

Biosketch

Manny was raised in New York City and Chicago and received his **Bachelor's in Microbiology from the University of Illinois Urbana-Champaign. He received his** Ph.D. in Biochemistry from the University of Cincinnati, focusing on a pathway important to cancers. Manny trained as a postdoctoral fellow at Rockefeller University in New York City where he gained expertise in RNA biochemistry and innate immunity. He joined Vanderbilt in 2014 as a faculty member of the Department of **Biochemistry. Among his research** contributions, he is also an inventor of a patent for a molecule that can activate the immune system, which has relevance to the development of immunotherapeutics for autoimmune disorders and cancers.

Key Publications

"Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice," *Nature Communications*, Sep 29;8(1):750, 2017

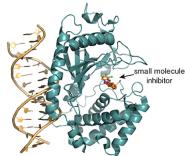
"Cyclic [G(2',5')pA(3',5')p] is the Metazoan Second Messenger Produced by DNA-Activated Cyclic GMP-AMP Synthase, *Cell*, 153(5):1094-1107", 2013

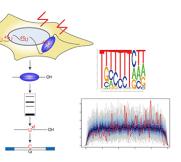
"FMR1 targets distinct mRNA sequence elements to regulate protein expression," *Nature*, 492(7249):382-386, 2012

Manuel Ascano, PhD

Assistant Professor of Biochemistry Assistant Professor of Pathology, Microbiology and Immunology

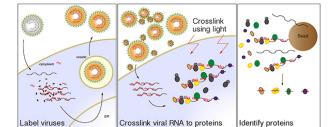
manuel.ascano@vanderbilt.edu 615-875-8714 https://lab.vanderbilt.edu/ascano-lab


"Understanding innate immunity to inspire new therapies for infectious disease, autoimmunity, and human cancers"


The Ascano lab integrates Biochemical and Chemical Biological approaches with High-throughput Transcriptomic and Proteomic technologies to **investigate the impact of RNA and DNA binding proteins in innate immunity, viral infection, and human disease**. Current research activities include:

cGAS is a critical protein required for sensing foreign or damaged cellular DNA. Can we **understand the mechanism of cGAS enzyme activity** by designing small molecule activators and inhibitors, and can these compounds develop into novel drugs **for treatment of autoimmune disorders or cancers?**

RNA binding proteins play essential roles in regulating gene expression; without them, no protein can be made. **How do RNA binding proteins like ELAVL1 and IFIT1 regulate cellular and viral RNAs to promote cell survival during infection?**


What human proteins make the first contacts with viral RNA during an infection? And **what role do these proteins play?** Anti- or pro-viral? Over 160 viruses that infect humans contain an RNA genome, and they include: **Influenza, HIV, SARS, and Ebola.**

The protein cGAS recognizes foreign DNA and triggers an inflammatory response. Small molecules can target its activity.

PAR-CLIP technology identifies all gene targets of RNA binding proteins like ELAVL1 and IFIT1 to determine which are important for immunity and cell survival.

VIR-CLASP technology captures the earliest events between viral genomes and human cells during infection. 73% of all viruses that cause human disease contain RNA genomes.