
lines.org/dataset/u-s-bankruptcies-and-services-cessations/.
The UCLA-LoPucki bankruptcy database is available at
http://lopucki.law.ucla.edu/.
2Breusch-Pagan Lagrange multipler tests verified the pres-
ence of cross-sectional heteroskedasticity, and Breusch–
Godfrey tests verified the presence of serial correlation in
Models 1–7.
3Panel data models that include lagged dependent vari-
ables in their regressors are estimated via generalized
method of moments estimators when the number of units
is large and time horizon is short (typically less 15 time
periods). In contrast, TSCS data estimators perform better
in settings like ours where there is a small number of
units observed over a long time horizon (Beck and Katz
2011).
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