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Endocannabinoid control of the insular-bed nucleus of the stria
terminalis circuit regulates negative affective behavior
associated with alcohol abstinence
Samuel W. Centanni1,2,3,4, Bridget D. Morris1, Joseph R. Luchsinger1,3,4, Gaurav Bedse1,3,4,5, Tracy L. Fetterly1,3,4,6, Sachin Patel1,2,3,4,5 and
Danny G. Winder1,2,3,4,5

Negative affect is a core symptom domain associated with an array of neurological and psychiatric disorders and is only partially
targeted by current therapies, highlighting the need for better, more targeted treatment options. This study focuses on negative
affective symptoms associated with prolonged alcohol abstinence, one of the leading causes of relapse. Using a mouse model of
chronic alcohol consumption followed by forced abstinence (CDFA), prolonged alcohol abstinence increased c-fos expression and
spontaneous glutamatergic neurotransmission in the dorsal bed nucleus of the stria terminalis (dBNST), a region heavily implicated
in negative affect in both humans and rodents. Further, pharmacologically enhancing endogenous cannabinoids (eCB) with JZL184
prevents abstinence-induced increases in dBNST neuronal activity, underscoring the therapeutic potential of drugs targeting the
brain’s eCB system. Next, we used a channelrhodopsin-assisted mapping strategy to identify excitatory inputs to the dBNST that
could contribute to CDFA-induced negative affect. We identified the insular cortex (insula), a region involved in regulating
interoception, as a dense, functional, eCB-sensitive input to the dBNST. Using a chemogenetic strategy to locally mimic eCB
signaling, we demonstrate that the insula strongly influences the CDFA behavioral phenotype and dBNST neuronal activity. Lastly,
we used an anterograde strategy for transynaptic targeting of Cre expression in combination with a Gq-DREADD to selectively
recruit dBNST neurons receiving insula projections. Chemogenetic recruitment of these neurons mimicked behavioral and c-fos
responses observed in CDFA. Collectively, this study supports a role for the insula-BNST neural circuit in negative affective
disturbances and highlights the therapeutic potential of the eCB system for treating negative affective disorders.

Neuropsychopharmacology (2019) 44:526–537; https://doi.org/10.1038/s41386-018-0257-8

INTRODUCTION
Affective disorders, including depression and anxiety, are the
most common psychiatric diseases. Close to 50 million adults in
the US suffer from some form of depression and anxiety, yet
only 40% are successfully treated [1]. While negative affective
states are considered potent antecedents to many diseases, they
have a particularly strong impact on drug addiction, including
both the initiation and abstinence phases [2]. Alcohol use
disorders (AUDs) are highly comorbid with psychiatric maladies
such as generalized anxiety disorder and major depression [3–5].
Abstinent alcoholics commonly report stress and negative affect
as potent triggers of cravings and relapse [3, 6], and the severity
of negative affect is strongly correlated with relapse suscept-
ibility [2, 7]. Treating these symptoms with traditional anti-
depressants has yielded inconsistent results, and in some cases
these drugs can increase alcohol drinking [8, 9], underscoring
the need to identify novel therapeutic targets through a greater
understanding of the complex neurocircuitry regulating the
disease state.

The endogenous cannabinoid (eCB) system negatively regulates
anxiety, fear-learning, and stress-coping behaviors (for review see
[10]), highlighting its therapeutic potential. The major compo-
nents of the CNS eCB system are the presynaptic, Gi-coupled
GPCR, cannabinoid receptor (CB1R), the two endogenous ligands
2-arachadonylglycerol (2-AG) and N-arachidonylethanolamine
(AEA), and their metabolic regulators, all of which are widely
expressed throughout the brain [11, 12]. Pharmacological
enhancement of 2-AG can prevent affective behaviors [13–16]
and a wide body of literature supports a role for 2-AG in many
phases of AUD [17–20] including abstinence-induced negative
affective behaviors [21].
While the therapeutic potential of the eCB system for treating

affective disorders is becoming increasingly apparent, the broad
actions of the eCB system throughout the brain warrant a better
understanding of the specific eCB-sensitive brain regions and
neurocircuits regulating these effects. The dorsal bed nucleus of
the stria terminalis (dBNST) is linked with modulating negative
affective states and is a key center for integrating negative valence
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or anxiety-like states driven by cortical, subcortical, midbrain, and
hindbrain inputs [22, 23]. The dBNST heavily expresses the CB1R,
which has been shown to regulate excitatory and inhibitory drive
from the amygdala and extended amygdala [12, 24–26].

Moreover, the dBNST is widely regarded as a critical node for
stress-related psychopathologies such as anxiety and depression
(for review see [23]) and contains a dense population of neurons
expressing corticotropin-releasing factor (CRF, Crh). dBNST CRF-
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Fig. 1 Chronic-drinking followed by forced abstinence increases neuronal activity in the dBNST. a Chronic-drinking forced abstinence (CDFA)
model. b Male and female C57BL/6J mice maintain a preference for ethanol over water throughout CDFA. c Female mice consume significantly
more ethanol (g/kg/day) than male mice throughout CDFA (repeated measures two-way ANOVA, Sidak’s post hoc **p < 0.01, ***p < 0.001, ****p <
0.0001; n= 6–11/group; data presented as mean ± SEM). d Representative image of c-fos protein staining in the dBNST in male and female mice.
e Male and female mice have increased c-fos expression in the dBNST 15-days into forced abstinence (two-way ANOVA, Sidak’s post hoc *p <
0.05). Data presented as cells per 10× dBNST image per hemisphere and averaged per animal (presented as mean ± SEM). f Representative
RNAScope® image showing DAPI nuclear stain (gray), Fos transcripts (green), and Crh transcripts (red). Left: Crh+/Fos− dBNST neuron. Middle: Crh
−/Fos− dBNST neuron. Right: Crh+/Fos+ dBNST neuron. White arrows represent Fos transcripts localized on BNSTCRF neurons. g The percentage
of BNSTCRF neurons that express the Fos transcript is increased in CDFA mice 15-days into forced abstinence (Tukey’s multiple comparison post
hoc **p < 0.01). Data presented as cells per 3 paneled 63× BNST images per hemisphere in one slice and averaged per animal (presented as
individual data points and mean ± SEM). h The total number of BNSTCRF neurons is similar in both the water and ethanol groups. i Representative
electrophysiology trace in ethanol-naive mice and CDFA-mice 15-days into forced abstinence. j sEPSC frequency in all BNST neurons recorded
from. BNST cells from ethanol-exposed mice have a significantly higher sEPSC frequency relative to controls (Tukey’s multiple comparison post
hoc **p < 0.01). Data presented individual data points with mean ± SEM. k sEPSC frequency in BNSTCRF neurons. CRF cells were identified from
CRF-tomato mice. BNSTCRF cells from ethanol-exposed mice have a significantly higher sEPSC frequency relative to controls (Tukey’s multiple
comparison post hoc **p < 0.01). Data presented individual data points with mean ± SEM
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expressing neurons have been shown to negatively regulate
affective behaviors [27, 28], and positively regulate alcohol-
seeking behavior [29–31] and stress-induced drug relapse [32].
CRF signaling in the dBNST is involved in many facets of AUD
including binge drinking [33], withdrawal [34], and reinstatement
of ethanol-seeking [35, 36], however compounds directly
targeting CRF signaling have thus far been unsuccessful at
treating AUD in humans [37]. Strong preclinical evidence links
extended amygdala CRF signaling to depression and stress
disorders [38–40].
Here, we build upon the previously established role of ethanol

abstinence in producing negative affect in female mice [21, 41–43]
by demonstrating that these behaviors involve eCB-sensitive
increased circuit activity in the dBNST. Using a chronic drinking-
forced abstinence model (CDFA), enhancing endogenous 2-AG
with the monoacylglycerol (MAG) lipase inhibitor JZL184 prevents
ethanol abstinence-induced increases in neuronal activity speci-
fically in dBNST-CRF cells (dBNSTCRF). We implicate 2-AG, through
its actions on dBNST neuronal signaling, as a potential effective
alternative therapeutic target for treating negative affect. Next, we
elucidate a component of the neural circuitry governing
abstinence-induced negative affect. Using channelrhodopsin-
assisted neuronal mapping with whole-cell electrophysiology,
we identify dense, eCB-sensitive projection from the caudal-
anterior insular cortex (insula) to dBNSTCRF neurons. The insula is
critically involved in regulating interoception and affective
behaviors and has recently been implicated in addiction
neurocircuitry [44–46]. Chemogenetically manipulating the insula
confirmed a significant role for the insula in producing affective
disturbances, and control of dBNST cells in forced abstinence.
Finally, using an anterograde strategy for transsynaptic targeting
of Cre [47] in combination with Cre-dependent Gq-DREADD
delivery in dBNST, we recruited dBNST neurons receiving
projections from the insula (dBNSTinsula) and demonstrated that
their recruitment mimics CDFA-related behavioral changes.
Together, we establish the insula-dBNST circuit as a promising
target for regulating affective disorders including those associated
with prolonged ethanol abstinence. eCB-based pharmacothera-
pies targeting affective circuitry could represent a compelling
safer, more effective alternative to the current treatment options
for AUD and affective disorders.

METHODS AND MATERIALS
See Supplementary Information for detailed methods.
Singly-housed C57BL/6J mice (both sexes) were purchased from

The Jackson Laboratory (Bar Harbor, ME) and CRF-tomato mice
were bred as previously described [29, 48]. All procedures were
conducted with approval of the Institutional Animal Care and Use
Committee at Vanderbilt University, and were within the guide-
lines set forth by the Care and Use of Mammals in Neuroscience
and Behavioral Research (2003).
Two-bottle choice ethanol drinking was conducted as described

in Fig. 1a and as previously described [21]. All adeno-associated
viral (AAV) vectors were purchased from the Addgene Viral Vector
Core and used as received. CRF-tomato mice or C57BL/6J mice
were stereotaxically injected with 300 nL (50 nL/min) of AAV into
the caudal anterior insular cortex or dBNST as indicated in the
results. All mice were allowed to recover for at least 1 week before
further experimentation. The concentrations and routes of
administration used for compounds in this study are as follows:
JZL (i.p. 8 mg/kg; ex vivo: 1 µM; Cayman Chemical), Clozapine-N-
oxide (i.p. 3 mg/kg; ex vivo: 10 µM; MilliporeSigma), and Rimona-
bant (5 µM; APIChem), WIN55,212-2 (4 µM; MilliporeSigma). Mice
were handled and behavioral studies performed as previously
described [21, 49, 50].
All data were analyzed using GraphPad Prism 7. Data that

included more than two groups or factors were analyzed using a

one-way or two-way ANOVA, respectively. When appropriate,
Tukey’s or Sidak’s multiple comparison post hoc test was
performed and corrected p-values are presented in the text. For
comparison of two groups, a paired or unpaired two-tailed
Student’s t-test was used.

RESULTS
Chronic drinking followed by forced abstinence increases c-fos
expression in the dBNST
C57BL/6J mice were given 24 h access to ethanol and water for
6 weeks (Fig. 1a). Both male and female mice established a similar
preference for ethanol (Fig. 1b), although female mice consumed
significantly more than males throughout CDFA (repeated
measures two-way ANOVA F(1,15)= 37.9, p < 0.0001; Sidak’s multi-
ple comparison test: week 1, p= 0.381; week 2, p= 0.005; week 3,
p= 0.005; week 4, p= 0.002; week 5, p < 0.0001; week 6, p= 0.001;
Fig. 1c). Fifteen days into forced abstinence, mice were sacrificed
and tissue sections containing the dBNST were processed to
examine expression of the immediate early gene, c-fos, an indirect
marker of neuronal activity. Two-way ANOVA revealed a
significant effect of ethanol treatment on c-fos+ dBNST neu-
rons/animal (F(1,18)= 14.7, p= 0.001) and Sidak’s post hoc
confirmed that both male and female mice showed an increase
in dBNST c-fos expression in abstinence (male: 30.9 ± 4.5 c-fos+
dBNST neurons/animal water versus 76.4 ± 10.1 c-fos+ dBNST
neurons/animal ethanol, p= 0.022, female: 53.9 ± 8.4 c-fos+
dBNST neurons/animal water versus 85.4 ± 10.7 c-fos+ dBNST
neurons/animal ethanol, p= 0.036; Fig. 1d, e). Of note, there was
no observed sex difference in BNST c-fos expression (F(1,18)= 2.6,
p= 0.127). Because of the increased female consumption,
previous studies from our lab and others demonstrating that
ethanol abstinence leads to robust affective disturbances in
females [21, 43, 50], and the higher prevalence of depression
among the human female population [51], we focused the
remainder of this study on female mice.

CDFA results in cell-type specific increases in dBNST Fos
expression
CRF cells in the dBNST participate in behavioral responses to
stressors [28, 32], regulate alcohol seeking [33–36], and negative
affect [27]. Therefore, we also examined activity specifically within
this population following CDFA. Fluorescent in situ hybridization
determined that the percentage of BNSTCRF cells expressing the
Fos transcript was significantly increased 15 days into abstinence
in female mice (25.6 ± 4.3% water versus 73.6 ± 7.7% ethanol; p=
0.003; Fig. 1f, g), while total number of CRF cells in each group was
not different (278.7 ± 54.2 cells per dBNST water versus 359.6 ±
41.6 cells per dBNST ethanol; p= 0.28; Fig. 1h). Of note, the
percentage of Fos+ dBNSTCRF- cells was also increased in
abstinence (8.8 ± 1.3% water versus 54.8 ± 11.2% ethanol; p=
0.013; Supplemental Figure 2A), suggesting CRF cells may only
represent one type of dBNST neuron impacted by abstinence.
Using acute brain slice whole-cell patch clamp electrophysiology,
we assessed glutamatergic signaling onto dBNST neurons and
dBNSTCRF neurons at the 15-day abstinence timepoint. AMPA-
mediated spontaneous EPSC (sEPSC) frequency was significantly
increased in unidentified dBNST neurons (1.4 ± 0.2 Hz naive versus
3.6 ± 0.7 Hz ethanol; p= 0.001; Fig. 1i, j), and in dBNSTCRF cells
identified using CRF-tomatomice [29, 48] (1.3 ± 0.2 Hz naive versus
3.3 ± 0.7 Hz ethanol; p= 0.001; Fig. 1k). CDFA had no effect on
sEPSC amplitude in either experiment (Supplemental
Figure 1B–C).

JZL184 decreases spontaneous glutamate release in the BNST
through increased 2-AG levels
Next, we determined the eCB sensitivity of excitatory drive on
dBNST neurons. Acute slices from female mice were pretreated for
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at least 1 h with vehicle (0.1% (v/v) DMSO), JZL184 (1 µM), or
JZL184+rimonabant (CB1R antagonist; 5 µM), and sEPSC fre-
quency and amplitude were measured. There was a significant
effect of treatment (F(2,60)= 4.7, p= 0.013; Fig. 2a, b) and post hoc
testing reported a significant decrease in sEPSC frequency of
dBNST slices pretreated with JZL184 (1.2 ± 0.1 Hz vehicle versus
0.6 ± 0.1 Hz; p= 0.011), but no difference in JZL184+rimonabant
(1.1 ± 0.3 Hz; p= 0.975). Neither JZL184 nor JZL184+rimonabant
influenced sEPSC amplitude (Fig. 2b) suggesting the JZL184-
induced increase in 2-AG is acting in a CB1R-dependent

mechanism to modulate presynaptic glutamate release. To
determine the effect of systemic JZL184 on 2-AG levels in the
BNST, female mice were given an i.p. injection of JZL184 (10 mg/
kg) and lipidomic 2-AG analysis was conducted in BNST tissue 2 h
later. JZL184 significantly increased BNST 2 AG levels (Supple-
mental Figure 2A), and decreased arachidonic acid levels
(Supplemental Figure 2B), while having no effect on anandami-
de levels (Supplemental Figure 2C), suggesting systemic
administrations of this compounds alters dBNST eCB metabolite
levels.
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JZL184 prevents CDFA-induced increases in dBNST spontaneous
glutamatergic neurotransmission
Next, we determined whether JZL184 could prevent the CDFA-
induced increase in glutamate release onto dBNST neurons. Acute
slices containing dBNST from female mice 15 days into abstinence
were pretreated with vehicle or JZL184 and sEPSCs were
measured. JZL184 pretreatment prevented the abstinence-
induced increase in sEPSC frequency in unidentified dBNST
neurons (treatment effect F(1,76)= 12.9, p < 0.001; drug effect
F(1,76)= 14.3, p < 0.001; 3.6 ± 0.7 Hz ethanol-vehicle versus 1.5 ±
0.3 Hz ethanol-JZL184, p= 0.002; Fig. 2c, d) and specifically in
dBNSTCRF cells (treatment effect F(1,28)= 13.5, p= 0.001; drug
effect F(1,28)= 25.3, p < 0.0001; 3.3 ± 0.7 Hz ethanol-vehicle versus
0.9 ± 0.2 Hz ethanol-JZL184, p < 0.001; Fig. 2e). CDFA had no effect
on sEPSC amplitude in either experiment (Supplemental Fig-
ure 1A-B) suggesting postsynaptic glutamate receptors are not
directly altered in abstinence.

Insula inputs onto dBNSTCRF neurons are suppressed by CB1R
activation
The abstinence-induced increase in Fos expression coupled with
an increase in sEPSC frequency suggests a hyperactive, eCB-
sensitive glutamatergic input to the dBNST drives abstinence-
induced alterations in BNST microcircuitry. The insula is highly
involved in interoception and affective behaviors and plays a
key role in addiction-related negative affect [45, 52, 53]. The
insula sends dense glutamatergic input to the dBNST [54],
therefore the functionality of this input specifically onto
dBNSTCRF cells was assessed. AAV5.CaMKII.ChR2 (ChR2) was
stereotaxically injected into the caudal anterior insula of female
CRF-tomato mice (Fig. 2f–h). Four to six weeks later, whole-cell
patch clamp recordings were conducted in dBNSTCRF cells. Blue-
light stimulation of the ChR2-expressing insula afferents in the
dBNST produced an optically-evoked EPSC (oEPSC) in 80% of
dBNSTCRF cells suggesting a high functional insula input to
dBNSTCRF cells. To determine whether this input is eCB-sensitive,
the CB1R agonist WIN55,212-2 (4 µM) was bath applied to
dBNSTCRF cells that produced stable oEPSCs for 10 min.
Following 10 min of WIN55,212-2, oEPSC amplitude was
significantly reduced (−81.1 ± 9.8 pA baseline versus −22.6 ±
3.5 pA WIN55,212-2; t(7)= 7.0, p < 0.001; Fig. 2f–h). Taken
together, insula afferents onto dBNSTCRF cells are eCB-sensitive
and in turn, a possible source of the observed abstinence-
induced increase in sEPSC frequency. To evaluate neuronal
activity in the insula, c-fos expression was measured on day 15
of abstinence. Caudal-anterior insula c-fos was significantly

increased 15-days into abstinence in female mice (t(8)= 3.53,
p= 0.008; 34.3 ± 12.4 c-fos+ caudal-anterior insula neurons/
animal water versus 101.3 ± 13.0 c-fos+ caudal-anterior insula
neurons/animal ethanol; Fig. 2i, j).

Activating insula hM4Di blocks CDFA-induced hyperactivity in
dBNSTCRF cells
Given the functional connectivity between the insula and
dBNSTCRF cells and the ability of JZL184 to mitigate abstinence-
induced increases in dBNST sEPSC frequency, and the abstinence-
induced increase in insula c-fos expression, the next experiment
tested the role of the insula in modulating neuronal hyperactivity
in the dBNST. Presynaptic CB1R are widely expressed on
glutamatergic terminals in the dBNST [12, 24, 26], originating
from a variety of dBNST inputs [25]. CB1R act through Gi-coupled
GPCR signaling pathways. To isolate insula inputs onto dBNST
neurons, we stereotaxically injected the Gi-coupled DREADD,
hM4Di bilaterally into the insula of female mice 1 week prior to
CDFA (Fig. 3a), thus modeling Gi-coupled CB1R-expressing insula
terminals in the dBNST. Neither the stereotaxic surgery, nor the
presence of hM4Di, had an effect on ethanol preference (Fig. 3b)
or consumption (Fig. 3c). Fifteen days into forced abstinence, mice
were treated with CNO (3mg/kg) and processed for in situ
hybridization 2 h later. In agreement with Fig. 1d, e, the number of
Fos+ dBNST neurons was significantly increased in abstinence
(F(2,10)= 11.4, p= 0.003; 148.5 ± 37.9 dBNST neurons/animal
water-saline versus 411.7 ± 47.9 dBNST neurons/animal ethanol-
saline p= 0.001; Fig. 3d). CNO-injected CDFA mice had fewer
dBNST Fos+ neurons relative to ethanol-saline treatment (247.2 ±
20.5 dBNST neurons/animal; p= 0.021; Fig. 3d). Further cell-type
specific analysis confirmed that the effect can be attributed, in
part, to a decrease in percentage of Fos-expressing dBNSTCRF cells
(F(2,10)= 12.4, p= 0.002; 73.6 ± 7.7% ethanol-saline versus 40.6 ±
6.1% ethanol-CNO p= 0.01; Fig. 3e). The effect of CNO on
dBNSTCRF− neurons trended towards a significant decrease (54.8
± 11.2% ethanol-saline versus 26.6 ± 5.3% ethanol-CNO p= 0.053;
Supplemental Figure 3) suggesting that while dBNSTCRF cells
represent a specific population of dBNST neurons impacted by
CDFA, other cell types may be involved.

Activating insula hM4Di reduces abstinence-induced increase in
dBNST glutamatergic signaling
The next experiment used the same chemogenetic strategy as
above to determine the effect of insula hM4Di on dBNST synaptic
physiology. hM4Di was injected bilaterally into the insula of
female mice prior to CDFA. Whole-cell patch clamp recordings

Fig. 2 Insula inputs onto dBNSTCRF neurons are endocannabinoid sensitive. a sEPSC frequency in dBNST neurons in the presence of vehicle
(0.1% (v/v) DMSO), JZL184 (1 µM), or JZL184+rimonabant (5 µM). Pretreating slices with JZL184 for at least 1 h significantly decreased sEPSC
frequency (one-way ANOVA treatment effect, *p < 0.05; Tukey’s multiple comparison post hoc *p < 0.05) and JZL184+rimonabant
pretreatment had no effect on sEPSC frequency (Tukey’s multiple comparison post hoc p= 0.975). Data presented individual data points
with mean ± SEM. b Neither JZL184 alone nor JZL184+rimonabant had an effect on sEPSC amplitude (one-way ANOVA; p= 0.284). Data
presented individual data points with mean ± SEM. c Representative electrophysiology trace from ethanol naive mice and CDFA mice 15 days
into forced abstinence. Slices were treated with either vehicle (0.1% (v/v) DMSO) or JZL184 (1 µM). d Pretreating BNST slices for at least 1 h in
JZL184 decreases sEPSC frequency in ethanol-naive mice (two-way ANOVA treatment effect, ***p < 0.001; Tukey’s multiple comparison post
hoc, **p < 0.01) and prevents CDFA-induced increase in sEPSC frequency (drug effect, ***p < 0.001; Tukey’s multiple comparison post hoc **p <
0.01). Data in gray is presented and described in Fig. 1. Data presented individual data points with mean ± SEM. e Pretreating BNST slices from
CRF-tomato mice in JZL184 decreases sEPSC frequency in ethanol-naive mice (two-way ANOVA treatment effect, ***p < 0.001; Tukey’s multiple
comparison post hoc, **p < 0.001) and prevents CDFA-induced increase in sEPSC frequency (dark green line; drug effect, ****p < 0.0001,
Tukey’s multiple comparison post hoc ***p < 0.001). Data in gray is presented and described in Fig. 1. Data presented individual data points
with mean ± SEM. f Schematic for CRF-tomato mouse breeding, ChR2 injection in the insula, and ChR2-evoked optical EPSCs in the BNST. Atlas
image from Allen Brain Mouse Atlas [73]. g Representative image of CRF cells in the dBNST (red) and ChR2-labeled insula fibers in the dBNST
(green). h Blue light stimulation evoked an optical EPSC in dBNSTCRF neurons that was significantly decreased after 10-min bath application of
WIN55,212-2 (4 µM; Student’s paired t-test, ***p < 0.001). Data presented as individual cells before and after 10min of WIN55,212-2.
i Representative 10× image of c-fos protein staining in the caudal-anterior insula from water mice and ethanol mice 15-days into abstinence.
Atlas image from Allen Brain Mouse Atlas [73]. j Mice 15-days into abstinence exhibit increased caudal-posterior insula c-fos expression
relative to water control mice (Student’s unpaired t-test, **p < 0.01). Data presented as cells per 10× caudal-posterior insula image per
hemisphere and averaged per animal (presented as individual data points and mean ± SEM)
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Fig. 3 Chemogenetic inhibition of insula neurons reduces CDFA-induced increase in neuronal activity. a Timeline for insula hM4Di RNAScope®
experiment. b Ethanol preference for all insula hM4Di mice treated with either saline (light green) or CNO (dark green). c Ethanol consumption
(g/kg/day) for all insula hM4Di mice treated with either saline (light green) or CNO (dark green). d Total number of Fos+ BNST neurons. CDFA
significantly increases Fos expression in the BNST 15-days into abstinence (one-way ANOVA, **p < 0.01; Tukey’s multiple comparison post hoc,
**p < 0.01). CNO (3mg/kg) activation of the insula hM4Di significantly reduced Fos expression in the BNST 15-days into ethanol abstinence
(Tukey’s multiple comparison post hoc, **p < 0.01). e CNO activation of the hM4Di in the insula significantly reduced the percentage of Fos+
BNSTCRF neurons 15-days into ethanol abstinence (one-way ANOVA, *p < 0.05; Tukey’s multiple comparison post hoc, *p < 0.05). Data in gray is
presented and described in Fig. 1. f Schematic for electrophysiology experimental timeline. hM4Di was injected into both caudal-anterior
insulae prior to CDFA. sEPSC were recorded in BNST neurons before and after bath application of CNO (10 µM). g sEPSC frequency is
significantly increased 15-days into EtOH abstinence. Bath application of CNO significantly reduced sEPSC frequency in ethanol abstinent mice
but not in water mice (two-way ANOVA; treatment effect **p < 0.01; drug effect *p < 0.05; Sidak’s multiple comparison post hoc, **p < 0.01).
Data presented as individual data points before and after drug application. h CDFA had no effect on sEPSC amplitude in BNST neurons. CNO
did not alter sEPSC amplitude
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from dBNST neurons were conducted 15-days into abstinence. In
agreement with Fig. 1j, sEPSC frequency was significantly
increased in ethanol-abstinent mice (treatment effect F(1,13)=
15.4, p= 0.002; Fig. 3g). Bath application of CNO (10 µM)
significantly decreased sEPSC frequency in the ethanol-hM4Di
group (4.8 ± 0.8 Hz baseline versus 3.5 ± 0.7 Hz CNO; p= 0.009;
Fig. 3g) but not the water-hM4Di group (1.1 ± 0.2 Hz baseline
versus 1.0 ± 0.2 Hz CNO; p= 0.946; Fig. 3g). CNO did not have an
effect on sEPSC amplitude in either the water or the ethanol group
(Fig. 3h). Additionally, bath application of CNO had no effect on
sEPSC frequency or amplitude in naive or ethanol mice without
insula hM4Di (Supplemental Figure 4A–B).

Activating insula hM4Di prevents abstinence-induced negative
affective symptoms
We and others have previously demonstrated that CDFA reliably
produces enhanced negative affective behavior in female mice in
prolonged abstinence [21, 43, 50] that can be prevented by acute
JZL184 treatment [21]. To assess the role of CB1R-like signaling in
insular neurons in abstinence-induced negative affect, hM4Di was
injected into the insula of female C57BL/6J prior to CDFA.
Beginning at abstinence day 15, negative affective symptoms

were assessed using the novelty-suppressed feeding task (NSFT)
[21, 43, 50]. Mice were treated with CNO (3 mg/kg) 2 h before
testing. In the absence of hM4Di, two-way ANOVA revealed a
significant effect of ethanol versus water treatment (F(1,34)= 9.1,
p= 0.005) but no effect of CNO on the latency to feed (F(1,34)=
0.2, p= 0.625; Fig. 4b) or consumption 10 min after NSFT (one-
way ANOVA, F(3,14)= 2.5, p= 0.103; Supplemental Figure 5A). In
hM4Di ethanol-naive mice, latency to feed was not significantly
different between groups (F(2,20)= 0.11, p= 0.894; No-hM4Di-
CNO 372.3 ± 54.1 s versus hM4Di-Sal 346.6 ± 65.4 s versus hM4Di-
CNO 336.4 ± 49.6 s; Fig. 4c). In CDFA mice, latency to feed was
significantly decreased in CNO-treated mice relative to saline
(708.6 ± 109.8 s ethanol-saline versus 416.9 ± 53.9 s ethanol-CNO;
t(15)= 2.29, p= 0.037; Fig. 4d). Consumption 10 min post-NSFT
was not different between any groups in any of the experiments
(Supplemental Figure 5). Next, mice were tested on an additional
behavioral assessment for negative affect, the forced swim test
(FST) [55, 56]. CNO had no effect on immobility time in insula
hM4Di, ethanol-naive mice (F(2,20)= 0.11, p= 0.894; no-hM4Di-
CNO 94.1 ± 8.9 s versus hM4Di-Sal 91.6 ± 10.7 s versus hM4Di-CNO
97.1 ± 4.3 s; Fig. 4e). CDFA insula-hM4Di mice were treated with
CNO 6 days after NSFT (abstinence day 21) showed significantly
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reduced immobility time (140.1 ± 6.7 s ethanol-saline versus
103.4 ± 5.8 s ethanol-CNO; t(15)= 4.1, p= 0.001; Fig. 4f). Collec-
tively, activation of CB1R-like signaling specifically within insula
neurons decreased prolonged abstinence-induced negative
affective behaviors.

Chemogenetically activating insula-controlled BNST neurons
produces a negative affective phenotype
The data thus far suggest a role for the insula in mediating
abstinence-induced negative affect. The next set of experiments
sought to directly assess the role of dBNST neurons that receive
insula inputs (dBNSTinsula) in negative affective behaviors. To
isolate dBNSTinsula neurons, we used a novel viral anterograde
transsynaptic gene transfer strategy [47]. AAV1.Cre was injected
bilaterally into the insula, and a Cre-dependent, DIO.hM3Dq virus
was injected into the dBNST of female mice, thereby activating
only those cells in the dBNST that receive projections from the
insula (Fig. 5a). This strategy produced robust expression of
hM3Dq in BNST, particularly in dorsal anterolateral portions. In the
absence of insula AAV1.Cre, we did not observe any DIO.hM3Dq
expression (Supplemental Figure 6), highlighting the fidelity of this
approach. The role of dBNSTinsula neurons in negative affective
behaviors was assessed using NSFT. As in Fig. 4, CNO (3 mg/kg) or
saline was administered systemically 2 h prior to NSFT. AAV1/
hM3Dq CNO mice exhibited a robust increase in latency to first
bite relative to the control groups (F(3,19)= 8.8, p= 0.001; AAV1/
hM3Dq-CNO 937.5 ± 130 s versus no-virus-saline 319.5 ± 74.5 s,
p= 0.006, AAV1/hM3Dq-CNO versus no-virus-CNO 323.3 ± 103.4 s,
p= 0.006, AAV1/hM3Dq-CNO versus AAV1/hM3Dq-saline 381.3 ±
62.7 s, p= 0.003; Fig. 5b, c). AAV1/hM3Dq mice also consumed
significantly less food in the home cage 10min immediately after
NSFT (F(3,19)= 21.1, p < 0.0001; AAV1/hM3Dq-CNO 0.002 ± 0.001%
b.w. versus no-virus saline 0.013 ± 0.001% b.w. p= 0.001, AAV1/
hM3Dq-CNO versus no-virus-CNO 0.018 ± 0.002% b.w., p < 0.0001,
AAV1/hM3Dq-CNO versus AAV1/hM3Dq-saline 0.015 ± 0.001%
b.w., p < 0.0001; Fig. 5b–d).
Immediately following the 10-min post-NSFT consumption

period, mice were sacrificed and brain tissue was processed for
c-fos immunohistochemistry. In agreement with the behavioral
phenotype, the number of c-fos+ dBNST neurons was significantly
increased in the AAV1/hM3Dq-CNO group relative to the control
groups (F(3,19)= 13.1, p= 0.014; AAV1/hM3Dq-CNO 280.1 ± 34.0 c-
fos+ dBNST neurons/animal versus no-virus-saline 140.8 ± 18.9 c-
fos+ dBNST neurons/animal p= 0.010, AAV1/hM3Dq-CNO versus
no-virus-CNO 135.3 ± 16.8 c-fos+ dBNST neurons/animal, p <
0.0001, AAV1/hM3Dq-CNO versus AAV1/hM3Dq-saline 70.9 ± 16.1
c-fos+ dBNST neurons/animal, p < 0.0001; Fig. 5b, e). Linear
regression analysis determined a significant correlation between
the latency to feed on NSFT versus c-fos+ dBNST neurons/animal
(Goodness of Fit R2= 0.403, p= 0.001; Fig. 5f) providing evidence
to support the involvement of the dBNST in regulating negative
affective behaviors using the NSFT.

DISCUSSION
Protracted abstinence is arguably the most challenging period to
treat a recovering addict. While the initial withdrawal phase is
marked by distinct stages that persist for a relatively finite period
of time (approximately 5–7 days [57]), the abstinence phase can
vary greatly between individuals, and the cravings and drive to
relapse do not necessarily decrease over time [2, 58]. The inability
to cope with stress and negative affective symptoms are
commonly listed as triggers of cravings and relapse, and indeed,
abstinence itself is often described as a persistent chronic stressor.
In the present study, we address this problem by identifying
insula-BNST circuitry as key responders to prolonged ethanol
abstinence. While novel therapeutics such as NMDA receptor
antagonists (e.g., ketamine) and opioids have shown recent

promise for treating negative affect [21, 43, 59], therapeutics
targeting the eCB system may represent a safer alternative
treatment with low abuse liability [60]. Administering the MAG
lipase inhibitor JZL184 15 days into ethanol abstinence alleviated
hyperactive neuronal activity in the dBNST consistent with
the emerging literature on the large therapeutic potential of the
eCB system for treating affective disorders (for review see [61, 62]).
Using a chemogenetic approach to anatomically limit eCB-like
signaling, hM4Di activation in insula neurons was sufficient
to prevent ethanol abstinence-induced hyperactivity of
dBNST cells, similar to systemic JZL184. Moreover, hM3Dq
activation specifically in dBNSTinsula neurons produced a robust
negative affect phenotype and a strong dBNST c-fos response.
These results not only highlight a critical role for the insula in
ethanol abstinence, but also identify a strong, functional, eCB
sensitive input to dBNST cells that regulates dBNST neuronal
activity.

Using c-fos as proxy for neuronal activity in abstinence
The immediate early gene c-fos can be used as a crude surrogate
marker of in vivo neuronal activity brought about by a discrete
stimulus [63, 64]. In the CDFA model, significant c-fos protein
expression was detected in the dBNST and insula 15 days into
abstinence without a discrete stimulus (Figs. 1d, e and 2i, j), fitting
with the hypothesis that prolonged abstinence is a persistent
stressor. This finding is not without precedent, as studies from
Harris and Aston-Jones reported increased dBNST c-fos expression
in prolonged abstinence following chronic morphine [65, 66]. We
extend this observation to show this specifically within dBNSTCRF

cells and demonstrate a means of modulating this activity.
Interestingly, a similar trend for CDFA-induced increase in c-fos
was also observed in dBNSTCRF− cells, suggesting that while
dBNSTCRF cells may not be the sole contributor to the CDFA-
induced phenotype in the dBNST, they represent a specific cell
type affected by CDFA. Whether these dBNSTCRF− cells are
separate distinguishable population of dBNST neurons or the
product of microcircuit regulation from dBNSTCRF cells should be
addressed in future studies.

Potential role for eCB signaling in the dBNST in negative affective
behaviors
The CDFA-induced increase in dBNST c-fos expression, coupled
with an increase in sEPSC frequency suggests dBNST hyperactivity
15 days into prolonged ethanol abstinence. eCBs are synthesized
as a result of a postsynaptic response to neurotransmitter release
and act presynaptically at Gi-coupled CB1R to quell further
neurotransmitter release [67]. Compounds acting directly at
CB1R are accompanied by a variety of off-target effects, therefore
in this study, we used JZL184, an inhibitor of the 2-AG degradation
enzyme MAG lipase, which enhances levels of the endogenous
ligand for CB1R [15, 68, 69], and prevents affective behaviors [13,
14, 16]. We recently reported that JZL184 prevents CDFA-induced
negative affective behaviors [21], and the data presented here
suggest the compound is acting, at least in part, through actions
in the dBNST, as the CDFA-induced increase in sEPSC frequency
was prevented by JZL184 (Fig. 2).

Insula-BNST circuitry in negative affect
While the dBNST is highly interconnected with multiple nodes of
affective circuitry, the insula input onto dBNSTCRF neurons was
targeted for several reasons. The insula provides interoceptive
cues through neuronal projections to cortical and subcortical brain
regions, including dense projections to the dBNST [54]. It functions
to guide future actions by incorporating internal and external
states to predict the outcome of a potential behavior. The
observed eCB-sensitivity of this input to the dBNST provides
further evidence linking this circuit to negative affective behaviors.
The insula could accomplish this through two potentially related
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processes. A hyperactive insula suggests a magnification of
incentive representation and heightened internal awareness
which could lead to a negative affective state, while a hypoactive
insula may signify a discounting of risk representation. Either
outcome would plague individuals afflicted with an AUD and
contribute to an impaired ability to control ethanol seeking
despite facing a high probability of deleterious ramifications.
While the observed increases in insula and dBNST Fos and dBNST
sEPSC frequency suggest increased insula-BNST circuit activity,
whether this is the result of increased excitatory glutamate
drive or a downregulation of inhibitory GABA neurotransmission
is unknown. In future studies, it will be important to assess
the functional state of the insular neurons that project to the
dBNST.

The use of chemogenetics to mimic CB1R actions in insula-BNST
neural circuit
CB1R are presynaptically-localized and widely expressed through-
out the brain, making it difficult to isolate the role of eCB signaling
in a specific pathway. To overcome this, we utilized chemoge-
netics to mimic insula neuron CB1R. CNO-facilitated hM4Di
inhibition of insula neurons prevented abstinence-induced
increases in dBNSTCRF neurons expressing Fos (Fig. 3). Accordingly,
activating hM4Di in insula terminals in the dBNST reduced the
CDFA-induced increase in sEPSC frequency, closely resembling the
observed effect using JZL184 (Fig. 2). To our knowledge, this is
the first functional evidence for insula modulation of dBNST
neuronal activity and suggests a key role for insula-guided
afferents expressing Gi-coupled receptors in the dBNST.
The role of the insula in producing CDFA-induced negative

affect was also assessed. CNO significantly reduced negative
affective behaviors assessed using NSFT and FST, thus highlighting
an important role for the insula in mediating affective behaviors.
This data closely mirrors previously reported data showing JZL184
mitigates abstinence-induced negative affect [21], collectively
suggesting the negative affect-relieving effect of JZL184 may be
acting at insula afferents in the dBNST. It is important to note that
off-target effects of CNO (converted to clozapine) have previously
been observed [70, 71] and were carefully considered in this study,
as we observed no effects of CNO in the absence of hM4Di on
sEPSC frequency (Supplemental Figure 4A), or the observed
behavioral phenotype (Fig. 4b, c, e).

Using viral-mediated gene transfer and chemogenetics to isolate
BNSTinsula neurons
Recent advances in viral-mediated gene transfer have allowed for
precise isolation of discrete populations of neurons [47]. Here we
used an anterograde transsynaptic Cre virus, to isolate dBNSTinsula

neurons. Injecting Cre-dependent DIO.hM3Dq into the dBNST
allowed for exclusive activation of this neuronal population. In
doing so, CNO facilitated a robust increase in latency to feed on
NSFT (Fig. 5c), in essence modeling the negative affective
phenotype consistently observed in abstinence following CDFA.
Interestingly, home cage food consumption after NSFT was also
significantly decreased in the AAV1/hM3Dq-CNO group (Fig. 5d).
While we interpret this phenotype as heightened anxiety-induced
appetite suppression, the possibility of general, anxiety indepen-
dent appetite suppression driving this phenotype cannot be
completely ruled out. Mazzone et al., recently demonstrated that
activating hM3Dq in BNST-GABA neurons produces an anxiolytic
phenotype, supporting our interpretation and suggesting the
dBNSTinsula neurons may be a subclass of BNST-GABA neurons
[72]. In addition, a strong correlation between dBNST c-fos and
NSFT latency highlights an integral role for the dBNST in this task.
(Fig. 5f). Taken together, this experiment provides foundational
evidence for a role for dBNSTinsula neurons in negative affect and
future studies will aim to further characterize these distinct
population neurons.

CONCLUSION
We characterize a distinct role for the dBNST in mediating
negative affect in prolonged ethanol abstinence. Our data provide
the framework to implement eCB-based pharmacotherapies as a
reliable alternative treatment option for affective disorders, as
enhancing 2-AG was sufficient to prevent abstinence-induced
hyperactivity in the dBNST, a brain area historically linked to
affective disturbances. Further, we provide evidence for the
involvement of the insula in negative affective behaviors.
Activating hM4Di in insula neurons effectively prevented the
CDFA phenotype in the dBNST and prevented prolonged
abstinence-induced negative affective behaviors. Lastly, we
directly test the importance of the insula-BNST synapse in
negative affective behaviors using a novel viral genetic strategy.
Activating dBNSTinsula neurons with DIO.hM3Dq modeled both the
CDFA-induced negative affect and dBNST c-fos phenotype,
directly implicating these neurons in mediating negative affect.
The results presented here pave the way for future studies to
further tease apart the complete affective circuitry involving the
insula-BNST pathway, and will facilitate novel targeted treatment
strategies for affective disorders.
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