
191

11 Accelerated Learning 
by Experimentation

Roger Bohn and Michael A. Lapré

DELIBERATE LEARNING

Experimentation was a key part of the Scientific Revolution. Galileo (1564–1642) 

is often credited with being the first to use experiments for both discovery and 

proof of scientific relationships, although this could also be said of Ibn al-Haytham 

(965–1040) who lived some 600 years earlier. Experimentation as a core concept in 

management was introduced by Herbert Simon, who discussed both management 

and engineering as processes of systematic search over a field of alternatives (March 

and Simon 1958; Newell and Simon 1972). Deliberate systematic experimentation to 

improve manufacturing probably goes back to chemical engineering in the late nine-

teenth century. Frederick Taylor ran thousands of metal-cutting experiments over 

several decades, and in many ways was a pioneer in systematic learning, a decade 

before his controversial research on managing people (Bohn 2005). Systematic 

experimentation in marketing began around 1940 (Applebaum and Spears 1950).
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192 Learning Curves: Theory, Models, and Applications

A general definition of an experiment is: “A deliberate comparison of outcomes 

from a varied but repeatable set of conditions, with an effort to explain different out-

comes by differences in conditions.” This definition includes controlled experiments 

(in which possible causal conditions are deliberately manipulated), and natural 

experiments (in which they are measured but not deliberately altered). The definition 

excludes purely descriptive investigations such as surveys or satellite photographs 

in which the results are solely tabulated or displayed. For example, a control chart 

by itself is not an experiment, although control charts can provide data for natural 

experiments.

Experiments are a key mechanism for industrial learning, and are therefore an 

important managerial lever to accelerate learning curves (Adler and Clark 1991; 

Dutton and Thomas 1994; Lapré et al. 2000). The learning curve phenomenon has 

been observed frequently for measures of organizational performance such as qual-

ity and productivity. The rate of improvement is called the “learning rate.” Learning 

rates show tremendous variation across industries, organizations, and organizational 

units (Dutton and Thomas 1984; Lapré and Van Wassenhove 2001). Bohn (1994) 

and Lapré (2011) discuss the model inside the learning curve. Both experience and 

deliberate activities can be sources for learning; learning can yield better organi-

zational knowledge, which in turn can lead to changed behavior, and subsequently 

to improved performance. None of these steps are automatic. Dutton and Thomas 

(1984) call learning from experience “autonomous learning” and learning from 

deliberate activities “induced learning.” The typical examples of deliberate activi-

ties are quality improvement projects and productivity improvement projects. Such 

projects often rely on a series of experiments. Other induced learning methods at the 

level of the firm are deliberate knowledge transfers from outside the organization, 

and the training of workers—but these are available only for knowledge that already 

exists and is accessible. Even when firms transfer knowledge from the outside, some 

adaptation to local circumstances—and thus experimentation—is almost always 

required (Leonard-Barton 1988). Hence, sound management of experimentation is 

important in order to attain the effective management of the learning rate.

In an extreme example, experimentation can be the sole driver of a learning curve. 

Lapré and Van Wassenhove (2001) studied productivity learning curves at four pro-

duction lines at Bekaert, the world’s largest independent producer of steel wire. One 

production line was run as a learning laboratory in a factory. The productivity learn-

ing curve was explained by the cumulative number of productivity improvement 

projects, which consisted of a series of natural and controlled experiments. The other 

three production lines were set up to replicate the induced learning. Interestingly, 

the other three lines struggled with learning from experimentation and relied on 

autonomous learning instead. Even within the same organization, it can be difficult 

to manage the required scientific understanding and human creativity (we will later 

refer to this as the “value of the underlying ideas”).

Experiments are used in a variety of settings. Generally, the experiments them-

selves are embedded into broader processes for deliberate learning, such as line 

start-ups, quality programs, product development, or market research. Examples of 

situations dealt with by experimentation include:
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• Diagnosing and solving a newly observed problem in a complex machine

• Improving the layout or contents of web pages that are displayed to 

consumers

• Breeding new varieties of plants

• Developing a new product by building and testing prototypes

• Conducting a clinical trial of a new medication on a population of patients

• Scientific modeling via simulation, such as global climate change models

Experimentation is not the only method of performance improvement in industry. 

Other approaches start from existing knowledge and attempt to employ it more 

widely or more effectively. These include training workers, installing improved 

machinery (with the knowledge embedded in the machines), and improving process 

monitoring to respond faster to deviations. In such approaches, experiments are still 

needed to validate changes, but they do not play a central role.

SEQUENTIAL EXPERIMENTATION

Experiments are generally conducted in a series, rather than individually. Each 

cycle in the series consists of planning the experiment, setting up the experimental 

apparatus, actually running the trial and collecting data, and analyzing the results 

(plan, set-up, run, analyze). For example, in product development, experiments focus 

on prototypes, and the prototyping cycle consists of designing (the next prototype), 

building, testing (running trials with the prototype), and analyzing (e.g., see Thomke 

1998). The “planning” stage includes deciding what specific topic to investigate, 

deciding where and how to experiment (discussed below), and the detailed design of 

the experiment. The analysis of results from each experiment in the series suggests 

further ideas to explore.

Experiments can be designed for the general exploration of a situation, to com-

pare discrete alternative actions, to estimate the coefficients of a mathematical model 

that will be used for optimization or decision making, or to test a hypothesis about 

causal relationships in a complex system. The goals of experiments in a series usu-

ally evolve over time, such as moving from general to specific knowledge targets. 

For example, to fix a novel problem in a multistage manufacturing process, engineers 

may first isolate the location of the cause (general search), and then test hypotheses 

about the specific causal mechanism at work. They may then test possible interven-

tions to find out whether or not they fix the problem and what, if any, are the side 

effects. Finally, they may run a series of experiments to quantitatively optimize the 

solution.

The goals of experiments depend on how much is already known. Knowledge 

about a particular phenomenon is not a continuous variable, but rather it passes 

through a series of discrete stages. The current stage of knowledge determines the 

kinds of experiments needed in order to move to the next stage (Table 11.1). For 

example, to reach Stage 3 of causal knowledge, one must learn the direction of an 

effect, which may only require a simple two-level experiment, while at Stage 4 the 

full effects are understood quantitatively. This requires an elaborate design, often 
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involving the changing of multiple variables. Whether the additional knowledge 

is worth the additional effort depends on the economics of the particular situa-

tion. Moving from rudimentary to complete knowledge often takes years because 

advanced technologies have complex networks of relationships, with hundreds of 

variables to consider.

LEARNING IN SEMICONDUCTOR MANUFACTURING

Deliberate learning takes place almost constantly in semiconductor fabrication. 

Fixed costs of fabrication are very high, so the production rate (throughput) and 

yield (fraction of output that is good) are critical. Yields of new processes sometimes 

start well below 50%, and a percentage point of yield improvement is worth millions 

of dollars per month (Weber 2004).

Because of the very high complexity of the fabrication process, no changes are 

made unless they have been tested experimentally. Hundreds of engineers in each 

wafer fabrication facility (called “fab”) engage in constant learning cycles. Some 

seek changes that will permanently improve yields. Learning targets can include the 

product design at several levels, from circuit design to specific masks, changes in the 

process recipe, changes in the tooling recipe (such as a time/intensity profile for a 

deposition process), or alterations in a $10 million tool. Other problem-solving activ-

ities can locate and diagnose temporary problems, such as contamination. Natural 

experiments (discussed below) may be adequate to find such problems, but engineers 

always test the solution by using a controlled experiment before putting the tool back 

into production. Other experiments are used to test possible product improvements. 

Finally, some experiments are run for development purposes, either of new products 

or of new processes.

Learning curves for yield improvement can differ considerably, even within the 

same company. In the case of one semiconductor company for which we had data, 

the cumulative production that was required in order to raise yields by 10 percentage 

TABLE 11.1
Stages of Causal Knowledge and the Types of Experiments Needed to 
Progress

Causal Knowledge Stage: How Cause xi 
Affects Outcome Y

Experimental Design Needed to Get to this 
Stage

6. Integrated multivariate causal system Multivariate experiment with initial, 

intermediate, and final variables all measured

5.  Scientific model (formulaic relationship 

derived from scientific theory)

Test fit to an equation derived from first 

principles

4.  Magnitude and shape of effect (empirical 

relationship)

Compare range of levels of xi (response 

surface estimation)

3. Direction of effect on Y Compare two selected alternatives

2. Awareness of variable xi Screening experiment on multiple possible 

causes; general exploration

1. Ignorance (Starting condition)
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points from their initial level ranged from below 10 units, to more than 200 units.* 

There were many reasons behind this large range, including better systems put in place 

for experimentation and observation (natural experiments), transfer of knowledge 

across products, and more resources for experiments at some times than at others.

METHODS OF ACCELERATING LEARNING

Deliberate (induced) learning is a managed process. This section discusses the driv-

ers of effective learning by experimentation. There is no perfect way to experiment, 

and choosing methods involves multiple tradeoffs. In some situations, a better strat-

egy can have a 10-fold effect on the rate of learning. Even when using a single strat-

egy, effectiveness can vary dramatically.

We divide the analysis into three sections. First we show that there are four basic 

types of experiments. Second, we present criteria for predicting the rate of learning 

from experiments. These include cost per experiment, speed, and specific statistical 

properties. Third, we discuss the choice of where to experiment (location). At one 

extreme are full-scale experiments in the real world, while more controlled loca-

tions are usally superior. Different combinations of experiment type and location can 

improve some of the criteria, while worsening others.

This three-part framework (types, criteria, and locations) was first developed for 

manufacturing (Bohn 1987) and was then applied to product development (Thomke 

1998). The framework also fits market research and other industrial learning about 

behavior. It can also be used in clinical trials.

TYPES OF EXPERIMENTS AND THEIR CHARACTERISTICS

There are four main types of experiments, each with different ways of manipulating 

the causal variables. (1) Controlled experiments make deliberate changes to treat-

ments for several groups of subjects, and compare their properties. For example, 

medical clinical trials treat separate groups of patients with different drugs or doses. 

The “control group” captures the effects of unobserved variables; the difference in 

outcomes between the control and treated groups is the estimated effect of the treat-

ment. Treatments in controlled experiments can be elaborated indefinitely. A classic 

reference on this subject is Box et al. (1978).

(2) Natural experiments use normal production as the data source.† The natural 

variation in causal variables is measured carefully, and is related to the natural varia-

tion in outcomes using regression or related techniques. Natural experiments are 

generally inexpensive; the main costs involved are for analysis, and, if necessary, 

special measurements. As a result, very large sample sizes are possible. On the other 

hand, natural experiments can only measure the impact of changes that occur due to 

* Arbitrary production units used for disguise.
† The term “natural experiment” has apparently never been formally defined, although various authors 

have used it, or have discussed a similar concept using a different name. Murnane and Nelson (1984) 

refer to natural experiments but without defining them. Box et al. (1978) referred to them as “happen-

stance data.”
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natural variations in the process. They cannot predict the effects of radical changes, 

such as a new type of equipment, or a completely new procedure.

A fundamental problem with natural experiments is confounding. If A and B vary 

together, does A cause B, or does B cause A, or are both caused by an invisible third 

variable (Box et al. 1978)? There are also tricky questions about causality. Suppose 

that the length of time spent by customers in a grocery store is measured and turns 

out to be positively correlated to the amount of money spent. Do the customers: (a) 

spend more because they had more time to look at merchandise, or (b) spend more 

time shopping because they intended to buy more at the time they entered the store? 

Gathering additional data via a questionnaire might resolve this, while still remain-

ing a natural experiment, but even if the first case is correct, an intervention that 

increases the time spent in the store will not necessarily lead to increased spending.* 

This simple example highlights the importance of an explicit causal model for learn-

ing from experiments; an appropriately complex causal model is needed in order to 

understand the effect of interventions that can change A, compared with just statisti-

cally establishing and concluding that A increases B (Pearl 2001).† The causal model 

can be determined from outside knowledge, or by appropriate controlled experi-

ments, but it cannot generally be tested purely by natural experiments.

(3) Ad hoc experiments, like controlled experiments, use deliberate changes. 

However, the changes are made without a careful control group or experimental 

design. A simple “before-and-after” comparison is used to estimate the impact of 

the treatment. Because many unobserved variables can also change over time, ad 

hoc experiments can be very misleading and can have a poor reputation. However, 

young children playing with blocks learn very effectively in this way, and quickly 

learn basic cause-and-effect relationships. This form of learning is sometimes called 

trial and error (Nelson 2008).

(4) Evolutionary operation (EVOP) experiments are a hybrid between controlled 

and natural experiments. Slight changes in the production process are made delib-

erately, and the resulting changes are measured and statistically associated with the 

process shifts. The changes are small enough so that the process still works and the 

output is still good. Subsequent changes can move further on in whichever directions 

yield the most improved results—this is the “evolution.”

EVOP was proposed decades ago for factories, but as far as we know, it was little 

used (Hunter and Kittrell 1966).‡ Recently, however, it has become a very common 

approach to learning on the Internet. As is discussed below, Amazon and Google 

both use multiple EVOP experiments to tune their user-interface (web page) design, 

search algorithms for responding to queries, selection and placement of ads on the 

page, and so forth. Seemingly minor design issues such as colors and the precise 

location of “hot spots” on the page can be experimented on very easily, quickly, and 

cheaply.

* For example, management could slow down the checkout process, or show a free movie. These might 

seem far fetched in a grocery store, but similar problems would cloud the results of a natural experi-

ment in a casino, a theme park, or a bookstore. 
† The standard statistical and mathematical notations are not even capable of distinguishing among the 

different types of causes (see Pearl 2001).
‡ It was also proposed for marketing, as a form of “adaptive control” (Little 1966).
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All four types of experiments are generally feasible for learning in ongoing opera-

tions, but only controlled and ad hoc experiments are available for novel situations. 

Deciding which type to use depends on the interactions among several criteria, 

which we turn to next.

CRITERIA FOR EVALUATING EXPERIMENTATION METHODS

There are advantages and drawbacks to the different types of experiments and 

the different designs within a type. There is, as yet, no “theory of optimal experi-

mentation,” except within very stylized models. However, a small number of high-

level properties are essential to predicting the overall effectiveness of the different 

approaches. Key characteristics include speed, signal-to-noise (S/N) ratio, cost per 

cycle, value and variety of ideas, and fidelity.

• Speed can be defined as the inverse of the information cycle time from the 

beginning to the end of each plan–set-up–run–analyze cycle. Shorter cycle 

times directly accelerate learning by requiring less time to run a series of 

experiments. Less directly, a faster cycle helps the experimenters “keep 

track of” the experiment, the reasoning behind it, and any unrecorded sub-

tleties in the experimental conditions, along with any results that may be 

important only in retrospect.

• Signal-to-noise ratio (S/N) can be defined as the ratio of the true (unknown) 

effect of the experimental change to the standard deviation of measured 

outcomes. The S/N drives the common significance test such as the “t test,” 

which measures the probability of a false positive result. It also drives the 

statistical power, which measures the probability of a false negative (over-

looking a genuine improvement) (Bohn 1995a). The S/N can generally be 

improved by increasing the sample size, but more subtle methods are usu-

ally available and are often less expensive.*

• Cost per cycle. The lower the cost, the more experimental cycles can be run (or 

the more conditions can be tested in parallel). The financial costs of controlled 

experiments usually include the cost of the materials used in the experiment, 

but the most important costs are often non-financial—notably, the opportunity 

costs of busy engineers, the production capacity, computer time (for simula-

tion), or the laboratory-quality metrology equipment. Controlled experiments 

carried out on production equipment often require elaborate set-ups, which 

increases the opportunity costs. One of the great benefits of natural experi-

ments and EVOP is that the only costs are for special measurements, if any, 

and the analysis of the results. Costs are divisible into variable costs (meaning 

proportional to the sample size) and fixed costs (which depend on the com-

plexity of the experimental set-up, but not the sample size). A third type of 

cost is capital costs for expenditures to create the experimental system itself. 

The cost of a pilot line can be considered a capital cost to enable more/better 

experiments.

* S/N is a core concept in communications engineering. 
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  In semiconductor fabs, experimental lots are interspersed with normal 

production lots and the cost of experimentation is managed by quotas, rather 

than a financial budget. So-called “hot” lots are accelerated through the 

process by putting them at the front of the queue at each process step, giving 

roughly a two-fold reduction in the information cycle time, but increasing 

the cycle time for normal lots. For example, a development project could be 

given a quota of five normal lots and two hot lots per week. It is up to the 

engineers to assign these lots and their wafers to different questions within 

the overall development effort. Even for hot lots the information cycle is 

generally more than a month, so one fab could have 50 experiments in prog-

ress at one time.

• Value and variety of the underlying ideas being tested. Ideas for experi-

ments come from a variety of sources, including prior experiments, outside 

organizations, scientific understanding of the problem, and human creativ-

ity. Strong ideas convey a double benefit: they improve the S/N of the exper-

iment and, if the experiment reaches the correct conclusion, they increase 

the benefit derived from the new knowledge.

  In mature production processes and markets, most ideas will have a 

negative expected value—they make the situation worse. A higher variety 

of underlying ideas raises the total value of experimentation. This follows 

from thinking of experiments as real options, where the cost of the experi-

ment is the price of buying the option, the current value of “best practice” 

is its exercise price, and the revealed value of the new method is the value 

of the underlying asset.* According to the Black-Scholes formula and its 

variants, higher variance of the asset increases the value of options. There 

is a further benefit from the higher S/N that is not captured in the standard 

formulas, namely, the reduced probabilities of statistical errors.

• Fidelity of the experiment can be defined as the degree to which the experi-

mental conditions emulate the world in which the results will be applied. 

Fidelity is a major concern in choosing both the type and the location of 

experiments, which we discuss later.

Ideal experimentation strategies and tactics would increase the value of all five cri-

teria. More commonly though, the choices of how to experiment will involve tradeoffs 

between the criteria. For example, S/N ratio increases with sample size, but so does 

the cost (except for natural experiments). Speed can usually be increased by paying a 

higher price. The degree to which this is worthwhile depends on the opportunity cost 

of slower learning. This depends on both business and technical factors. Terwiesch and 

Bohn (2001) show that under some conditions of factory ramp-up, the optimal policy 

is bang-bang: at first, carry out zero production and devote all resources to experi-

ments; later carry out no experiments and devote all resources to production. At least in 

semiconductors, the normal pattern for debugging a new process is to start with 100% 

* Terwiesch and Ulrich (2009) show how higher variance is good in tournaments. Tournaments are a 

highly structured form of experimentation, in which only one proposal will be selected out of many.
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experiments, then shift to a quota, such as 5% experiments, and go to zero experiments 

near the end of life.

The recent popularity of “data mining” reflects the power of natural experiments 

under the right circumstances. For example, Harrah’s Casino uses natural experiments 

for insights that drive a variety of controlled experiments (Lee et al. 2003). In data 

mining, a company has invested in a database of historical data and analytic hard-

ware, software, and expertise. Once this large investment is operational, each experi-

ment costs only a few hours, or days, of people’s time and server processing time. 

The sample size can be in the millions, so the S/N ratio may be excellent, even if the 

environment has high variability and the data has measurement errors. So, three of 

the five criteria are extremely good: S/N, speed, and cost. On the other hand, fidelity 

is unclear, since much of the data are old and subject to the causal ambiguity problems 

discussed earlier.

APPROXIMATE REALITY: THE LOCATION OF EXPERIMENTS

The goal of experimentation in industry is to develop knowledge that can be applied 

in real environments, such as a high-volume manufacturing plant, a network of ser-

vice delivery points (automated teller machines, web servers, stores, etc.), the end-use 

environments of a product, a population of customers, or sufferers from a particular 

disease. Yet it is usually preferable to do experiments elsewhere—in an environment 

that emulates key characteristics of the real world, but suppresses other character-

istics in order to improve the S/N, cost, or information cycle time. Scientists have 

experimented on models of the real world for centuries, and new product developers 

have used models at least since the Wright brothers’ wind tunnels. The literature on 

product development identifies two orthogonal choices for how to model: analytical 
to physical and focused to comprehensive (Ulrich and Eppinger 2008). Both of these 

axes apply to all learning domains.*

Organizations that do a lot of learning by experimentation often designate special 

facilities for the purpose, referred to as pilot lines, model stores, laboratories, test 
chambers, beta software versions, and other names. These facilities usually have 

several special characteristics. First, they are more carefully controlled environ-

ments than the real world.† For example, clinical trials use prescreened subjects, with 

clear clinical symptoms, no other diseases, and other characteristics that increase 

the likely signal size and decrease the noise level. Second, they are usually better 

instrumented, with more variables measured, more accurately and more often. For 

example, test stores may use video cameras to study shopper behavior. Third, these 

facilities are more flexible, with more skilled workers and different tools. 

Moving even further away from the real world are virtual environments, such as 

simulation models and mathematical equations. Finite element models have revolu-

tionized experimentation in a number of engineering disciplines, because they allow 

science-derived first principles to be applied to complex systems.

* The original literature on manufacturing experimentation conflated them into a single axis, “location” 

(Bohn 1987).
† But see the Taguchi argument for using normal quality materials, discussed in the conclusion.
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Ulrich and Eppinger (2008) call the degree of reality or abstraction the “analyti-

cal/physical” dimension. They apply it to prototypes in product development, but 

their spectrum from physical to analytical also applies in manufacturing, medicine, 

and other domains, as illustrated in Table 11.2. For example, a steel company found 

that water and molten steel had about the same flow characteristics, and therefore 

prototyped new equipment configurations using scale models and water (Leonard-

Barton 1995). In drug development, test tube and animal experiments precede 

human trials.

There are many benefits of moving away from full reality toward analytical 

approximations (top to bottom in Table 11.2). Cost per experiment, information cycle 

time, and the S/N ratio all generally improve. The S/N ratio can become very high in 

deterministic mathematical models. The disadvantage of moving toward analytical 

models is the loss of fidelity: the results of the experiment will be only partly relevant 

to the real world. In principle, the best approach is to run an experiment in the sim-

plest possible (most analytical) environment that will still capture the essential ele-

ments of the problem under study. In practice, there is no single level of abstraction 

that is correct for every part of a problem, and learning therefore requires a variety 

of locations, with preliminary results developed at more analytical levels and then 

checked in more physical environments.

Full-scale manufacturing can be very complex. Lapré et al. (2000) studied orga-

nizational learning efforts at Bekaert, the world’s largest independent producer of 

steel wire. Bekaert’s production process can be characterized by detail complexity 

TABLE 11.2 
The Spectrum of Locations from Physical to Analytical

Locations of 
Experiments: 
Physical/Analytic 
Range Manufacturing

Aviation Product 
Development 

Example 
Drug Testing 

Example

Retail 
Behavior 
Example

Full-scale 
reality (most 
physical)

Manufacturing line Flight test Human trial Full-scale 

trial

Scale model Pilot line Wind tunnel Animal model Test market

Laboratory Lab In vitro test Focus group

Complex 
mathematical 
model

Finite-element 

simulation

CAD (finite element) 

simulation with 

graphical output

Rational drug 

design model

Simple 
mathematical 
model (most 
analytical)

Simultaneous 

equation model 

for annealing in a 

furnace

Strength of materials 

model

Half-life 

model of 

drug 

metabolism

Advertising 

response 

model

Note: Example locations shown for four learning situations. Fidelity is highest at the top (full scale), 

but information cycle times, signal-to-noise ratio, and cost per experiment get better as the 

domain moves toward analytical (at the bottom).
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(hundreds of machines, and hundreds of process settings), dynamic complexity 

(lots of dependencies between the production stages), and incomplete knowledge 

concerning the relevant process variables and their interactions. They found that 

Bekaert factories sometimes used the results from experiments run in laboratories 

at a central research and development (R&D) facility. However, on average, these 

laboratory insights actually slowed down the rate of learning in full-scale manu-

facturing. Small-scale laboratories at the central R&D facility were too different 

from the reality of full-scale manufacturing. Ignoring the complexity of full-scale 

manufacturing (such as equipment configurations) actually caused deterioration in 

performance. Thus, in manufacturing environments such as Bekaert’s, fidelity issues 

mean that the locations used for experiments need to be more physical and less ana-

lytical. Bekaert, therefore, did most of its experiments in a special “learning line” set 

up inside its home factory.

FOCUSED/COMPREHENSIVE SPECTRUM

The second aspect of experimental “location” is what Ulrich and Eppinger (2008) 

call “focused/comprehensive” dimension. An experiment can be run on a subsystem 

of the entire process or product rather than the entire system. It is easier to try out 

different automobile door designs by experimenting on a door than it is on an entire 

automobile, and easier still to experiment on a door latch. The effects of focused 

studies are similar to the effect of moving from physical to analytical locations. Once 

again, the tradeoff is loss of fidelity: subsystems have interactions with the rest of 

the system that will be missed. So this technique is more applicable in highly modu-

lar systems. At Bekaert, there were high interactions among the four main process 

stages, so single-stage trials were risky.

Experimenting on a subsystem has always been common in product development. 

In manufacturing and other complex processes, it is more difficult and more subtle, 

yet can have an order-of-magnitude effect on the speed of learning. The key is to 

understand the process well enough to measure variables that predict the final out-

come before it actually happens. The case study “short-loop experiments for AIDS” 

in the next section gives a dramatic example where the learning cycle time was 

reduced from years to months.

In semiconductor fabrication, experiments that only go through part of the pro-

cess, such as a single tool or single layer, are sometimes called short-loop experi-
ments (Bohn 1995b).* Suppose that a megahertz-reducing mechanism has been 

tentatively diagnosed as occurring in layer 10 out of 30, in a process with an average 

cycle time of two days per layer. Mathematical models of the product/process inter-

action suggest a solution, which will be tested by a split-lot experiment in which 14 

wafers are treated by the proposed new method and 10 by the old method. Clearly, 18 

days can be saved by splitting a previously routine production lot at the end of layer 

9, rather than at the beginning of the line. However, must the test lot be processed all 

the way to the end before measuring the yields of each wafer? If so, the information 

cycle time will be 42 days, plus a few more for setting up the experiment and testing. 

* Juran referred to such experiments as “cutting a new window” into the process (Juran and Gryna 1988).
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Furthermore, megahertz differences among the 24 wafers will be due to the effect 

of the process change plus all the normal wafer-to-wafer variation in all 30 layers, 

leading to a poor S/N ratio (Bohn 1995b).

The information cycle time and S/N will be far better if the effect of the change 

can be measured directly after the tenth layer, without processing the wafers further. 

This requires a good understanding of the intermediate cause of the problem, and the 

ability to measure it accurately in a single layer. Furthermore, it requires confidence 

that the proposed change will not interact with any later process steps.

Good (fast and accurate) measurement of key properties is critical to focused 

experiments. To allow better short-loop experiments, most semiconductor designs 

include special test structures for measuring the electrical properties of key layers 

and features. The electrical properties of these test structures can be measured and 

compared across all wafers. Running the trial and measuring the test structure prop-

erties can be done in a few days. Depending on how well the problem and solution 

are understood, this may be sufficient time to go ahead and make a process change. 

Even then, engineers will need to pay special attention to the megahertz tests of the 

first production lots using the new method. This checks the fidelity of the early short-

loop results against the full effect of the change. If there is a discrepancy, it means 

that the model relating the test structures to performance of the full device needs to 

be revised.

An analogous measurement for focused consumer behavior experiments is the 

ability to measure the emotional effect of advertisements on consumers in real time, 

and the ability to prove that the measured emotional state predicts their later pur-

chasing behavior. Once these conditions exist, consumers can be shown a variety of 

advertisements quickly, with little need to measure their actual purchasing behav-

ior. Measuring emotional response using functional magnetic resonance imaging 

(fMRI) is still in its infancy, but as it becomes easier it will have a big effect on 

the rate of progress in consumer marketing situations (for a review on fMRI, see 

Logothetis 2008).

CASE STUDIES

This section illustrates how learning has been accelerated through more effective 

experimentation in a variety of situations.

EXPERIMENTATION ON THE INTERNET

Amazon, Google, and other dot-com companies have exploited the favorable proper-

ties of the web for relentless experimentation on the interaction between their users 

and websites. Google has set up a substantial infrastructure to run experiments 

quickly and cheaply on its search site.* For example, two search algorithms can be 

interleaved to compare results. The dependent (outcome) variables include the num-

ber of results clicked, how long the user continues to search, and other measures of 

* Presentation by Hal Varian, Google chief economist, UCSD May 2007. See also Shankland (2008) and 

Varian (2006).
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user satisfaction. Multiple page layout variables such as colors, white space, and the 

number of items per page are also tested. Through such tests, Google discovers the 

“real estate value” of different parts of the search page. Google tested 30 candidate 

logos for the Google checkout service, and, overall, it now runs up to several hundred 

experiments per day.*

Such experiments have excellent properties with respect to most of the criteria 

we have discussed. They have very fast information cycle times (a few days), very 

low variable cost because they use EVOP, and high fidelity because they are run in 

the real world. Even if individual improvements are very small, or more precisely, 

have low standard deviation, the S/N ratio can still be excellent because of very large 

sample sizes. Google runs experiments on approximately 1% of the relevant queries, 

which in some cases can give a sample of one million in a single day. This can reli-

ably identify a performance improvement of only 1 part in 10,000.

However, Internet-based experiments still face potential problems on the focused/

comprehensive dimension. In many experiments the goal is to affect the long-term 

behavior of customers; but in a single user session only their immediate behavior is 

visible. A change could have different effects in the short and long run, and some-

times even opposite effects. Thus, experiments that measure immediate behavioral 

effects are essentially short-loop experiments, with a corresponding loss of fidelity. 

A company like Amazon can instead track the long-term buying behavior of custom-

ers in response to minor changes, but such experiments are slower and noisier. It is 

also difficult to measure the long-term effects on customers who do not log in to sites.

APPLE BREEDING: FIVE-FOLD REDUCTION OF INFORMATION CYCLE TIME

Breeding plants for better properties is an activity that is probably millennia old. 

Norman Borlaug’s “Green Revolution” bred varieties of rice and other traditional 

crops that were faster growing, higher yielding, and more resistant to drought and 

disease. However, some plants, including apple trees and related fruits, have poor 

properties for breeding (Kean 2010). One difficulty is that apple trees take about 

five years to mature and begin to bear fruit, leading to very long experimental 

cycles. Finding out whether a seedling is a dwarf or full-sized tree can take 15 years. 

A second difficulty is that, because of Mendelian inheritance, traditional breeding 

produces a high percentage of undesirable genetic combinations, which cannot be 

identified until the trees begin bearing. Finally, the underlying genetic variation in 

American apples is small, as virtually all domestic plants are cloned from a small 

number of ancestors, which themselves originated from a narrow stock of seeds pro-

mulgated by Johnny Appleseed and others 200 years ago. As a result, apple-breeding 

experiments have been slow and expensive, with low variation in the underlying 

“ideas.”

Botanists are now using four techniques to accelerate the rate of learning 

about apples. First, a USDA scientist collected 949 wild variants of the ancestor 

to domestic apples from Central Asia. This approximately doubled the stock of 

* Erik Brynjolfsson, quoted in Hopkins (2010, 52). The number 50 to 200 experiments at once is given 

in Gomes (2008).
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apple-specific genes available as raw material for learning (idea variety). Second, 

the time from planting to first apples is being shortened from five to about one 

year by inserting “fast flowering” genes from a poplar tree (information cycle 

time). Third, when two trees with individual good traits are crossed to create a 

combination of the two traits, DNA screening will be able to select the seedlings 

that combine both of the favored traits, without waiting until they mature. This 

reduces the number that must be grown by 75% (short-loop experiment to reduce 

cost). Finally, some of the wild trees were raised in a special greenhouse delib-

erately full of pathogens (specialized learning location, to improve cycle time 

and S/N).

SHORT-LOOP EXPERIMENTS FOR AIDS: THE CRITICAL ROLE OF MEASUREMENT

The human immunodeficiency virus (HIV) is the virus that eventually leads to 

acquired immunodeficiency syndrome (AIDS), but the delay between the initial HIV 

infection and AIDS onset can be many years, even in untreated individuals. This 

delay made experiments on both prevention and AIDS treatment quite slow. It was 

not even possible to be sure someone was infected until they developed AIDS symp-

toms. Both controlled and natural experiments were very slow in consequence. In the 

early 1990s, new tests allowed a quantitative measurement of HIV viral loads in the 

bloodstream. Researchers hypothesized that viral load might be a proxy measure-

ment for the occurrence and severity of infection, potentially permitting short-loop 

experiments that would be years faster than waiting for symptoms to develop. There 

is, however, always the question of the fidelity of short-loop experiments: is viral load 

truly a good proxy for severity of infection?

Using a controlled experiment to validate the viral load measure would be impos-

sible for ethical and other reasons. As an alternative, a natural experiment consists 

of measuring viral loads in a number of individuals who may have been exposed, 

and then waiting to see what happens to them. Such an experiment would take 

years, and it would require a large sample to get a decent S/N ratio. Fortunately, it 

was possible to run a quick natural experiment using historical data (Mellors 1998). 

Mellors and colleagues measured viral loads in stored blood plasma samples from 

1600 patients. These samples had been taken 10 years earlier, before the measure-

ment technique existed. From the samples plus mortality data on the individuals, 

they calculated the survival and life expectancy rates as a function of the initial 

viral load. They found very strong relationships. For example, if the viral load was 

below 500, the six-year survival rate was over 99% versus 30% if the load was over 

30,000.

This natural experiment on historical data achieved a high S/N ratio in a rela-

tively short period. However, even with strong results, “correlation does not prove 

causation.” In medicine the use of historical data is called a “retrospective trial.” 

Fortunately, several large-scale prospective and controlled trials were able to dem-

onstrate that if a treatment reduced viral load, it also reduced the likelihood of the 

disease progressing from infection to full AIDS. Therefore, viral load became a use-

ful proxy for short-loop experiments on possible treatments, as well as for treating 

individual patients.
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An ongoing example of developing a new measurement to permit shorter loop 

experiments is the recent discovery of seven biomarkers for kidney damage (Borrell 

2010). These biomarkers permit faster detection and are sensitive to lower levels of 

damage in animal studies, and presumably for humans as well. This will allow for 

the better assessment of toxicity at an earlier stage of drug trials.

Both examples highlight how identifying new variables and developing practi-

cal measurements for them can accelerate learning rates several-fold. Especially 

good variables can predict final outcomes early, thus allowing for more focused 

experiments.

FIDELITY PROBLEMS DUE TO LOCATION IN CLINICAL TRIALS

Sadly, searches for short-loop measurements that predict the course of illness are not 

always so successful. A particularly insidious example of the problem with short-

loop experiments is the use of selective health effects as the outcome measurement in 

controlled clinical drug trials. If a drug is designed to help with disease X, in a large 

clinical trial should the outcome measure be symptoms related to X, clinical markers 

for X, mortality due to X, or measures of total health? Should immediate effects be 

measured, or should patients be followed over multiple years? The assumed causal 

chain is: new medication → clinical markers for disease X → symptoms for X → 

outcomes for X → total health of those taking the medication. The target outcome 

is the total health effect of the new medication, and if the disease is a chronic one 

that requires long-term treatment, this can take years to measure. Looking at just the 

markers for disease X, or even at the outcomes of disease X alone, are forms of short-

loop experiments.

However, the problem with short-loop experiments is fidelity: Is the result for 

disease X a reliable predictor of overall health effects? In the human body, with its 

variety of interlocking homeostatic (feedback) systems, multiple complex effects are 

common. Even if X gets better, overall health may not. Although clinical trials are 

supposed to look for side effects, side effect searches generally have a low S/N. They 

are also subject to considerable conflict of interest, as the drug trials are usually paid 

for by the pharmaceutical company. There is ample evidence that this sometimes 

affects the interpretation and publication of study results (see, e.g., DeAngelis and 

Fontanarosa 2008). 

A tragic example of this problem was the anti-diabetes drug, Avandia. It was 

one of the world’s highest-selling drugs, with sales of $3.2 billion in 2006 (Harris 

2010). Untreated diabetes raises the mean and variance of blood glucose levels, and 

better control of the glucose level is viewed as a good indicator of effectiveness in 

treating diabetes. However, once Avandia was put on the market the drug caused 

serious heart problems. In fact, one estimate was that it raised the odds of death from 

cardiovascular causes by 64% (Nissen and Wolski 2007). Given the already high 

risk of heart attacks for diabetics, this indicates that it decreased overall survival. 

Unfortunately, many drug trial reports do not even list overall mortality for the treat-

ment and placebo populations, making it impossible to calculate the overall effects. 

Doctors are essentially forced to assume that the short-loop experiment has adequate 

fidelity for overall patient health.

© 2011 by Taylor & Francis Group, LLC



206 Learning Curves: Theory, Models, and Applications

Using intermediate disease markers for a focused clinical trial is not the only 

problem with the fidelity of clinical trials. Trial sample populations are carefully 

screened to improve the experimental properties for the primary (desired) effect. 

This is a move along the analytical/physical spectrum, because the trial population is 

not the same as the general population, which will take the drug if it is approved. For 

example, trials often reject patients who are suffering from multiple ailments or are 

already taking another medication for the targeted disease. For ethical reasons, they 

almost always avoid juvenile patients. These changes potentially reduce the fidelity 

of the experiment.

An example is the use of statins to reduce cholesterol and heart disease. While 

multiple clinical studies show that statins lower the risk of heart attack, they also 

have side effects that include muscle problems, impotence, and cognitive impair-

ment (Golomb and Evans 2008). Few of the clinical trials of statins measure overall 
mortality, and the available evidence suggests that they improve it only in men with 

pre-existing heart disease. Most of the clinical trials have been conducted on this 

population, yet statins are now widely prescribed for women and for men with high 

cholesterol but without heart disease. The evidence suggests that for these popula-

tions, they do not actually improve overall mortality (Parker-Pope 2008). Since they 

also have side effects, this suggests that they are being widely over-prescribed.

ASTRONOMY AND OTHER OBSERVATIONAL FIELDS

In some situations, causal variables cannot be altered and so only natural experiments 

are possible. However, when observations are expensive and difficult, the learning 

process is very similar to a series of controlled experiments. Often the experiments 

require elaborate data collection, and the choice of where to observe and what to col-

lect raises the same issues as setting up controlled experiments. The only difference 

is that there is usually no choice of location, which is at the “real world” end of the 

physical-analytical spectrum.*

The classic observational science is astronomy, since extra-planetary events can-

not be altered, though the observation time on instruments is scarce and rationed, 

especially for wavelengths blocked by Earth’s atmosphere. One approach to finding 

extra-solar planets is to look for periodic dimming in the light from a star. The mag-

nitude of the dimming gives an indication of planetary size. The S/N ratio of the mea-

surements is critical, as small planets will have little effect. Choosing stars to observe 

that are more likely to have planets and to have high S/N ratios is therefore crucial. 

Even so, a large sample is needed because if the planet’s orbit is not on the same 

plane as our sun, no occlusion will be visible. A special satellite mission, “Kepler,” 

has been launched for this purpose (Basri et al. 2005). A recent paper posits that the 

Kepler mission can also detect Earth-sized moons in habitable zones (Kipping et al. 

2009). The authors used mathematical models of hypothetical moons to evaluate dif-

ferent detection strategies and their statistical efficacy.

* Even in observational fields like astronomy, controlled experiments are possible using mathematical 

models, though the results cannot be validated by controlled experiments in the real world.
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CONCLUSIONS

This chapter shows how the rate of learning by experimentation—and, by extension, 

the slope of many learning curves—is heavily determined by the ways in which 

experiments are conducted. We identified five criteria that measure experimental 

effectiveness. They are: information cycle time (speed), S/N ratio, cost, value and 

variety of ideas, and fidelity. The statistical literature on experimentation deals for-

mally with only one of these, the S/N ratio, but it offers insights that are helpful in 

dealing with the others. For example, the powerful method of fractional factorial 
experiments looks at the effects of multiple variables simultaneously rather than one 

at a time, thereby improving both speed and cost.

These five criteria are, in turn, largely determined by how the experiment is 

designed, and we discuss two high-level design decisions: location and type of 

experiment. “Location” has two orthogonal axes, referred to as analytical to physical, 

and focused to comprehensive. Generally, more analytical or more focused locations 

reduce the fidelity of the experiment, but improve other criteria such as information 

cycle time and cost. We discuss four types of experiments: controlled, natural, evolu-

tionary, and ad hoc. Although controlled experiments are often viewed as inherently 

superior, for some types of problems they are impossible, and in other cases they are 

dominated by other types of experiments. 

We have not discussed the meta-problem of designing good learning environ-

ments. For example, “just in time” manufacturing principles encourage just the key 

properties of fast information cycle time and good S/N ratio, while providing perfect 

fidelity (Bohn 1987). We have also said little about what is being learned, since it is 

heavily situation specific. However, G. Taguchi claimed that the knowledge being 

sought in experiments was often too narrow. He pointed out that in many situations 

the variability in outcomes is just as important as the mean level of the outcome. He 

proposed specific experimental methods for simultaneously measuring the effects 

of process changes on both mean and variation. For example, he suggested that 

pilot lines and prototypes should be built with material of normal quality, rather 

than using high-quality material to improve the S/N ratio of experiments. Taguchi’s 

insight reminds us that “the first step in effective problem solving is choosing the 

right problem to solve.” 
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