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LETTER FROM 
THE EDITORS 

VANDERBILT REVIEWS NEUROSCIENCE

Dear Friends and Colleagues of the Vanderbilt Neuroscience Community,

It is our pleasure to bring you another exciting issue of the Vanderbilt Reviews Neuroscience. This is the sixth volume of the 
VRN and contains the largest number of candidate reviews to date, demonstrating a successful future of the Vanderbilt Neurosci-
ence Program. In this issue you will find seventeen skillfully crafted reviews encompassing the diverse research interests of our 
newest Ph.D. candidates.  In addition to our growing student body and breadth of research topics, we can also pride ourselves on 
the quality of the research being done here in the Neuroscience Program. In the last calendar year, several of our students have 
published first-author papers in high-impact journals across multiple disciplines of neuroscience. In sticking with tradition, this 
VRN issue highlights just a few of these publications in the Research Highlights and Research Briefs sections.  You will also find 
information regarding some of the wonderful outreach programs supported by the Vanderbilt Brain Institute, including our an-
nual Brain Blast event and our first Music & the Mind Symposium. We also thank Britney N. Lizama-Manibusan for her beauti-
ful cover image. You can read more about Britney’s project and the VRN cover image in the On the Cover section. 

We would like to thank the VRN editing team for their hard work and enthusiasm in preparing this issue for publication.  
Our co-editors Kale Edmiston, Terry Jo Bichell and Amy Palubinsky were dedicated, enthusiastic and a joy to work with- thank 
you so much! Additionally, we thank the previous VRN editors, Sudipta Chakraborty and Juliane Krueger for all their advice 
and resources needed to assemble this issue. We thank Drs. Mark Wallace and Bruce Carter for their support of the student-run 
VRN and for maintaining the high level of training in the Vanderbilt Neuroscience Program. Most importantly, we would like to 
thank the 2013 qualifying class for their time and patience in generating this issue. It was a pleasure getting to know you all and 
learning about the interesting work you will do. 

Your Co-Editors-in-Chief,

Barbara O’Brien and Tyne Miller-Fleming

From left: Barbara O’Brien, Amy Palubinsky, Terry Jo Bichell, Tyne Miller-Fleming, and 
Kale Edmiston Barbara O’Brien and Tyne Miller-Fleming

photos taken by Lakshmi Sundararajan
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M A S T H E A D 

Vanderbilt Brain Institute
U1205 Medical Center North
Nashville,TN 37232
(615) 936-3736

Vanderbilt Reviews Neuroscience(VRN) is an open-access journal. VRN is the official journal of the Vanderbilt University Neu-
roscience Graduate Program and the Vanderbilt Brain Institute. VRN is a collection of reviews submitted by Vanderbilt Neu-
roscience Graduate Students whilst qualifying for doctoral candidacy. The journal also offers highlights and commentary on 
work being done at Vanderbilt and Neuroscience laboratories around the world. VRN was founded in 2009 in an effort to 
consolidate and recognize the hard work done by each class of Ph.D. qualifiers, and is published annually by the Institute.

Review Process
All reviews submitted for doctoral qualifiication must be approved by a committee of at least four tenured or tenure-track faculty 
members (Phase I). All approved reviews are accepted by VRN.

Reprints of individual articles are available from the authors or on the website. Requests for permission to reprint material pub-
lished in VRN should be made in writing and addressed to the attention of Journal Permissions, Vanderbilt Reviews Neuroscience, 
U1205 Medical Center North, Nashville,TN 37232. The request must include a citation of the exact material that will be re-
printed and specific information about where it will be used. One must recieve written permission from the authors whose work 
will be reused. All copyrights are held by the Authors.
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O U T R E A C H +
E D U C A T I O N

A Message from the Director of the Vanderbilt Brain Institute

 It seems only yesterday that we were publishing the first issue of VRN. An experiment at the time, I am very impressed 
that the journal has endured and am very proud when I take it with me to other institutions to show off the quality and diversity 
of the research performed by our students.  The reaction is a pretty universal “Wow – what a fantastic idea and what an impressive 
body of work.”

 I also marvel at our discipline and the remarkable conceptual and technical advances that continue to catapult neuroscience 
research forward at a dizzying pace. Advances at the molecular level such as CRISPR-Cas are revolutionizing our ability to edit 
and regulate genes and genomes, and hold remarkable promise in the therapeutic arena. At the other end of the spectrum, but 
also with tremendous translational and clinical relevance, are more systems-based approaches such as deep brain stimulation 
(DBS) and transcranial direct current stimulation (tDCS). We are very fortunate to be at a time and place where we can see and 
use these tools that were only a short while ago the realm of science fiction, and perhaps more importantly see the promise they 
hold for bettering the human condition – particularly as they relate to neurological disease and mental illness. 

 Yours in science,
 
 Mark T. Wallace
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A Message from the Neuroscience Program Director of Graduate Studies

Dear Readers,

 It is with great enthusiasm that I take on the mantle of Director of Graduate Studies (DGS) for the Neuroscience pro-
gram! I realize that I have some big shoes to fill with Doug McMahon stepping down after leading the program to be ranked as 
one of the top neuroscience graduate programs in the country. Under Doug’s guidance, our program was awarded the Neuro-
science Program of the Year in 2012 by the Society for Neuroscience, the student body has grown to become one of the largest 
graduate programs at Vanderbilt and our training paths were unified so that the two previous tracts (Cellular & Molecular and 
Systems) are now one. Most importantly, he always demonstrated (and still does) a deep commitment to the education of our 
students in the classroom, the laboratory and as future leaders in all aspects of science. On behalf of all members of the Vanderbilt 
Brain Institute, let me take this opportunity to thank Doug for all he has done.

 As the new DGS, I commit to doing my best to follow the example set by Doug, and it is with great humility and appre-
ciation that I take on this role. It is my vision to work with our Director, Mark Wallace, and the other leadership team members 
to continue to strengthen our program, even during these difficult financial times. In my opinion, any educational program must 
never be satisified with the status quo and must constantly and unrelentingly seek to improve itself.  It is my intention to take 
advantage of our most valuable asset, the students themselves, in seeking ways that we can continue to develop. Our students are 
among the brightest, most creative and innovative young minds in the world, and I cannot imagine a better resource for design-
ing new educational opportunities and growing our program in all ways. I see my role as the axon hillock, gathering as many 
inputs as possible and deciding when to fire the action potential of change. My door is always open, and I welcome hearing from 
each of you!

Sincerely,

Bruce Carter 
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An Update from the Neuroscience 
Student Organization President

 It has been a privilege to serve as the Neurosci-
ence Student Organization (NSO) president for the past 
year. I would like to take this opportunity to welcome 
new students to the neuroscience graduate program. I 
encourage each of you to reach out to more senior stu-
dents and faculty as you navigate your first year of gradu-
ate school; we are here to help support you. I would also 
like to commend our seventeen new PhD candidates, 
whose qualifying review papers are published in this 
journal thanks to the hard work of Vanderbilt Reviews 
Neuroscience editors Barbara O’Brien, Tyne Miller, Terry 
Jo Bichell, and Amy Palubinsky.  

 The purpose of the NSO is to improve student 
quality of life with social events and academic support 
and by facilitating student communication with pro-
gram administration. NSO members have been hard at 
work this year. Daniel Bermingham and Kelli Money 
revamped and organized the third annual boot camp, 
which helps new students prepare for their coursework. 
Academic committee members Courtney Bricker, Le-
Anne Kurela, and Elaine Ritter have expanded and im-
proved upon the study session and mock qualifying exam 
model for students preparing for the first phase of their 
candidacy exams. Unsurprisingly, Tristan Watkins and 
Pratik Talati have planned spectacular social events that 
have facilitated relationships between students in differ-
ent labs and areas of study. I encourage all students to get 
involved with service to the program as a way to ensure 
that the NSO and VBI reflect our interests. 

 The NSO recently hosted our 17th annual pro-
gram retreat. The retreat is a time to relax and catch up 
with other program members and get to know the new 
students. Thanks to the efforts of Eddie Hickman, Em-
ily Mason, and Tyne Miller, the retreat was held at the 
Nashville Zoo and was a great success. We hope you vis-
ited the wombats between whatever immunoassays or 
MRI scans you might have been conducting that week.  

 Vanderbilt Neuroscience has continued to 
model outstanding community engagement. This year 
marked another successful Brain Blast event, as well as 
the addition of a number of other public talks, thanks 
to the hard work of Victoria Cavener and Emily Mason. 

VBI faculty Dr. Paul Newhouse and Dr. Beth Malow gave 
a well-attended presentation for the lay public in the spring 
for the Jeannette Norden Outreach Lecture “Building a 
Healthy Brain.” Dr. David Zald and psychology faculty Dr. 
Marianne Ploger recently presented at the Music and Mind 
Symposium with Daniel Levitin and Ben Folds, discussing 
ways in which neuroscience and music inform each other. 

 This year has certainly had its challenges as fund-
ing for scientific research nationally has continued to shrink. 
Despite this, Vanderbilt continues to lead the nation in re-
search funding and innovation. I am impressed by the way 
in which VBI staff, students, and faculty have risen to the 
occasion, not only making the best of challenging situa-
tions, but using them as opportunities to improve our pro-
gram and emphasize the importance of creative problem 
solving when budgets are tight. I would in particular like to 
highlight the contributions of our incredible administrative 
staff: Rosalind Johnson, Mary Michael-Woolman, Denise 
Malone and Beth Sims. Their dedication to the program has 
made each of our successes possible- from grant submissions 
and conference presentations to the day-to-day organization 
that keeps our program running. I encourage everyone to 
take the time to thank the VBI staff for their hard work.

E. Kale Edmiston
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Brain Blast & Community Outreach

 In a 2007 editorial in Science, Alan Leshner, former 
CEO of AAAS, discussed the need for graduate students to 
be trained in the communication of science to the lay public. 
Said Leshner, “If science is going to fully serve its societal 
mission in the future, we need to both encourage and equip 
the next generation of scientists to effectively engage with 
the broader society in which we work and live.” 

 The mission of the Community Outreach 
Committee of the Neuroscience Student Organization 
is to provide opportunities for neuroscience students to 
engage with the public through lectures, fundraising, and 
education.

 Each year, Vanderbilt neuroscience students invite 
one speaker whose research is both exciting and innovative. 
This year, the invited speaker was Dr. Ken McCarthy of the 
University of North Carolina, Chapel Hill. Dr. McCarthy 
spoke to a packed house about his research on the vital role 
that astrocytes play in neural processes. Dr. McCarthy was 
also able to speak with students individually throughout 
his visit. He shared his love of mentorship, and spoke 
often about how he had the “best job in the world.” Dr. 
McCarthy’s enthusiasm was infectious. 

 One of the most exciting programs hosted by the 
NSO is Brain Blast, a neuroscience education event designed 
for children. This day-long event was held last March at 
One Hundred Oaks and featured educational booths run by 
student and faculty volunteers. Over 250 children and their 
families took part in Brain Blast. There were over 20 booths 

where children were able to extract DNA, learn about 
optical illusions, practice mind control, and so much more! 
Children and families were also welcome to take tours of the 
Brain Matters exhibit. As well as being a great way to engage 
with the community, Brain Blast is an opportunity to meet 
neuroscientists from outside of Vanderbilt. This year there 
were over 80 volunteers from Vanderbilt, Middle Tennessee 
State University, and Tennessee State University. This event 
was a huge hit, and there was a lot of great feedback from 
children, parents, and volunteers.

 The Community Outreach Committee is planning 
future activities so stay tuned!

Emily Mason
Eddie Hickman
Victoria Cavener

Left: Children visit an exhibit to teach them about sensory systems.  
Above: Participants extract DNA from strawberries and learn about how 
the nervous system works. 
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or “SERPENT”.  This provides support for an undergraduate 
from a local institution to work in a Vanderbilt Neuroscience 
lab and participate in the Vanderbilt summer science 
academy. The SERPENT student also develops educational 
or outreach material suitable for the general public and 
K-12 students.  This is presented at the VBI sponsored Brain 
Blast event held each March to kick-off brain awareness 
month.  You can check out some of the outreach material 
developed in previous years by following the “resources” link 
on our website.  This past summer we welcomed Kathryn 
Hook from Belmont University who worked in BethAnn 
McLaughlin’s lab.  

 If you are not already a member, I hope you will 
consider joining and help us become a showcase example 
of what can be done through the local chapters. Visit our 
website to learn more (http://www.mtncsfn.org/), and you 
will be just one click away from joining and/or making a 
donation!

Sincerely,

Kevin Currie

President, Middle Tennessee Chapter of the Society for 
Neuroscience

A Message From Your Middle Tennes-
see SfN Chapter

Dear Members of the Vanderbilt Neuroscience Community,

 I am writing to update you on another successful 
year for the Middle Tennessee Chapter of the Society for 
Neuroscience (MTNCSfN).  The “mission” of our chapter is 
to unite neuroscience in Nashville and the surrounding area, 
with various activities designed to promote the exchange of 
ideas between neuroscientists at all levels and to inform the 
public about brain science.  As such we continue to expand 
our membership both at Vanderbilt and several other local 
institutions including Meharry, Belmont, Tennessee Tech, 
Austin Peay, Fisk and TSU.  

 Our annual Fall social and Halloween party was 
held at the end of October 2013 in conjunction with the 
Neuroscience Student Organization.  In addition to enjoy-
ing food, drinks, and catching-up with colleagues, the elec-
tion results for the new chapter officers were announced. 
Our contact information can be found on the chapter web-
site (http://www.mtncsfn.org/), and we would love to hear 
from you if you have any ideas for chapter activities or want 
to become more actively involved.

 Held in May, our annual chapter meeting featured 
faculty members Brian Nelms (Fisk), Akiko Shimamoto 
(Meharry), and Alex Maier (Vanderbilt) who treated us to 
short talks about their research.  Even more entertaining 
were the trainee data-blitz competitions, in which grad 
students or post-docs presented a 3-minute synopsis of 
their latest research.  Everyone did an amazing job, but the 
audience voted, and our $50 prize winners were Max Joffe 
and Jennifer Walker.  A reception with snacks and drinks 
featuring Bruce’s home brew concluded a fun meeting. 

 Each year the Chapter can nominate one graduate 
student and one post-doctoral fellow who go on to compete 
at the national level for travel awards to attend the annual 
SfN meeting.  This year we had a great pool of applicants, 
and from these we selected Sarah Baum (post doc in Wallace 
lab) and Pooja Balaram (grad student in Kaas lab) to be our 
2014 nominees– congratulations! Also congratulations to 
our nominees from last year, Devon Graham and Kevin 
Kumar, who both won travel awards to attend SfN 2013 in 
San Diego!  We were also successful in winning a Chapter 
grant from SfN to help support our Summer Enrichment 
Research Program in Education and Neuroscience Training, 
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Inaugural Vanderbilt Music and Mind 
Symposium 2014

 The Vanderbilt Brain Institute presented the 
inaugural “Music and Mind Symposium: Exploring 
Novel Connections between Neuroscience, Psychology, 
and Music” on June 12, 2014. The evening program, held 
at Ingram Hall at the Blair School of Music, combined 
research, community, performance, presentation, and 
panel discussion.  The goal of the event was to engage the 
Vanderbilt academic community, those in the Nashville 
music industry, and the public in a discussion about the 
connections between neuroscience and music. Capacity at 
Ingram Hall is 600, and the event sold out in three days.
 The free event was composed of two parts: 
a Research/Community Exposition followed by 
a Performance/Discussion Event. The Research/
Community Exposition featured 16 posters from 
Vanderbilt researchers currently involved in brain/
music research and/or education. Local and national 
organizations interested in brain/music research also 
participated as community partners in the first portion 
of the evening and hosted tables featuring information 
about their organizations.  The GRAMMY Foundation, 
MusiCares, Musicians On Call, and NAMI were among 
10 exposition community partners.  Catering and beverage 
services were kindly provided by local vendors, including 
Yazoo Brewing Company.  
 The Performance/Discussion portion of the 
evening included Ben Folds, multi-platinum selling 
singer/songwriter/producer, and Daniel J. Levitin, Ph.D., 
James McGill Professor of Psychology, Behavioral 
Neuroscience, and Music at McGill University.  Two 

Vanderbilt faculty members, Marianne Ploger, Director of 
the Musicianship Program at the Blair School of Music, 
and David Zald, Ph.D., Professor of Psychology and 
Psychiatry, later joined Mr. Folds and Dr. Levitin on the 
stage for further discussion and an audience Q&A session.
 Vanderbilt academic heads Mark Wallace, Ph.D., 
Director of the Vanderbilt Brain Institute, and Elizabeth 
Dykens, Ph.D, Director of the Vanderbilt Kennedy Center, 
were among those in attendance.  Also in attendance were 
music industry leaders Jed Hilly, Executive Director of 
the Americana Music Association, and Craig Havighurst, 
Producer of Music City Roots, as well as noted and 
critically acclaimed artists Kenny Malone and Darrell 
Scott.  
 Dr. Wallace shared his take on the event: “The first 
annual Music and the Mind event at Vanderbilt exceeded 
our wildest expectations! The engagement and discussion 
between the scientific and artistic communities at the 
research expo was stimulating and thought-provoking, 
and the feature event was an expansive and enlightening 
conversation between Ben Folds, Dan Levitin and two 
Vanderbilt faculty with unique perspectives on music and 
the brain. We continue to ride the wave of enthusiasm that 
stemmed from the event, and that has forged remarkable 
intersections between the neuroscience and music 
communities.”  
 The second Vanderbilt Music and Mind event will 
be part of the Society for Music Perception and Cognition 
symposium, hosted by Vanderbilt next summer.  Event 
participants are to be announced.

Nicole L. Baganz, Ph.D.

The Vanderbilt Brain Institute hosted the first Music and Mind Symposium 2014. From left to right: Daniel Levitin, 
Ben Folds, David Zald, and Marianne Ploger.



VOLUME 6 | 2014 | 10 VANDERBILT REVIEWS NEUROSCIENCE

H I G H L I G H T S 
+ B R I E F S

reach the threshold firing rates in TRPV1 KO animals. Alto-
gether, these results indicate that TRPV1 KO causes RGCs 
to lose an intrinsic mechanism that enhances RGC excita-
tion in response to stressors.
 Strikingly, the absence of TRPV1 alone does not 
induce neurodegeneration. Both C57 and TRPV1 KO ani-
mals exhibited pathology only in response to IOP elevation; 
however, this pathological progression was accelerated in 
TRPV1 KO mice. Likewise, the physiological response of 
RGCs to elevated IOP was altered by TRPV1 KO. Togeth-
er, these results suggest that TRPV1 helps counter neuronal 
stressors and plays a major role in the survival of RGCs. 
Due to the careful and controlled nature of this study, the 
authors have discovered novel molecular mechanisms of ax-
onal degeneration that may be further leveraged to identify 
therapeutic targets for the millions of patients affected by 
glaucoma as well as other neurodegenerative disorders.

Nicholas J Ward, Ho, KW, Lambert, WS, Weitlauf C, & Calkins, 
DJ (2014). Absence of transient receptor potential vanilloid-1 ac-
celerates stress-induced axonopathy in the optic projection, J Neu-
rosci 34(9):3161-70. 

A novel PIP2 interaction with the dopamine 
transporter regulates dopamine efflux

 Phosphatidylinositol 4,5-bisphosphate, or PIP2 is a 
component of cell membranes with established roles in cel-
lular metabolism and signaling.Previous reports suggest that 
PIP2 may play a more diverse role than previously imagined 
by forming interactions with membrane proteins, including 
the serotonin transporter, SERT. In this paper Hamilton et.  
al. describe a novel role for PIP2 as a regulator of dopamine 
efflux. The authors use a variety of biochemical and electro-
physiological assays to confirm a direct interaction between 
the dopamine transporter (DAT) and PIP2, describing a 
new regulator of dopamine-dependent behaviors. 
 Hamilton et al. used fluorescence microscopy and 
co-immunoprecipitation to show that GFP-tagged DAT 
and PIP2 interact in hDAT cells, CHO cells transgenically 
expressing the human DAT. These studies were repeated in 
preparations of mouse striatum to confirm that this interac-
tion is present in brain tissue. To test for a direct interaction, 
the authors generated an N-terminal fragment of DAT and 
tested its binding efficiency in liposome mixtures contain-
ing PIP2. Indeed, the N-terminal region of DAT directly 
binds the PIP2 liposomes. The N-terminal fragment used in 
these experiments contained 64 amino acids and the authors 

RESEARCH HIGHLIGHTS

Changes in Ocular Pressure: Not a Fun Trip 
When You’re Missing TRPV1

 Glaucoma is the leading cause of irreversible blind-
ness throughout the world. An optic neuropathy, this devas-
tating disease involves the degeneration of retinal ganglion 
cells (RGCs), which express a family of cation-selective 
channels known as transient receptor potential (TRP) chan-
nels. TRP channels are extremely diverse in their function 
and response to both physiological and pathogenic stimuli 
based on the subunits they express. One particular subunit, 
capsaicin-sensitive TRP vanilloid-1 (TRPV1) responds to 
changes in intraocular pressure (IOP), to which patients 
with glaucoma are particularly sensitive. 
 In a recent article in the Journal of Neuroscience, 
graduate student Nick Ward and colleagues used a single, 
calculated injection of microbeads into the anterior portion 
of the eye to induce a chronic, but moderate increase in 
IOP. Using this method in TRPV1 knockout (KO) mice 
and C57 control animals, the authors found that loss of this 
channel had a severe detrimental effect on anterograde axo-
nal transport to the lateral geniculate nucleus (LGN) and 
a nearly complete loss of transport to the superior collicu-
lus (SC). Previously, disruptions in transport to the SC and 
LGN have been demonstrated to be an early sign of RGC 
axon dysfunction within the optic projection. Upon further 
evaluation, the authors discovered that TRPV1 KO also re-
sults in a significant acceleration of pathology when IOP 
is elevated as indicated by: degenerating axons, decreased 
axon density, smaller axon bundles and an overall decrease 
in axon numbers. Similar results were found using pharma-
cological antagonism of TRPV1 in a rat model of increased 
IOP via the same microbead injection paradigm. 
 To further understand the mechanisms behind the 
accelerated degeneration of RGCs in response to elevated 
IOP, the authors utilized single cell patch clamp techniques. 
RGCs were separated into two groups for analysis: those 
with relatively high spontaneous firing rates (3-15 Hz) and 
those with low spontaneous rates that required injection of 
current to exceed a threshold firing rate of 3 Hz. In C57 
mice, RGCs exhibited increased spontaneous firing rates 
in response to elevated IOP. Interestingly, this increase was 
abolished in RGCs from TRPV1 KO animals. For RGCs 
with low firing rates, it was determined that, in response 
to elevated IOP, greater depolarizing current was needed to 
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& Galli, A (2014). PIP2 regulates psychostimulant behaviors 
through its interaction with a membrane protein. Nature Chemi-
cal Biology 10(7):582-9.

New Spot for Pot: Endocannabinoids in the 
Central Amygdala

 The central amygdala (CeA) plays an essential role 
in response to anxiety and fear. More reecently, it has been 
suggested that endocannabinoid (eCB) signaling may play 
a role in such responses. However, how eCBs modulate 
this circuitry has been understudied due to lack of effective 
tools. In a newly published article, Ramikie and colleagues 
sought to uncover the synaptic mechanisms inherent to this 
region to provide added insight into the mechanisms that 
regulate fear and anxiety. Utilizing a number of tools, this 
group demonstrated abundant expression of eCB signaling 
elements specifically at glutamatergic synapses of the CeA 
that facilitate several mechanistically and temporally distinct 
modes of postsynaptic eCB mobilization. 
 This group also determined that endocannabinoid 
type-1 receptor (CB1) positive afferents form glutamatergic 
synapses onto CeA neurons. In addition, they found that 
these same excitatory synapses express the enzyme, DAGLa, 
which is responsible for synthesizing 2-AG, one of the major 
eCBs in the CNS. 
 Using impeccably designed electrophysiological ex-
periments, the authors sought to understand the functional 
significance of CB1 expression within the CeA. Initial ex-
perimental analyses indicated that CB1 receptors mainly 
function to regulate glutamatergic transmission, via sup-
pression of glutamate release. Additional experiments next 
revealed that eCB mobilization at these glutamatergic syn-
apses can be mediated by 2-AG activation of CB1 receptors. 
 Given that eCB mobilization can also be mediated 
by G-protein-coupled receptors, the authors examined mus-
carinic acetylcholine receptors (mAChRs) and found that 
these receptors are not only present, but like the CB1 re-
ceptors, are also functional within the CeA. Interestingly, 
the authors found that synaptic depression is only partially 
CB1-dependent and that Gq-receptor-driven eCB mobiliza-
tion can also be initiated within the CeA to modulate gluta-
matergic transmission. 
 An elegant set of pharmacological experiments al-
lowed the authors to temporally delineate between the sig-
naling that occurs at each receptor type. They found that 
AEA, rather than 2-AG, is is the eCB ligand that acts acutely 

wanted to better characterize the specific amino acids that fa-
cilitate this interaction. Using computational modeling and 
more liposome biochemical assays, the authors show that 
two lysine residues (Lys3 and Lys5) near the N-terminus of 
the DAT protein mediate its electrostatic interactions with 
PIP2. When the authors mutate these sites (hDAT K/A), 
the interaction with PIP2 is lost. 
 Identification of this novel PIP2-DAT interaction 
was exciting, but the authors next wanted to understand 
the functional implications of this association. The authors 
used amperometry to measure dopamine efflux from hDAT 
cells. Amperometry is a technique used to detect the con-
centration of molecules that can be oxidized (in this case, 
dopamine) by measuring electrical current changes. Specifi-
cally, in these experiments, the authors are able to measure 
dopamine efflux with an amperometric electrode placed 
very close to the hDAT cell membrane. Coincidentally, they 
patched the hDAT cells with another electrode to maintain 
the desired levels of intracellular dopamine and deliver spe-
cific molecules. In wild-type cells, administration of amphet-
amine (AMPH) causes the efflux of intracellular dopamine 
through the DAT. Interestingly, when the authors block the 
PIP2-DAT interaction or deplete PIP2, this AMPH-driven 
dopamine efflux is diminished. The authors also find that 
the PIP2-DAT interaction is not required for influx of am-
phetamine or dopamine through the DAT, suggesting this 
interaction is specifically required for dopamine efflux.   
 The authors complete their story by showing this 
interaction is conserved in living organisms and has behav-
ioral consequences. In Drosophila locomotion defects have 
been used to identify regulators of dopamine signaling; for 
example, flies expressing mutant DAT protein are hyper-
active. The authors are able to rescue this hyperactive phe-
notype by transgenic expression of hDAT and hDAT K/A. 
AMPH causes hyperactivity in wild type animals, which the 
authors can recapitulate in flies expressing hDAT. When the 
hDAT K/A animals are treated with AMPH, the locomo-
tor response is diminished, suggesting that the PIP2-DAT 
interaction is required for AMPH-driven hyperactivity in 
Drosophila. The authors confirm these results with am-
perometry measurements in cultured Drosophila neurons. 
This work provides a new and exciting role for PIP2 as a 
regulator of dopamine-dependent behaviors, and raises the 
possibility that PIP2 may regulate other transporters and 
ion channels that control complex behaviors across phylog-
eny. 

Peter J Hamilton, Belovich, AN, Khelashvili, G, Saunders, C, 
Erreger, K, Javitch, JA, Sitte, HH, Weinstein, H, Matthies, HJG, 
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tions of NMDAR antagonists.  
 In order to test this hypothesis, the authors first 
validated the use of a novelty-induced hypophagic (NIH) 
paradigm often utilized in chronic stress studies, within an 
acute setting. In brief, mice were restrained for 60 minutes 
(to cause acute stress) or unrestrained. Thirty minutes later, 
the mice were divided into 3 groups and administered either 
ketamine, Ro 25–6981 or saline. Following injection, the 
mice were then placed into a novel cage equipped with a 
highly palatable food (vanilla flavored Ensure) and the la-
tency to consume Ensure was quantified as a measure of the 
affective state. Important to note is that the mice in this 
study had access to normal chow and all of the mice con-
sumed similar amounts of Ensure during training, therefore 
the results obtained from this task are based on the animals’ 
hedonic drive and not hunger. Using this novel paradigm, 
the authors found that animals given ketamine or Ro 25–
6981 had a significantly reduced latency to consume Ensure 
whether unrestrained or restrained as compared to those 
administered saline, suggesting a decrease in depression-
like behavior. Interestingly, using other common behavioral 
tasks, such as forced swim followed by analysis via the el-
evated zero maze, no changes were seen in distance trav-
eled or time spent in the open arm with ketamine or Ro 
25–6981 administration, not only validating this paradigm, 
but demonstrating it as a superior model for such studies.
 The authors next moved on to discerning which 
specific neural circuits are involved. To do this, the lab gen-
erated mice with knock down of the GluN2B subunit with-
in neurons of the BNST via precise injection of a lentiviral 
vector into this region and found that these animals display 
similar responses to those administered ketamine or Ro 25–
6981. Together with previous studies demonstrating that 
knockdown of GluN2B in corticohippocampal regions had 
no effect on affective behavior, these results clearly implicate 
GluN2B subunits specifically within the BNST in reducing 
negative affective behavior and may represent a novel target 
for therapeutics.

Katherine M Louderback, Wills, TA, Muglia, LJ, & Winder, 
DG (2013). Knockdown of BNST GluN2B-containing NMDA 
receptors mimics the actions of ketamine on novelty-induced hy-
pophagia, Transl Psychiatry 3:e331. 

Large Scale Brain Networks Work Together 
During Memory Retrieval
 The default mode network (DMN) and dorsal at-
tention network (DAN) are anti-correlated brain networks 

on CB1 receptors to reduce glutamate release. While pro-
longed stimulation of mAChRs causes CB1-mediated synap-
tic depression via the release of 2-AG through the canonical 
calcium-DAGL-dependent pathway. Interestingly, this same 
temporal phenomenon of mAChR-driven multimodal eCB 
release is not generalizable as examination of these pathways 
in the striatum did not yield the same results, suggesting 
region- and/or cell-type specific signaling mechanisms.
 Overall, these data indicate that CeA neurons can 
utilize multiple types of eCB signaling to modulate affer-
ent glutamatergic transmission and that AEA and 2-AG 
can be differentially released in response to activation of the 
same Gq-coupled receptor, depending on the duration of the 
stimulus. Continued investigation of these signaling path-
ways is extremely important as it can provide insight into 
the synaptic mechanisms regulating stress response physiol-
ogy, anxiety-like behaviors and emotional learning. 

Teniel S Ramikie, Nyilas, R, Bluett, RJ, Gamble-George, JC, 
Hartley, ND, Mackie, K, Watanabe, M, Katona, I, & Patel, S 
(2014). Multiple mechanistically distinct modes of endocannabi-
noid mobilization at central amygdala glutamatergic synapses, 
Neuron 81(5):1111-25.

Affecting Affective Behavior: GluN2B Subunits 
in the BNST

 Anxiety disorders and depression are among the 
most common mental disorders throughout the world af-
fecting roughly 1 in 10 persons. Although it is estimated 
that 121 million people struggle with these disorders, less 
than 1/3 are receiving adequate treatment. Promising new 
therapeutics include N-methyl D-aspartate receptor (NM-
DAR) antagonists; however, these drugs can mimic the 
symptoms of psychosis, have high abuse potentials and have 
off-target effects. Therefore, careful analysis of the mecha-
nisms by which this class of drugs acts can lead to the de-
velopment of safer therapeutic options. Initial studies in hu-
mans and rodents demonstrated reduced anxiety following 
a single administration of the global NMDAR antagonist, 
ketamine as well as an antagonist specific to the GluN2B 
subunit of NMDA receptors (Ro 25–6981). Given that the 
bed nucleus of the stria terminalis (BNST) has been impli-
cated in depression and anxiety and that it contains high 
levels of GluN2B expression, Louderback and colleagues 
hypothesized that NMDARs within this brain region may 
provide significant contribution to the antidepressant ac-
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nected to a real and present danger. Although it is possible 
for anxiety to be appropriate, increasing vigilance in poten-
tially threatening situations, it is often misplaced and when 
sustained can lead to an anxiety disorder, which is one of the 
most common and debilitating mental illnesses. Chronic 
anxiety is associated with drug addiction and interestingly, 
both disorders seem to be mediated by a tiny nucleus in the 
extended amygdala, the Bed Nucleus of the Stria Terminalis 
(BNST), which is also involved in reward-seeking behav-
ior. Optogenetic studies in rodents have demonstrated that 
functional circuits, connecting through the BNST, are more 
important in the mediation of these complex behaviors than 
structural connections may be. Elucidating the functional 
connectivity of the BNST could lead to better understand-
ing of the neural mechanisms underlying both anxiety and 
addiction.
 Most studies of BNST neurocircuitry have used 
luminescent tracers in rodents, revealing extensive con-
nections between the BNST and both limbic and striatal 
regions. Though interesting, these results may not com-
pletely explain the connectivity of this important nucleus 
in humans, because the primate BNST is larger relative to 
adjacent structures than it is in rodents, suggesting a more 
extensive neurocircuitry. Studies of primates have explored 
connectivity between the BNST and other parts of the lim-
bic structures, but none have examined BNST connections 
to the rest of the brain. A recent paper from the Blackford 
lab, uses new high-resolution imaging methods to explore 
neurocircuitry between the BNST and the rest of the hu-
man brain, identifying two novel connections which were 
previously unknown, and outlining the key nodes of the hu-
man BNST circuit. 
 One of the major benefits of high-resolution imaging 
is that it makes it possible to examine neurocircuitry in vivo 
in awake human subjects. The current paper uses both Dif-
fusion Tensor Imaging (DTI) and Resting State Functional 
Magnetic Resonance Imaging (rs-fMRI) to identify the 
structural and functional connections between the BNST 
and the rest of the human brain. DTI is a technique that 
takes advantage of the directional diffusion of water in tissue 
to reveal neural tracts, while rs-fMRI collects information 
about regional interactions that occur without conscious 
activity.  This study includes a large sample size, with 82 
DTI’s and 99 rs-fMRIs, from a total of 120 healthy par-
ticipants between the ages of 17 and 57, of which 47.7% 
were female. Subjects first received a T1-weighted scan to 
determine gross regional brain structure, followed by seven 
minutes of rs-fMRI data collection, and then a DTI scan, all 
within one session. 
 Connectivity was determined by comparing simul-
taneous signals from an area identified as the BNST, with 

that have been described using functional connectivity mag-
netic resonance imaging (fcMRI) methods. The DMN con-
sists of cortical regions (i.e., the posterior parietal cortex, 
hippocampus, posterior cingulate cortex, and the medial 
prefrontal cortex) that have correlated blood oxygen depen-
dent (BOLD) signal during internally directed cognitive 
states. The DAN is composed of the dorsal prefrontal cor-
tex, particularly the frontal eye fields, and the intraparietal 
sulcus, and is thought to mediate attention-based orienting 
that is mediated by external, environmental cues. In a re-
cent paper by James Kragel, a neuroscience graduate stu-
dent in the Polyn Lab, interactions between the DMN and 
the DAN were investigated using independent components 
analysis (ICA), a computational methodology used to exam-
ine and separate the contributions of cortical networks to an 
overall BOLD signal pattern during a task or at rest.  
 In this study, participants underwent an fMRI scan 
and completed a free-recall paradigm, which asked partic-
ipants to study and encode lists of words and then recall 
them in the scanner. The authors identified subcomponents 
of the DMN that varied in their engagement throughout 
the free-recall portion of the task. However, a subcompo-
nent termed the posteriomedial network, consisting of the 
ventromedial prefrontal cortex, retrosplenial cortex, and 
bilateral temporal cortex, was the only sub-network dem-
onstrating sustained, increased engagement throughout the 
free recall portion of the task. Furthermore, correlational 
analyses revealed changes in functional coupling between 
subcomponents of the DMN and DAN that were depen-
dent on task phase and performance. These findings suggest 
that large-scale functional networks are likely supported by 
contributions of a number of sub-networks that can func-
tion both cooperatively or competitively to facilitate free re-
call. These findings also challenge the prevailing notion that 
the DMN and DAN are recruited solely in opposition to 
each other, and suggest a much more flexible and heteroge-
neous system of neural networks that facilitate cognition.

James E. Kragel & Polyn, SM (2013). Functional Interactions 
Between Large-Scale Networks During Memory Search, Cerebral 
Cortex 10.1093/cercor/bht258.

Size Doesn’t Matter: Understanding Anxiety 
and Addiction through Imaging of the 190mm3 
BNST

 Anxiety is a feeling of dread or apprehension about a 
future event, distinct from the feeling of fear, which is con-
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ly established connections between subnuclei. The strongest 
structural connection was between the BNST and the ac-
cumbens and it was the second strongest functional con-
nection as well, a finding which is exciting because both 
structures feature prominently in anxiety and addiction 
neurocircuitry, but their relationship had not been previ-
ously confirmed. 
 Because the BNST is known to be gender dimor-
phic in rodents, sex differences were also explored, showing 
greater structural connectivity between the BNST and 76% 
of the connected regions in females. Functional connectiv-
ity between the left putamen and the BNST was greater in 
males, while females showed a stronger functional connec-
tion between the BNST and the right thalamus, pointing 
to an explanation for some of the gender differences in the 
prevalence of anxiety and addiction.
 Hopefully, future studies will create a probabilistic 
atlas of the BNST combining multiple 7-tesla images for 
more accurate masking, and will explore BNST connectiv-
ity to the midbrain structures, which were not analyzed in 
this project. The BNST is a key nucleus for understanding 
chronic anxiety and addiction behavior, and future studies 
of these disorders will draw from these results to understand 
the underlying neural mechanisms.
 This is a landmark study because it establishes, for 
the first time, the functional and structural neurocircuitry of 
the BNST in human brain, using a stringent and innovative 
statistical approach.

Suzanne N Avery, Jacqueline A Clauss, Winder, DG, Wood-
ward, N, Heckers, S, & Blackford, JU (2014).  BNST Neurocir-
cuitry in humans, Neuroimage 91:311-23.

Turns out, you don’t need both amygdalae to 
appreciate porn

 A predominant theory of enhanced visual corti-
cal processing of emotional stimuli is that the amygdala 
modulates the amount of attention given to visual stimuli 
and enhances the processing for stimuli that are emotion-
ally arousing.  Evidence for this has been put together from 
anatomical tracing studies in nonhuman primates between 
the amygdala and ipsilateral ventral visual stream areas, 
functional connectivity analyses of blood oxygenation level-
dependent (BOLD) signals implicating connections of the 
amygdala with the visual stream, and patients with medial 
temporal lobe sclerosis showing reduced response to fearful 
faces than control subjects.  However, behavioral results in 
patients with amygdala lesions suggest that there are other 

identified regions in the rest of the brain. Though it is an 
important nucleus, the human BNST is less than 190mm3, 
with boundaries that are difficult to identify. To create a tem-
plate, or mask, to identify the BNST, Avery and colleagues 
collected an ultra-high-resolution 7-tesla image from one 
42-year-old male. The detailed outline of the BNST from 
this precise 3-dimensional study was then placed onto the 
lower resolution images obtained from all the other sub-
jects, using their visible anatomical boundaries. Differences 
in signal from the masked area were measured to determine 
structural and functional coincidence with 54 brain regions 
identified through the Harvard-Oxford Probabilistic Atlas-
es, which did not contain mid-brain structures, such as the 
hypothalamus. 
 Images were analyzed using an agnostic approach to 
describe BNST relationships to target areas, both ipsilater-
ally and contralaterally. In addition, an innovative statistical 
approach was applied to the DTI data, evaluating the num-
ber of tractography streamlines passing from each seed vox-
el, allowing for a better estimate of long distance connectiv-
ity. Regions of significance, which were above the threshold 
value in more than 50% of the individual participants, were 
reported to have connectivity with the BNST, a stringent 
statistical paramater.  
 This conservative statistical approach revealed 17 re-
gions with a significant likelihood of structural connectivity 
to the BNST, confirming previously known BNST relation-
ships between the basal ganglia (accumbens, caudate, pu-
tamen, pallidum), amygdala, subcallosal cortex, hippocam-
pus, and thalamus. Surprisingly, the BNST was also found 
to be connected to the temporal pole region, a paralimbic 
area, which is presumed to bind complex perceptual inputs 
to strong emotional responses. Functional connections to 
the basal ganglia (accumbens, caudate, putamen, pallidum), 
hippocampus, and thalamus were also confirmed, and a nov-
el functional circuit was found between the BNST and the 
paracingulate gyrus, a part of the prefrontal cortex, which is 
thought to mediate responses to complex social pressures. 
 Structural and functional findings converged on con-
nectivity between the BNST and the accumbens, thalamus, 
hippocampus, pallidum, caudate and putamen. Avery et al. 
propose that these regions form the nexus of the human 
BNST circuit. Surprisingly, the amygdala and subcallosal 
cortex showed structural, but not functional connectivity, 
though prior work had linked these regions strongly with 
the BNST. This may have been due to the conservative sta-
tistical approaches used, or it may reflect the limitations of 
fMRI to image increased GABAergic projections, rather 
than glutamatergic projections.
 Within the amygdala, this study confirmed previous-
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brain structures that contribute to enhanced visual stream 
processing of emotional stimuli.  In this study, Edmiston 
and McHugo et. al. examined the BOLD signals of patients 
with amygdala lesions in response to visual emotional scenes.  
They hypothesized that if the amygdala is responsible for the 
enhanced effect of visual stream processing seen in previ-
ous studies, then the visual stream BOLD signal ipsilateral 
to the amygdala lesion should be reduced in these patients.  
Conversely, if another network of structures is responsible 
for modulating visual stream processing of emotional stim-
uli, then the ventral visual stream BOLD signal ipsilateral to 
the amygdala lesion should not be reduced.
 To test their hypothesis, the authors used function-
al magnetic resonance imaging (fMRI) to collect BOLD 
signals of control participants (n=16) and patients who had 
undergone unilateral temporal lobe resection that included 
removing part or all of the amygdala from either the right 
(n=13) or left (n=5) hemisphere.  Most studies that explore 
visual stream processing in response to emotional stimuli 
use images of faces expressing specific emotions (eg, fear, 
anger) or of neutral objects, and the participants are asked to 
view the images while performing a task.  One confound of 
this type of paradigm is that faces elicit activation of specific 
brain regions, while scenes recruit a broader network for 
neural processing.  Furthermore, tasks require top-down at-
tentional control that may confound stimulus-driven neural 
processing.  Thus, the authors of this study used emotional 
scenes of aversive, erotic, neutral, or scrambled images, and 
the participants viewed the images passively while in the 
scanner.  
 Consistent with previous findings, the control par-
ticipants showed increased visual cortical activation in re-
sponse to the aversive and erotic images compared to the 
neutral images, specifically in bilateral primary and second-
ary visual cortices for both aversive and erotic conditions 
and additionally the fusiform gyrus for the aversive condi-
tion.  For the amygdala-resection patients, bilateral prima-
ry and secondary visual cortices showed enhanced BOLD 
signal for aversive and erotic images compared to neutral 
images.  Because the amygdala resections were unilateral, 
an increased BOLD signal of visual cortex contralateral to 
the lesion compared to that of visual cortex ipsilateral to 
the lesion would indicate that the intact amygdala still con-
tributes to the enhanced cortical response.  To investigate 
this possibility, the authors compared the ipsilateral and 
contralateral BOLD signals of the primary visual area, lat-
eral visual association cortex, and the fusiform gyrus and 
found no significant differences in activation of these areas 
between the two hemispheres.  Next, the authors examined 
if the size of lesion had an effect on cortical activity.  This 

analysis revealed a positive correlation between lesion size 
and BOLD signal of the contralateral fusiform gyrus in the 
aversive condition and contralateral visual association cortex 
in the erotic condition.  This suggests that increased lesion 
size might lead to compensatory activity of contralateral vi-
sual cortical processing.  
 The results of this study challenge the classic model 
that the amygdala modulates bottom-up visual cortical pro-
cessing of emotional stimuli.  Instead, it supports an alter-
native hypothesis that there are multiple parallel pathways 
that mediate the processing of salient, particularly aversive 
and erotic, stimuli.  This study opens the door for future 
studies to examine what other structures may be involved 
in modulating visual stream processing and what other net-
works contribute to our processing of emotional scenes.

E. Kale Edmiston, Maureen McHugo, Dukic, MS, Smith, SD, 
Abou-Khalil, B, Eggers, E & Zald, DH (2013). Enhanced visual 
cortical activation for emotional stimuli is preserved in patients 
with unilateral amygdala resection. J Neurosci 33(27):11023-31.

RESEARCH BRIEFS

Serotonin System Regulation in Autism Spec-
trum Disorder: Functional Analysis of Rare 
Coding Variants of the Adenosine A3 Receptor 

 Autism Spectrum Disorder (ASD) is a complex 
neurodevelopmental disorder characterized by deficits 
in social behavior as well as by restricted and repetitive 
behaviors. Because of the heterogeneity within ASD, the 
genetic basis of the disorder is likely linked to interacting 
factors that moderate risk. Studies that screen for rare 
genetic variants in ASD are important because they can 
help to elucidate biological mechanisms that might underlie 
pathophysiology of the disorder or specific symptoms 
associated with multiple disorders. In a recent study by 
Vanderbilt Brain Institute graduate student Nicholas 
Campbell, the authors examined the functional impact of 
two rare variants of the gene encoding the A3 adenosine 
receptor (ADORA3) in a sample of families with one or 
more members diagnosed with an ASD.  The ADORA3 
receptor is expressed at the synaptic terminals of neurons 
that synthesize serotonin; variants of the ADORA3 gene 
have been linked to regulation and expression of the 
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serotonin transporter via the p38 MAPK and PKG signaling 
cascades. The authors found an increased number of rare 
coding variants in ADORA3 in cases compared to controls. 
The authors performed a functional analysis of two of these 
rare inherited variants- Leu90Val and Val171Ile. These 
functional studies suggested effects on serotonin transporter 
regulation in these two alleles- with the Leu90Val receptor 
variant associated with increased serotonin uptake and the 
Val171Ile receptor variant associated with a downstream 
decrease in serotonin transporter-mediated uptake. These 
findings suggest dysregulation of the serotonin system in 
ASD and implicate a functional mechanism that confers 
increased risk for development of ASD.

Nicholas G. Campbell, Zhu, CB, Lindler, KM, Yaspan, BL, 
Kistner-Griffin E, NIH ARRA Consortium, Hewlett, WA, Tate, 
CG, Blakely, RD, Sutcliffe, JS. (2013). Rare coding variants of the 
adenosine A3 receptor are increased in autism: on the trail of the 
serotonin transporter regulome. Mol. Autism 4(1):28.

Heavy Metal – Not Your Typical Concert:
The Role of PD Related Genes in Metal Handling

Parkinson’s disease (PD) affects 1% of the popu-
lation, yet its underlying mechanisms remain elusive, and 
may be due to an unknown combination of both genetic 
and environmental factors, such as manganese (Mn) expo-
sure. Known cellular manifestations of this debilitating neu-
rodegenerative disease include aggregates of alpha-synuclein 
(a-Syn), mitochondrial dysfunction, and oxidative stress.  
Though the majority of PD cases are idiopathic, a very rare 
form of early-onset familial PD is due to a recessive gene 
mutation on one of a trio of genes, PARKIN, PINK1 and 
DJ1, which seem to be involved in diverse molecular path-
ways. A recent study from the Aschner lab investigated the 
role of these genes in controlling the cellular response to 
Mn exposure, using an invertebrate nematode model with a 
knock-in of human a-Syn, as well as single deletions of the 
relevant PD genes.  

Mn exposure alone causes oxidative stress, and thus 
can reveal impairments in cellular stress response as well as 
alterations in metal handling. To investigate these pathways, 
Caenorhabditis elegans (C. elegans) were exposed to Mn and 
then analyzed for Mn content, survivability, and the pres-
ence of reactive oxygen and nitrogen species (RONS). Do-
paminergic neuronal degeneration was also assayed, as it is a 
hallmark symptom of PD. 

As is usually the case with PD research, the results 
were unexpected, but interesting.  According to dose-re-

sponse survival curves, worms with deletions in pdr1 (ho-
mologous to PARKIN) were hypersensitive to Mn toxicity, 
while those with deletions of djr1.1 (homologous to DJ1) 
were less sensitive than wild type. C. elegans does not express 
a-Syn naturally, but when the nematodes also carried the hu-
man a-Syn knock-in, they became more susceptible to Mn 
exposure. Both the pdr1 and djr1.1 mutants accumulated 
more Mn than wild type worms, a result that echoed prior 
studies in Drosophila showing dj1 mutations to be related to 
increased metal accumulation. The worms that bore a-Syn 
demonstrated resistance to Mn accumulation, adding to evi-
dence of a protective metal-binding function for a-Syn.  

All of the deletion mutants (including pink1) had 
increases in baseline RONS, and decreases in baseline glu-
tathione levels, revealing an impaired ability to respond to 
oxidative stress. Mn-exposure exacerbated RONS levels, 
but the presence of a-Syn reduced RONS in the pdr1 and 
djr1.1 mutants, further supporting a neuroprotective role 
for a-Syn. In wild type worms, degeneration of dopaminer-
gic neurons was not increased by Mn exposure, although 
the presence of a-Syn served to protect them from normal 
degeneration in the presence of the pdr1, but not the djr1.1 
mutation. 
 The nematode model used in this study provides a 
tool to examine the interactions between genes known to 
cause PD, and an environmental exposure, which is also as-
sociated with similar neurodegeneration. Results point to a 
net of interactions between manganese and the known fa-
milial PD genes, implicating alterations in metal handling 
as a part of the root cause of PD. In addition, the presence 
of human a-synuclein provided a protective role against oxi-
dative stress and Mn toxicity when genes known to cause 
familial PD were deleted, a finding which suggests that 
more research into the metal-binding capacity of a-Syn is 
warranted. 

Bornhorst, J, Sudipta Chakraborty, Meyer, S, Lohren, H, 
Brinkhaus, SG, Knight, AL, Caldwell, KA, Caldwell, GA, Karst, 
U, Schwerdtle, T, Bowman, A & Aschner, M. (2014). The effects 
of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and 
the role of α-synuclein in C. elegans. Metallomics 6(3):476-90.

Basal metabolic differences in the human subic-
ulum
 
 The hippocampal formation is a brain structure in-
volved in memory, spatial navigation, and mood, and ab-
normalities in this structure are associated with neurologi-
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cal and psychiatric disorders such as Alzheimer’s disease and 
schizophrenia. Multiple subfields make up the hippocampal 
formation, including the hippocampus proper (CA1-4), 
dentate gyrus, and subiculum. Previous work has shown 
that there are anterior-posterior gradients in the hippocam-
pal formation with regards to cell number, neurochemistry, 
and metabolism; however, less is known about the differenc-
es in metabolism within the human hippocampal subfields. 
In this study the authors use contrast-enhanced steady state 
imaging to measure cerebral blood volume (CBV), a marker 
of basal metabolism, of the hippocampal formation and its 
subfields along the anterior-posterior axis in fourteen healthy 
human subjects. The authors identify significant CBV gra-
dients in the left and right hippocampal formation. Upon 
further examination, the authors localize the CBV gradient 
to the left and right subiculum, with the highest CBV levels 
occurring in the anterior regions. This anterior to posterior 
CBV gradient suggests that the anterior subiculum is more 
active than the posterior subiculum. The subiculum is an 
important outflow subfield of the hippocampal formation, 
but the functional implications of this gradient are unclear. 
However, it is likely that disruptions in these natural gra-
dients within the hippocampal formation will advance our 
understanding of complex neuropsychiatric disorders, such 
as schizophrenia.

Pratik Talati, Rane S, Kose S, Gore J, Heckers S. (2014). Anteri-
or-Posterior Cerebral Blood Volume Gradient in Human Subicu-
lum. Hippocampus. 24:503-509.
 

Amygdala and Basal Ganglia Structure and 
Function in Adults with Inhibited Tempera-
ment

 Inhibited temperament (IT) is a hereditary, stable, 
and biologically-based trait associated with increased risk for 
a host of psychiatric disorders. IT individuals are avoidant 
of novel stimuli and situations, timid, and slow to approach 
new people. Jacqueline Clauss, a graduate student in the 
Blackford Lab, conducted a magnetic resonance imaging 
(MRI) study of the neuroanatomical and functional corre-
lates of IT, recently published in Social Cognitive and Affec-
tive Neuroscience. 

A sample of young adults with IT was compared to 
those with extreme uninhibited temperament. Because prior 
research has implicated the amygdala in novelty detection, 
the authors were particularly interested in shape and volume 

differences in the amygdala between groups. The authors 
found that IT individuals had overall larger amygdala vol-
umes than uninhibited participants, with greater volumetric 
differences in the basal and lateral subnuclei. Shape analy-
sis also showed increased convexity in these same amygdala 
subregions. To determine the relationship between amygda-
la network connectivity and volume, the authors performed 
functional connectivity analyses on a subset of participants 
who also underwent functional MRI (fMRI) using a novel 
and familiar face viewing paradigm. Increased volume of 
the amygdala was significantly correlated with greater con-
nectivity between the amygdala and the opposing temporal 
lobe during face processing. Greater right amygdala volume 
was also associated with increased functional connectivity in 
the visual cortex, including the fusiform gyrus, and the in-
sula. These correlation analyses reveal a relationship between 
greater amygdala volume and a network of brain regions as-
sociated with social and emotional stimulus processing. 

Jacqueline A Clauss, Seay, AL, Vanderklok, RM, Avery, SN, 
Cao, A, Cowan, RL, Benningfield, MM & Blackford, JU (2014). 
Structural and functional bases of inhibited temperament. Soc. 
Cogn. Affect. Neurosci. 10.1093/scan/nsu019. 
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On the Cover 
 Each year we ask the qualifying class to sub-
mit images for the VRN cover art competition. This 
year’s winner is Britney Lizama-Manibusan . Here she 
describes her project and how it relates to the cover im-
age, as well as some information about herself.  

“Stroke is the 4th leading cause of death and the lead-
ing cause of long-term disability in the United States. 
Given that over 80% of strokes are ischemic in nature, 
there is a particularly urgent need for pre-clinical in-
vestigation of the pathophysiology of ischemic stress to 
identify processes that enhance cell survival in response 
to injury. Interestingly, the brain has powerful means 
to adapt to acute ischemic stress through an endoge-
nous form of protection called preconditioning (PC). 
We have developed both in vivo and in vitro models 
of PC to understand the molecular underpinnings of 
endogenous protection. In our in vitro model, primary 
rat cortical neurons are treated with mild oxygen and 
glucose deprivation and allowed to recover in growth 
media. During the recovery period, we can monitor 
the protein profile of these neurons through immu-
noblotting and immunocytochemistry techniques. The 
cover photo depicts preconditioned neurons stained 
with neuronal marker MAP2 (green), nuclei marker 
DAPI (blue), and the molecular chaperone Heat Shock 
Protein 70 (HSP70, magenta). HSP70 is increased in 
preconditioned cultures and is essential to neuropro-
tection afforded by PC. However, while HSP70 is es-
sential, it is not sufficient to promote cell survival. My 
thesis project focuses on identifying other proteins im-
portant in determining cell fate after PC in an effort to 
find biomarkers of cell survival and targets for therapy 
after CNS injury. 

 I graduated from the University of Arizona 
with a Bachelor of Science degree in Molecular and 
Cellular Biology in 2011. I am currently a fourth year 
student in the Neuroscience Graduate Program doing 
my thesis work in Dr. BethAnn McLaughlin’s lab.” Britney N� Lizama-Manibusan
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The signature wound of the recent conflicts in Iraq 
and Afghanistan is blast injury1, which impacts both mili-
tary and civilian populations. Blast exposure has numerous 
negative ramifications on the human body, including dam-
age to the lungs and central nervous system2,3. Traumatic 
brain injury (TBI) from blast exposure is heavily studied4-6. 
However, ocular blast trauma (OBT), a frequent comorbid-
ity with TBI7,8, is relatively understudied. Blast exposure can 
cause open or closed globe injuries. Closed globe injuries 
include superficial lacerations and contusions to the globe 
from a blunt force or overpressure wave9. Open globe injuries 
include penetrating or perforating wounds to the cornea or 
sclera9. Post-trauma vision is poorer in patients with open 
globe injuries10, but closed globe injuries can remain unde-
tected until appreciable vision loss occurs11.

This review will discuss: 1) the key findings of three 
in vivo models of OBT in mice and rats12-14, 2) the potential 
mechanisms underlying visual dysfunction and cell loss in 
each model, and 3) the therapeutic potential of erythropoi-
etin for the treatment of OBT. 

Current OBT Models

Modified Paintball Gun: The Contributions of Anterior 
Chamber Damage and Changes in Intraocular Pressure to the 
Pathogenesis of OBT 

Our lab introduced an OBT model that isolated the 
impact of an overpressure blast wave to the mouse eye alone12. 
Some of the more interesting initial findings from our model 
system include decreases in intraocular pressure (IOP). A 
decrease in intraocular pressure following OBT indicates 
possible damage to the cornea, ciliary body (the structure 
responsible for production of aqueous humor), or trabecu-

lar meshwork (a network of collagen fibers through which 
aqueous humor exits the anterior chamber). If the trabecu-
lar meshwork is torn, this could increase outflow of aque-
ous humor through Schlemm’s canal and cause a decrease in 
IOP. Scarring of an injury in the trabecular meshwork could 
eventually lead to a decrease in aqueous outflow, leading to 
the development of traumatic glaucoma. Also, damage to the 
ciliary body could disrupt production of aqueous humor and 
lower IOP.  Another possible explanation is inflammation 
within the anterior chamber, which can increase blood-aque-
ous permeability and lower production of aqueous humor in 
the ciliary body15. Damage to the anterior chamber is associ-
ated with development of traumatic glaucoma16,17. To inves-
tigate the possible development of traumatic glaucoma, we 
would need to image the anterior chamber using optical co-
herence tomography (OCT)a and continue monitoring IOP 
over time to detect any abnormal increases. Additionally, if 
increased IOP is detected, we should also test retinal ganglion 
cell function using visually evoked potentials.

Our model put forth new avenues of inquiry to 
further understanding the pathogenesis of OBT. However, 
there are some questions about our experimental construct. 
Blast exposure causes simultaneous damage to the eye and 
the brain. Isolating exposure to the eye is not a true repre-
sentation of the impact of OBT on the entire visual system. 
While this isolation poses a potential disadvantage, it is also 
advantageous because we demonstrate that an overpressure 
blast wave directly affects the retina, and we can use this ap-
proach to investigate the mechanisms of blast injury. In fu-
ture experiments, we need to compare the effects of isolated 

a� Optical coherence tomography is an in vivo imaging technique that utilizes near-
infrared light and a special camera to collect images of the retina, optic nerve head 
and anterior chamber. It is used in both animal studies and in ophthalmic clinics.

Ocular Blast Trauma: Models, Mechanisms, and a Potential 
Therapeutic Strategy

Courtney M. Bricker-Anthony
Ocular blast trauma is a comorbid condition with traumatic brain injury and affects 45% of veterans from recent con-
flicts. Closed globe injuries impacting the retina can remain initially undetected in blast-exposed veterans and result 
in vision loss over time. The cellular and molecular mechanisms promoting retinal cell death and visual dysfunction 
are currently unknown, and no therapeutic agents are available for the treatment of this injury. This review will discuss 
current animal models of ocular blast trauma, potential mechanisms of retinal cell death and visual dysfunction, and 
the efficacy of erythropoietin, an endogenous neuroprotective cytokine, as a treatment.

Blast injury, closed globe trauma, vision loss, cell death, erythropoietinKeywords
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versus whole head blast. An additional area of concern is 
gender. All the mice used in our initial experiments were 
female. Estrogen is protective in experimental head trauma 
and may also protect pre-menopausal women from cataracts 
and ocular disease18,19. We need to study the responses of 
male mice to OBT and determine if any sex differences ex-
ist.  

Blast Chamber: The Impact of Inner Retinal Pathology on Vi-
sual Outcomes

In contrast with our model, Mohan and colleagues 
adopted a whole head exposure strategy and characterized 
their model system in adult male mice13. Their model char-
acterization yielded many fascinating results. Some intrigu-
ing findings included their pattern ERG (pERG)b data and 
immunohistochemistry. 

The pERG results from Mohan and colleagues sug-
gest substantial dysfunction or loss of retinal ganglion cells 
following OBT. However, the researchers only collected 
pERG data at acute time points and one year post-injury. 
Longitudinal assessment of the pERG response would 
reveal the development of deficits over time and validate 
its use as a potential biomarker for the diagnosis of OBT 
pathogenesis.  

Immunohistochemistry is a good first step for 
identifying potential markers of pathology, such as 4-HNE, 
iNOS and beta amyloid, in tissue sections. However, at-
tempting to quantify these markers with relative expression 
scores is inadequate. If the authors wished to truly quantify 
these markers, then they should have performed western 
blots or ELISAs to confirm increases in protein levels. The 
immunohistochemistry results would have been useful for 
showing localization of the markers to suspected regions 
of damage, i.e. the ganglion cell layer. We have also exam-
ined retinal sections for the presence of 4-HNE and 3-ni-
trotyrosine (a product of iNOS) three days post-injury. We 
saw increases in 3-nitrotyrosine labeling, but no changes in 
4-HNE. However, a recent rat model of TBI showed in-
creases in 4-HNE and 3-nitrotyrosine at 3 hours post-injury 
that returned to baseline levels by 24 hours20. These findings 
indicate an early, shared mode of pathogenesis (oxidative 
stress) in both traumatic brain injury and OBT. 

Explosives: Implications of Photoreceptor Cell Loss and Blood-
Retinal Barrier Permeability

b� Pattern electroretinogram is a non-invasive test of retinal ganglion cell function. 
The test involves placement of a ring electrode on the surface of the cornea and 
measuring the electrical responses of the eye to reversals in a monochrome 
checkerboard pattern on a monitor.

Zou and colleagues documented photoreceptor cell 
death, glial reactivity and inflammation in adult male rats 
following OBT14. In contrast with the findings of Mohan 
and others, the most heavily impacted cell population in this 
OBT model appeared to be the photoreceptor cells. Loss of 
photoreceptors occurs in retinitis pigmentosa, age-related 
macular degeneration, and diabetic retinopathy. Substantial 
photoreceptor cell death is devastating to retinal function, 
especially in areas of high acuity vision like the fovea. How-
ever, without functional assessments, it is difficult to discern 
whether or not the photoreceptor cell loss reported in this 
study was significant enough to result in visual deficits. 

The authors noted extensive Müller glia reactivity 
following OBT. Increased expression of glial fibrillary acidic 
protein (GFAP) within Müller glia is a hallmark of retinal 
pathology and appears in retinal degeneration, injury, glau-
coma, and diabetic retinopathy21-23. GFAP also increases in 
astrocytes following experimental TBI and is gaining popu-
larity as a serum biomarker of TBI24,25. 
 Glial reactivity in both OBT and TBI continues a 
trend of common findings between the two tissues. How-
ever, the aquaporin-4 expression in this OBT model seems 
to disagree with data from TBI. For example, aquaporin-4 
expression decreases following experimental TBI and is as-
sociated with reduced water transport and promotion of 
cerebral edema26-28. In ischemic retinal injury, a complete 
knockout of aquaporin-4 in mice was shown to protect 
against retinal edema, inner retinal cell loss and flash ERGc 
deficits29. Aquaporin-4 might play different roles in TBI ver-
sus OBT. If this pattern holds true in future studies, any 
treatment strategy attempting to reduce retinal edema by 
targeting aquaporin-4 will need to be tissue-specific to pre-
vent damaging off-target effects in the brain. 

Cell Death In OBT

Cell death is a common consequence of ocular dis-
ease and injury and occurs in all three models of OBT12-

14. As previously discussed, oxidative stress, inflammation, 
and reactive gliosis are all possible contributors to OBT 
pathogenesis. Each of these stressors can potentially trigger 
either apoptosis (caspase-dependent cell death) or necrop-
tosis (caspase-independent cell death). Our lab has studied 
cell death following OBT, and we have noted paucity in 
caspase-3 positive nuclei in areas of cell death marked by 

c� The flash ERG is similar to the pattern ERG in that both tests use a corneal 
electrode to measure electrical responses. However, in the flash ERG, the stimulus 
consists of flashes of white light at different intensities that preferentially excite 
photoreceptor cells and ON bipolar cells.
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TUNEL (an in situ hybridization assay that detects nicked 
DNA in dead and dying cells) at multiple time points post-
injury. We hypothesize that necroptosis contributes to cell 
death following OBT. Thus, the mechanisms of necroptosis 
in retinal injury will be reviewed. 

TNF-α, a pro-inflammatory cytokine upregulated 
following OBT injury, is capable of inducing both apopto-
sis and necroptosis14,30. Once TNF-α binds TNFR1, it can 
cause one of three outcomes. TNF-α can promote cell sur-
vival via NF-κB activation31. It can also lead to formation 
of either the apoptosome, which drives caspase-dependent 
cell death, or the necrosome, which drives caspase-indepen-
dent cell death30,32. Whether a cell commits to apoptosis or 
necroptosis appears to be dependent upon the ubiquitina-
tion status of RIP1 and activation of caspase-833,30. When 
RIP1 is deubiquitinated, it can form the apoptosome with 
active caspase-8 or the necrosome with RIP3 when cas-
pase-8 is inhibited30. 

RIP3 is necessary for execution of necroptosis and 
has been shown to cause excess production of reactive oxy-
gen species (ROS) in mitochondria, a potential mechanism 
of necrotic death32. Huang and colleagues reported expres-
sion of RIP3 in the inner retina of control rats34. Our lab 
has also documented inner retinal expression of RIP3 in the 
normal mouse retina. Upregulation of RIP3 was recently re-
ported in a retinal injury model and may also play a role in 
OBT pathogenesis34. 

The data contributed by Huang and colleagues in 
their retinal injury model (acute elevation of IOP) raises 
many questions about the role of RIP3 in the normal and 
injured retina34. First, why is RIP3 expressed in nearly half 
of retinal ganglion cells and horizontal cells in normal con-
ditions? Results from a series of in vitro experiments by 
Zhang and others show that RIP3 directly interacts with 
and increases the activity of several key enzymes involved 
in energy metabolism and that these interactions can be en-
couraged by application of TNF-α32. Basal levels of RIP3 
protein within normal retinal neurons may regulate energy 
metabolism in a non-pathogenic manner. The high basal 
levels of RIP3 in inner retinal neurons may also make them 
vulnerable to necroptosis in response to certain stressors. In 
contrast, the photoreceptors of the outer retina appear to 
express very little RIP3 under normal conditions and in the 
context of retinal ischemia. This staining is consistent with 
mRNA expression patterns of RIP3 in the normal mouse 
retina reported by Trichonas and others35. 

Another important question pertains to the ab-
sence of RIP3 expression in propidium iodide positive inner 
retinal cells. While RIP1 expression is dispensable in some 

cases of necroptosis, RIP3 is required30. Given the loss of 
cell membrane integrity in those cells, it is possible that the 
protein was degraded amidst the cellular milieu. This possi-
bility, as well as the colocalization of RIP3 with clearly apop-
totic cells, drives home the importance of using secondary 
markers like propidium iodide or morphological character-
istics (swollen cellular components lacking an intact cellu-
lar membrane, visible by electron microscopy) to confirm 
necroptotic cell death. 

These studies demonstrate that both the inner and 
the outer retina are susceptible to necroptosis in certain 
pathological conditions. Necroptosis could also potentially 
contribute to cell loss in OBT, given the increases in oxida-
tive stress reported in each model. Any potential therapeutic 
agent will need to protect retinal cells from both apoptosis 
and necroptosis to provide complete protection from OBT 
pathogenesis.

Erythropoietin:  a Potential Neuroprotective Treatment 
for OBT

Structure, Function and Receptors
Erythropoietin (EPO)d is an endogenous cytokine 

best known for its role in stimulating hematopoiesis and is 
clinically approved for the treatment of anemia36. There are 
two binding sites for the EPO receptor homodimer on the 
surface of the protein, consisting of high affinity and low 
affinity binding sites37. EPO mRNA is heavily expressed in 
the kidney and liver, but it is also present in neuronal tis-
sue38. Many laboratories became interested in EPO when 
it was shown to exert neuroprotection in vitro39. However, 
systemic treatment with wild-type EPO can lead to the de-
velopment of polycythemia, a potentially life-threatening 
condition.

To combat the unwanted erythropoeitic “side ef-
fect” of wild-type EPO when used for neuroprotection, 
Leist and colleagues generated several modified forms of 
EPO40. Carbamylation of EPO (CEPO) resulted in a dearth 
of binding to the EPOR homodimer, yet it remained neu-
roprotective both in vitro and in vivo40. Two separate muta-
tions in the low affinity binding site, S100E and R103E, 
were also effective at preventing binding to the EPOR ho-
modimer while maintaining neuroprotection40. Our lab also 
developed a mutant form of EPO, EPO-R76E, which pro-
tected retinal ganglion cells in DBA/2J glaucomatous mice 

d� EPO is a cytokine primarily produced in the kidney. It stimulates red blood 
cell production upon binding to the EPOR homodimer. A version of the EPOR 
is also expressed in neural tissue, including the retina, and exerts neuroprotection 
upon binding of EPO.
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and displayed attenuated erythropoiesis, indicative of poor 
binding to EPOR homodimer41. Brines and colleagues later 
demonstrated that EPO and CEPO bind an EPOR and 
ILβ-subunit R heterodimer, which provides tissue protec-
tion without stimulation of hematopoiesis42. 

Protective Mechanisms
Though EPO is neuroprotective in multiple mod-

els of neuronal stress and disease, its precise mechanisms 
are still unclear. The addition of neuroprotective EPO mu-
tants with attenuated or abolished hematopoietic activity by 
Leist and colleagues and our lab also complicates the ques-
tion of EPO’s protective mechanisms40,41. Binding of EPO 
to its native receptor homodimer initiates erythropoiesis 
via the Jak/Stat signaling cascade and appears to promote 
erythrocyte survival via GATA-1-mediated upregulation of 
anti-apoptotic Bcl-XL43,44. However, EPO’s neuroprotective 
pathways appear to vary even among neuronal tissues.

In an in vitro model of neuronal hypoxia, admin-
istration of EPO induced increased phosphorylation of 
Stat5, Akt, ERK1 and ERK2 in hippocampal neurons45. 
Addition of inhibitors of the MAPK and PI3K pathways 
in conjunction with EPO treatment prevented phos-
phorylation of ERK1, ERK2 and Akt and abolished EPO 
neuroprotection45. Activation of the MAPK pathway pro-
vides protection via inhibition of pro-apoptotic BAD and 
phosphorylation of CREB, which transcribes pro-survival 
genes46. Phosphorylation of Akt within the P13K pathway 
also prevents activation of BAD and leads to downstream 
activation of Nf-κB, which promotes transcription of pro-
survival genes47. Another in vitro model of excitotoxicity in 
cerebrocortical neurons showed that Jak2-mediated activa-
tion of Nf-κB was necessary for EPO neuroprotection48. To-
gether, these findings support a common pathway for EPO 
neuroprotection, as Jak2 contributes to both MAPK and 
PI3K signaling cascades49,50. 

However, findings from Weishaupt and colleagues 
challenged the notion that MAPK signaling was involved 
in EPO neuroprotection within retinal ganglion cells 
(RGCs)51. To test the efficacy of EPO neuroprotection in 
RGCs, the authors used both an in vitro (trophic factor 
deprivation in RGC cultures) and an in vivo (optic nerve 
transection, an acute model of glaucoma) approach. They 
detected EPOR on the RGCs of both control and optic 
nerve transected rats and thus claimed that the EPOR ex-
pression was much weaker in other cell types of the retina. 
However, this finding disagrees with data from Xie and oth-
ers, who reported EPOR expression throughout the layers 
of the retina without strong localization within the RGCs in 

normal Sprague-Dawley rats, the same rat breed used in the 
Weishaupt study52. Grimm and colleagues also reported a 
different EPOR expression pattern within the normal mouse 
retina (strong staining within photoreceptor inner segments 
and the outer plexiform layer, weak labeling within the in-
ner retina), but these results could be due to a species dif-
ference53. In examining the results of these studies, it is clear 
that a current challenge in the field is the inconsistency of 
EPOR antibodies54.

Surprisingly, EPO treatment elicited phosphoryla-
tion of Akt, but not of ERK1/2 in optic nerve transected 
retinas. Both the MAPK and PI3K pathways are active and 
involved in EPO neuroprotection in cerebral ischemia and 
intracerebral hemorrhage45,55,56. A possible explanation for 
the lack of ERK1/2 phosphorylation in this study is that 
the neuroprotective cascade initiated by EPO differs in 
RGCs compared to cerebral neurons. However, a recent 
study demonstrated that inhibition of MAPK, PI3K, or 
Stat5 in cultured rat RGCs challenged with trophic factor 
withdrawal, TNF-α, or NMDA resulted in a significant loss 
of EPO neuroprotection57. However, the reduction in EPO 
neuroprotection in the aforementioned study varied among 
RGC types and the type of insult. These findings suggest 
that different cytotoxic stimuli and cell types may result 
in alterations in EPO’s neuroprotective signaling cascades, 
which needs to be explored further in future experiments. 

Conclusions

OBT is a complex injury with many possible 
modes of pathogenesis. In patients, damage appears to 
occur in both the anterior and posterior poles, which has 
serious consequences for regulation of IOP, immune privi-
lege, and visual function. The current models of OBT have 
highlighted several areas that may drive injury pathogenesis, 
including loss of immune privilege, axonal injury, oxidative 
stress, inflammation, and reactive gliosis. However, there 
will be challenges moving forward with OBT research. The 
current OBT model systems may represent different facets 
of OBT injury. Future directions for OBT research include 
bolstering our understanding of both the acute and long-
term effects of OBT, teasing out the mechanisms underly-
ing cell loss and visual dysfunction and testing protective 
therapeutics like EPO to see if OBT pathogenesis can be 
circumvented with treatment.
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Regulation of AMPA-type Glutamate Receptors in LTP and Acute 
Stress

Victoria S. Cavener

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors are tetramers of GluA1-4 subunits 
that mediate normal excitatory transmission. Multiple forms of synaptic plasticity, such as long term potentiation 
(LTP), are caused by changes in the activity, number or surface expression of synaptic AMPA receptors (AMPARs). 
Homo-tetrameric GluA1 AMPARs are unique in that they form calcium-permeable AMPARs (CP-AMPARs), which 
can initiate downstream signaling without the membrane depolarization that is required for calcium influx via voltage-
gated calcium channels or NMDA-type glutamate receptors. It is well established that multiple scaffolding and signal-
ing proteins, as well as adrenergic receptors, associate with and modulate CP-AMPARs.  Recent studies have shown 
that regulation of these supramolecular CP-AMPAR complexes in subcellular microdomains may play a key role in 
synaptic remodeling of the limbic system following episodes of acute stress. Thus, dysregulation of CP-AMPARs is 
emerging as a key element of the mechanisms underlying stress-induced anxiety disorders.

CP-AMPARs, SAP97, CaMKII, stress signaling, adrenergic receptors, GluA1Keywords

 Environmental stress incites the limbic system to coor-
dinate emotional experiences such as fear, reward, and motiva-
tion, with episodic memory to facilitate behavior adaptations. 
The molecular adaptations required for behavioral flexibility are 
unique to the particular function and precise variety of the neu-
rons within each limbic region. This, coupled with experimental 
variables such as the type, duration, and strength of the environ-
mental stressor, make it difficult to build a cohesive model ex-
plaining how the effects of acute and chronic stress affect limbic 
signaling1-5. Each layer of synaptic regulation provides the organ-
ism’s brain with another potential tool to modify behavior in or-
der to gain efficiency and resilience in a dynamic environment.  
As a consequence of this adaptability, organisms are vulnerable to 
disruption at any tier of plasticity that interrupts the balance of 
limbic signaling6. Chronic stress induced illnesses can be traced 
to disrupted neuronal plasticity at the molecular level2. The goal 
of this review is to briefly discuss how particular receptor/pro-
tein complexes may function to sensitize synapses in response to 
stress to facilitate learning. In order to propose this model, it is 
necessary to first discuss normal α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid glutamate receptor (AMPAR) expression 
and trafficking mechanisms essential for synaptic plasticity. Fol-
lowing a brief explanation of the acute stress response, key pro-
teins involved in long-term potentiation (LTP) are discussed in 
context of a proposed model where protein-protein interactions 
control perisynaptic microdomains to regulate the acute stress re-
sponse.

AMPARs Are Essential Regulators of Synaptic Plasticity

 Neurons communicate through a complex network of 
excitatory, inhibitory and modulatory chemical signaling mecha-
nisms. Excitatory signals are primarily driven by glutamate release, 
and are received by tightly regulated glutamate receptors packed 
into and around the postsynaptic density (PSD) of glutamatergic 
synapses. The ionotrophic glutamatergic receptors include N-
methyl-D-aspartate receptors (NMDARs), AMPARs, and kain-
ate receptors. The signaling interface formed by the PSD controls 
important second messenger cascades and membrane potential 
changes necessary to generate an action potential. By these mech-
anisms, the combined synaptic activities of glutamate receptors 
drive long-term potentiation (LTP), de-potentiation and/or long 
term depression (LTD) of synaptic strength and are thought to 
be the essential mechanisms underlying  learning and memory 
(Figure 1). Synaptic development, efficacy, and strength are heav-
ily dependent on the expression of AMPARs and are sensitive to 
changes due to various combinations of AMPAR subunits con-
tained in a single receptor7. The number and distribution of AM-
PARs at the synapse and their subsequent incorporation into the 
PSD is a direct molecular substrate for LTP. Conversely, when 
AMPARs are removed from the potentiated synapse, the signal 
transmission either de-potentiates to baseline or is depressed from 
baseline to subdue synaptic transmission (Figure 1).
 AMPARs are hetero- or homo-tetramer ion channels 
comprised of a combination of four different subunits that con-
fer different conductance properties to the ion channel. AMPARs 
including only GluA1 subunits are primarily present in imma-
ture/naïve synapses. However, newer evidence is gathering that 
calcium-permeable AMPARs (CP-AMPARS) are also important 
in the plasticity of mature synapses8 (Figure 1). The lack of GluA2 
subunits allows for the AMPAR to be CP-AMPARs. The GluA2 
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subunit prevents calcium (Ca2+) influx through the receptor’s ion 
channel due to an RNA editing event that changes an uncharged 
glutamine amino acid to a positively charged arginine (Gln-Arg) 
in the second trans-membrane domain of the ion pore9 (Figure 
2). AMPAR subunit changes were thought to stabilize synaptic 
transmission as the organism matures, but recent data show that 
GluA1 subunits are upregulated when there is an abnormally 
high burst of synaptic activity in mature animals10. After the 
initiation of LTP, GluA2/3 AMPARS and GluA1/2 replace the 
GluA1 receptors in the synapse. This molecular switch stabilizes 
the synapse at basal levels of excitatory transmission11 (Figure 1b). 
This has led to speculation that CP-AMPARs serve as a voltage-
independent source for Ca2+ signaling essential to initiate synaptic 
remodeling required for LTP in mature synapses12.
 Both the AMPAR subunits and accessory proteins are 
subject to post-translational modifications that regulate the ex-
pression and mobility of the receptor. Activated Threonine or 
Serine kinases work in tandem or in opposition of one another to 
facilitate signaling cascades that arbitrate AMPAR traffic, receptor 
kinetics, and the stability of the AMPARs after insertion into the 
synaptic membrane. Phosphorylation events mediate the interac-
tions between auxiliary subunits and AMPARs. Kinase activity in 
the synapse impacts synaptic potentiation through receptor bind-
ing but also is important for genetic expression, protein synthesis, 
as well as the fate and maintenance of individual synapses.
 The reversible phosphorylation of the AMPAR GluR1 
subunit on the C-terminus tail is a post-synaptic mechanism 
known to regulate both AMPAR trafficking and channel con-
ductance at the synapse (Figure 2). For a more detailed review 
of AMPAR trafficking see Shepherd and Huganir 200713. Phos-
phorylation of GluA1 by calcium/calmodulin-dependent pro-
tein kinase II (CaMKII) at serine 83114 and protein kinase A 
(PKA) at serine 845 potentiate AMPAR efficiency and enhance 

NMDAR-dependent LTP15-16. It is likely that phosphorylation 
provides fine control of synaptic strength by individual AM-
PARs and is dependent on particular accessory proteins present 
in peri-synaptic micro-domains17-20. When there is low cytosolic 
calcium, dephosphorylation of S845 by Protein Phosphatase 2B 
(PP2B-Calcinurin) is essential for endocytosis of the AMPAR 
and LTD21-22. Finally, protein kinase C (PKC) phosphorylation 
at Ser818 facilitates AMPAR exocytosis to the membrane23. In 
addition, a recent study provided evidence that phosphorylation 
of the GluA1 subunit by CaMKII at Ser831 serves to lower the 
threshold for LTP after fear learning and is required for fear re-
newal after fear extinction24.  Figure 2 contrasts the phosphory-
lation sites of CP-AMPARS (GluA1 homomers) with non-Ca2+ 
permeable GluA2/3 AMPARs. For a more detailed review of 
how kinase activity regulates synaptic plasticity see Anggono and 
Huganir 201125.

Hormonal Signaling During Acute Stress Stimuli

 Stress-induced activation of the hypothalamic-pituitary-
adrenal axis (HPA axis) regulates several of the hormonal signaling 
cascades which directly affect synaptic plasticity. One of the first 
consequences of HPA axis activation is immediate release of nor-
epinephrine (NE) from both the adrenal medulla and the locus 
coeruleus. NE binds to and activates a family of G-coupled pro-
tein receptors to inhibit or enhance cAMP signaling. β-adrenergic 
receptors are widely distributed in the brain and generally increase 
activity in cAMP second messenger cascades. Lesion studies in 
rodents that affect the NE-amygdala circuit show inhibited fear 
and appetitive learning. Anxiety disorders that involve persistent 
rumination over unlikely but highly anticipated stressors may be 
as a consequence of deregulation of the direct connections be-

Figure 1. Synaptic plasticity requires rapid trafficking of AMPAR in and out of the membrane. a.) Glutamate signaling causes CP-AMPARs to diffuse into the peri-synaptic 
space. b.) After induction of LTP, CP-AMPARs are replaced by GluA2/3 AMPARs to stabilize the active synapse. c.) LTD occurs during low frequency stimulation 
to weaken the synapse by removing ion channels from the synapse to be recycled or degraded. d.) When a synapse is de-potentiated it has returned to baseline activ-
ity or is silenced. If CP-AMPARs have not been de-phosphorylated by PP2B at Ser845, and have been phosphorylated by CaMKII at Ser831, it can remain in the 
synapse. Future activation recruits more CP-AMPARs. This allows low glutamate signaling to cause calcium influx that triggers LTP at lower membrane potentials.
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Figure 2. Phosphorylation sites on the AMPAR subunits medi-
ate subunit binding efficiency with auxiliary subunits, recep-
tor surface expression and influence open channel probability. 
These phosphorylation targets are located on the AMPAR 
subunit-specific c-terminal tail along with protein binding 
sites.

tween the locus coeruleus, cingulate gyrus, and amygdala. 
 Stimulation of the HPA axis causes secondary hor-
monal signaling with a longer and more enduring effect. Cor-
tisol normally impacts alertness in the daytime in a rhythmic 
pattern opposite of melatonin to regulate circadian rhythm. In-
creased cortisol release triggered by the activation of the HPA 
axis causes cortisol to bind to mineralocorticoid receptors in the 
presynaptic membrane and promotes increased neurotransmit-
ter release from the presynaptic terminal of effected synapses. 
When hippocampal slices were treated with cortisol, neurons 
had an enhanced response to NE signaling and AMPAR surface 
expression26.
 The remaining sections in this review focus on emerg-
ing evidence for protein-protein interactions that form supramo-
lecular complexes with both CP-AMPARs and β2-Adrenergic 
receptors. These complexes may mediate synaptic responses after 
the sympathetic nervous system triggers the HPA axis during 
acute stress. Cortisol enhanced glutamatergic activity combined 
with norepinephrine signaling, stimulates activation of multiple 
signaling cascades that converge to prime the synapse for LTP26. 
These receptors are found in complexes in perisynaptic spaces of 
amygdala and hippocampal synapses. The discovery of these mi-
cro domains adds insight into particular mechanisms involved 
with fear extinction and anxiety.

Key Proteins of a Supramolecular Complex Are Important 
for Synaptic Plasticity

Each of the proteins implicated in this micro domain 
model for meta-plasticity are important for normal expression of 
LTP. Normal expression of these proteins has been studied ex-
tensively in relation to synaptic plasticity. In particular, proteins 
in this model affect AMPAR trafficking, LTP, and/or synaptic 
growth in a variety of ways. CaMKII is key in the regulation of 
LTP. For a detailed review about CaMKII regulation of synaptic 
plasticity see Lisman et al. 201227. There is evidence to support 
that activated CaMKII is important in many if not all levels 
of AMPAR trafficking. It is the most abundant protein in the 

brain, and when its kinase activity is inhibited, LTP is complete-
ly blocked. In brain-specific CaMKII-inhibited rodent models, 
animals showed an inhibited acquisition of fear memory as well 
as spatial learning deficits. Additionally, when the CaMKII in-
hibitor is added to mouse brain slices, consolidation of memory 
in the prefrontal cortex (PFC) was repressed in a dose-depen-
dent manner28. 
 In the context of this review, CaMKII is the kinase 
responsible for two specific phosphorylation events. The first is 
pictured in figure 2. Phosphorylation of the GluR1 subunit at 
Ser831 is known to increase the open channel probability of the 
AMPAR14. Also, a recent discovery showed that removal of AM-
PARS with phosphorylated Ser831 was required for extinction 
of fear memory in the lateral amygdala. The study also showed 
that phosphorylation of Ser831 lowered the threshold for LTP 
in active synapses24. The second important CaMKII activity is 
the phosphorylation of a membrane-associated guanylate kinase 
(MAGUK) family protein called Synapse-associated protein 97 
(SAP97)29. SAP97 is a scaffolding protein that regulates GluA1 
via a multi-protein complex18. The PDZ2  domain of SAP97 
preferentially binds with GluA1 on its last four c-terminus 
amino acids. SAP97 is the only MAGUK family protein able 
to bind GluA1 directly18. The alternatively spliced SAP97 U5 
domain is thought to regulate SAP97 localization and also plays 
a role in regulating AMPAR trafficking and insertion to the 
membrane30. When the interaction between SAP97 and GluR1 
is blocked, dendritic growth and branching is truncated31. One 
splice variant of SAP97’s U5 region contains an I3 insert that 
was shown to bind CaMKII. When SAP97’s I3 insert is bound 
and phosphorylated by CaMKII in vitro, SAP97 binding to 
AKAP 79/150 was interrupted28. 
 A-kinase anchor protein AKAP79/150 is an anchor-
ing protein for PKA, PKC, and calcineurin (PP2B). Particularly 
abundant in the PFC, it is primarily known to hold PKA in 
proximity of target proteins in the synapse.  Localization of this 
protein complex is essential for cAMP signaling through PKA. 
PKA in association with this complex regulates the activation 
of beta-adrenergic receptors as well as the phosphorylation of 
Ser845 of the GluA1 subunit. This important complex also con-
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tains calcium-activated calcineurin (PP2B). In this model, the 
phosphatase dephosphorylates Ser845. When GluA1-Ser845 
dephosphorylation is prevented, LTD is blocked and AMPAR 
endocytosis is diminished14. These proteins function in a supra 
molecular complex in concert to promote calcium and cAMP 
signaling without NMDA activation. Prior activity in synapses 
enables these complexes to maintain lower thresholds for LTP. 
This may be a molecular mechanism for fear renewal and new 
memory formation.

Supramolecular Complexes Regulate Threshold for LTP in 
Response to Acute Stress

 Recent research revealed a complex that includes a be-
ta-2-adrenergic receptor (β2AR), homomeric GluA1 AMAPAR, 
PKA, and PP2B. This assembly is dependent on the binding 
capabilities of SAP9732. A study that shows how CaMKII may 
interact with this complex has yet to be done. Emerging evi-
dence of such interactomes offers an attractive model to explain 
how acute stress initiates rapid micro-domain signaling and 
lowers the NMDA-dependent synaptic threshold for LTP28, 32. 
Noradrenergic signaling through adrenergic GPCRs may regu-
late acute stress responses by forming a supramolecular complex 
with CP-AMPARs via SAP97. This complex may be an acute 
stress response to enhance plasticity by increasing CP-AMPAR 
surface expression and potentiate receptor channel activity at the 
same time. β2AR forms a complex with βSAP97, AKAP150, 
CP-AMPAR, in a micro-domain that increases PKA phosphor-
ylation of the GluA1 subunit at S845 and facilitates the PKC 
driven Ser818 CP-AMPAR insertion into the membrane32-36. 

Figure 3. A) Noradrenergic signaling promoted by an acute stress response via the HPA axis, binds b2AR and activates PKA through the cAMP pathway. PKA, 
localized to the CP-AMPAR by scaffolding proteins, AKAP150/79 and bSAP97-I3 phosphorylates S845 of the GluA1 subunit of the AMPAR to increase its 
open channel probability. B) The probability of increased calcium influx is also influenced by cortisol binding to the melanocorticoid receptors in the presyn-
aptic membrane and up-regulating the release of glutamate into the synapse. C) Calcium influx through the CP-AMPAR then allows for calcium/calmodu-
lin dependent activation of CaMKII, which can then phosphorylate SAP97-I3 to disrupt AKAP150/79 bound to SAP97-I3. D) This disruption removes 

PP2B, scaffolded by the AKAP, and prevents 
dephosphorylation of S845 and endocytosis 
of the CP-AMPAR. Finally CaMKII bound to 
SAP97-I3 is then in a perfect position to di-
rectly regulate the CP-AMPAR by phosphor-
ylating GluA1 at S831 and increase the CP-
AMPARs channel conductance. The net effect 
of this stress signal response is retention of a 
CP-AMPAR primed to have increased con-
ductance and open channel probability. The 
CP-AMAPR then provides calcium signaling 
independent of membrane potential changes 
normally required for LTP, thus lowering the 
synaptic threshold for plasticity.

This insertion increases calcium influx into the synapse and 
effectively promotes more AMPAR recruitment to the mem-
brane. CaMKII activated by Ca+2 influx primes the synapse for 
the molecular restructuring required for LTP32-36. In addition, 
if CaMKII is activated and then bound by the SAP97 I3 insert 
within this micro domain, it will not only disrupt AKAP’s as-
sociation with SAP97-I3 but is in an ideal position to potenti-
ate the CP-AMPAR by phosphorylating Ser831. Since CaMKII 
will have interrupted localized calcineurin activation, dephos-
phorylation of Ser845 required for LTD is less likely. Further 
research will be needed to explore CaMKII’s regulation of the 
AMPAR described in this model. This potentiation is depen-
dent on simultaneous norepinephrine and glutamate signaling, 
but leaves the synapse more sensitive to future stimulation32-36 

(Model for these interactions can be seen in Figure 3). Previ-
ous studies have shown that S845 is phosphorylated when beta-
1-adrenergic receptor is in complex CP-AMPARs37. Both mod-
els of CP-AMPAR complexes in micro-domains with βAR are 
capable of stimulating the synapse in response to acute stress.

Summary

This review briefly describes how the balance of AM-
PAR expression may not only influence plasticity through mem-
brane depolarization, but also as an important component of 
meta-plasticity. This model extends the importance of particular 
AMPARs past regulating the strength of synapses by shear num-
bers. AMPARs in these complexes could also function to prime 
the synapse for sensitivity key to initial learning and memory 
acquisition. Conceptually, these micro-domains collect the pro-
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teins necessary for complex signaling to both be generated and 
retained. This model can explain how acute stress rapidly poten-
tiates cell signaling and then retains molecular information to 
enhance memory. The receptors and proteins involved in this 
complex each show disrupted trafficking and expression when 
the organism endures prolonged stress.  Future studies are need-
ed to refine our understanding of how intricate protein-protein 
interactions in molecular complexes support synaptic sensitivity 
to modulate synaptic flexibility.
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Pay Attention: It’s an ADHD Overview

Gwynne L. Davis
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Attention Deficit/Hyperactivity Disorder Introduction 

Attention-Deficit/Hyperactivity Disorder (ADHD) 
is one of the most prevalent neurobehavioral disorders diag-
nosed in children. The disorder affects approximately 3-7% 
of school-aged children in the United States1. ADHD ap-
pears to be present in boys more frequently than girls with 
an average of a three-to-one bias2. This gender ratio changes 
depending on the subtype of ADHD and other factors such 
as setting. ADHD can be considered a spectrum disorder 
with a wide range of possible exophenotypes. The current 
diagnostic criteria for ADHD states that symptoms must 
be present before age 7 for at least 6 months in a manner 
that is “maladaptive and inconsistent with developmental 
level.” The symptoms of ADHD are related to inattention, 
hyperactivity, and impulsivity, such as: difficulties in sustain-
ing attention, organizational problems, excessive fidgeting 
or movement, impatience, risky behaviors, and many other 
symptoms. Based on the types of symptoms, ADHD diagno-
sis can be divided into three sub-categories: predominantly 
hyperactive/impulsive type, predominantly inattentive type, 
and combined type. 
 ADHD has a major effect fiscally on individuals and 
their families. Assuming that the rate of prevalence is 5%, in 
2005 the economic cost of ADHD was between 36 and 52 
billion dollars3. Those with ADHD, as adults, have a harder 
time maintaining jobs and decreased work performance4-5. 
Reportedly, those with ADHD are more likely to have a sick 
day within the past month and a 4-5% reduction in work 
productivity5. ADHD is also associated with an increased risk 
for other negative outcomes, such as an increased incidence 

in needing government support and higher instances of sub-
stance abuse6-9. Specifically, those who are not on medication 
correlate with having worse outcomes in terms of illicit poly-
substance abuse9. As of 2007, 66.3% of those diagnosed with 
ADHD between ages 4-17 were reported to be on some sort 
of medication10. 
 Diagnosis of ADHD is on the rise, with a 22% in-
crease of diagnoses between 2003 and 200710. There is no 
cure for ADHD, though several medications are available. 
Concerns about these medications have been raised because 
oftentimes they are psychostimulants, such as amphetamine 
and methylphenidate, with potential addictive properties 
and long-term negative effects. Because the cause of ADHD 
is unknown it is unclear how these psychostimulants are hav-
ing their paradoxical calming effects on those with ADHD. 
The predominant theory is that ADHD thought caused by a 
disruption in the homeostasis of dopamine signaling. Thus, 
studying the dopamine system could provide an explanation 
for the behaviors seen in ADHD.  
 
Brief dopamine overview

Dopamine (DA) is a neurotransmitter that is typi-
cally associated with the reward pathway or locomotor cir-
cuit, however, it also contributes to memory, learning, and 
cognitive performance11-12. DA interacts with a variety of 
receptors that are coupled with both stimulatory and in-
hibitory G-proteins. This allows DA modulation to cause 
either an increase or decrease in the post-synaptic neuron’s 
excitability, depending upon the type of DA post-synaptic 
receptor present13. An important and necessary component 

Attention deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed childhood neuropsychiatric disorder. Cur-
rently, ADHD is diagnosed solely by behavioral observation, as there is no disease biomarker available. Disrupted dopamine 
(DA) signaling is often implicated in ADHD’s underlying pathology. Furthermore, the most common pharmacotherapies for 
ADHD (Ritalin, or methylphenidate; Adderall, or amphetamine) exert their effects through the dopamine transporter, an im-
portant presynaptic regulator of DA homeostasis. Several mouse models exist for ADHD. These models provide the research field 
with valuable information, and each has its own strengths and weaknesses in helping to understand the underlying etiology of 
ADHD. A discussion of some the most popular ADHD models will be presented in this review, highlighting the documented 
biochemical and behavioral changes exhibited by each model and examining the relevance these changes may or may not hold 
for understanding ADHD. Importantly, all the models discussed and the models in the field lack something fundamentally im-
portant for understanding ADHD: construct validity. No current ADHD model is based on specific mutations found in ADHD 
patients, hindering progress in the understanding and treatment of ADHD. 



VOLUME 6 | 2014 | 32 VANDERBILT REVIEWS NEUROSCIENCE

C A N D I D A T E 
R E V I E W S
of DA signaling and homeostasis is the dopamine transporter 
(DAT). DAT is a Na+/Cl--dependent 12-transmembrane do-
main transporter found on dopaminergic neurons near the 
synapse. This transporter regulates the amount of DA pres-
ent in the extracellular synapse by transporting it out of the 
synaptic cleft and back into the cytosol of the pre-synaptic 
neuron for re-use14. 
 Because the psychostimulant therapies that are ef-
fective in treating ADHD are known to directly target DAT, 
several imaging studies have focused on the potential differ-
ences of DAT in ADHD populations15. The majority of these 
studies show increased DAT binding in ADHD populations, 
even with drug-naïve patients16. Volkow and colleagues, how-
ever, demonstrated decreased DAT binding in the left cau-
date. In the putamen, there was no difference in DAT bind-
ing between controls and those with ADHD, but a strong 
positive correlation was demonstrated between DAT binding 
with increased scores of inattention for both groups(with the 
ADHD correlation at higher levels of inattention but paral-
lel to the control correlation)17. Despite the mixed results, 
these imaging studies indicate DAT is altered in patients with 
ADHD. 
 

DA-associated ADHD genetics

ADHD has been reported to be one of the most 
heritable psychiatric disorders with reports of heritability in 
twin studies ranging from 0.76 to 0.918. Genetic perturba-
tions in the DA system have long been associated with or 
linked to ADHD. One in particular consistent throughout 
the literature is the presence of a variable number tandem 
repeat (VNTR) in the non-coding region of the 3’ end of 
the DAT-1 allele. First prompted to look at DAT because of 
the manner in which ADHD is treated, Cook et al. identi-
fied a significant association between ADHD and a 10-copy 
VNTR. They identified 3 allele types that included VNTRs 
of three, nine, and ten copies19. Since this initial identifica-
tion of the 10-copy VNTR region of the DAT1 gene, other 
studies have also looked at its association with ADHD, and 
it is thought to convey risk for the disorder19-21. Other genes 
encoding the various DA receptors have also been implicated 
in risk for ADHD. One of the most commonly implicated is 
the gene for DRD422-25. Mutations in the DRD4 gene have 
been cited as the most consistent and replicated genetic find-
ings in linking ADHD with the DA system23. This risk has 
been associated mainly with a seven-repeat VNTR in the 
third exon of the gene, affecting the third cytoplasmic loop 
of the receptor26. Mixed accounts have been reported for 

those with this genotype in terms of poorer cognitive perfor-
mance on tasks of executive function27-30. There do seem to be 
changes in neural networks and activation patterns, though, 
including decreased activation and less coupling of neural 
networks during cognitive tests associated with this geno-
type31. Mutations in the DRD1 and DRD2 genes have also 
been implicated18,32. Studies have also indicated that differ-
ences in DA-associated proteins can increase risk for ADHD, 
such that one’s COMTa genotype can affect performance on 
working memory tasks33. The large association of DA and 
DA-related genes and ADHD has led to the use of several 
rodent models that have perturbations in their DA-systems 
as models for ADHD. 

DAT knock-out mouse

One of the most widely used models of ADHD is 
the DAT knock-out (DAT-KO) mouse. First reported in the 
mid-1990s, this mouse model has been popular for studying 
ADHD because it demonstrates several phenotypes associ-
ated with ADHD34. The most overt of these is its extreme hy-
peractivity in a novel environment—the overall activity level 
of DAT-KO animals is 5-6 times higher than that of WT 
mice in both the light and dark phase of the behavioral cycle. 
Initially these mice were created to better understand the role 
DAT plays in DA homeostasis, but it was rapidly adopted as 
an ADHD model. 
 It is thought that the hyperactivity of DAT-KOs 
is supported by the abnormally high levels of extracellular 
DA found in the striatum of this animal, which is a 100-
fold greater ratio of extracellular to total DA levels in the 
DAT-KO mouse compared to wildtype35. This high level is 
thought to be caused by the slow DA clearance that occurs 
at 100 seconds versus 1 second, allowing extended time in 
the synapse34. Interestingly, the overall levels of both DA and 
tyrosine hydroxylase are drastically reduced to less than 5% 
and 10%, respectively, compared to wildtype35. This decrease 
is not due to any structural anomalies, as the terminals are 
intact and the number of DA neurons between genotypes is 
equivalent35-36. In addition, there is a large reduction in both 
D1 and D2 receptors34,37. 
 Profound behavioral effects accompany these and 
other biochemical changes in the DAT-KO. In addition to 
the hyperactivity, DAT-KOs show impulsivity issues in a vari-
ety of situations. In one measure of impulsivity, using the cliff 
avoidance test, adult DAT-KOs displayed an impaired cliff 
avoidance reaction38. They had an increased incidence of ap-

a� Catechol-O-methyltransferase: enzyme that breaks down catecholamines in the 
synaptic cleft 
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proaching the edge of an elevated platform and extending out 
far enough such that they fell off, demonstrating an increase 
in impulsivity and risk-taking behaviors. Interestingly, this 
was ameliorated upon an injection of methylphenidate. Pre-
adolescent DAT-KOs also showed increased impulsivity and 
risky behavior demonstrated by the number of times they 
dip their heads over an unprotected edge in an elevated plus-
maze compared to their wild type counterparts39. Addition-
ally, they have cognitive impairment, specifically in spatial 
memory, though this cognitive deficit seems to appear later in 
life, not being present in pre-adolescent DAT-KOs39-41. They 
also seem to be impaired socially, spending less time engaging 
in social investigation42. When they are being social, it tends 
toward being aggressive. Additionally, these mice spend more 
time performing stereotyped and perseverative behaviors sug-
gested to result in a restricted and inflexible behavioral rep-
ertoire. This is interesting because social problems have been 
reported in the ADHD community43. DAT-KOs also have 
deficits in sensorimotor gating using pre-pulse inhibition as a 
measure38,44.
 To an extent, aspects of the DAT-KO model seem 
more akin to a schizophrenic model than to an ADHD mod-
el45-46.This model has also been cited as a depression model, 
showing impairment in the forced swim test47. Having such 
an extreme disruption in the DA system results in behav-
ioral deficits that extend beyond the scope of what one could 
reasonably link or associate with ADHD. It does not allow 
for a fine-tuned in-depth dissection of the disorder. A major 
caveat with this mouse model is that when there is a homozy-
gous loss of function of DAT in humans, it results in infantile 
parkinsonism-dystonia, a severe and early-onset neurological 
disorder48. That being said, the DAT-KO mouse is used as 
both a face- and predictively-valid model of ADHD in that it 
shows some ADHD-like behaviors, and these behaviors can 
be mediated by the therapeutics used to treat ADHD. 
 
Spontaneously Hypertensive Rat

Another well-studied ADHD model is the sponta-
neously hypertensive rat (SHR). An advantage to this model 
is the expansion of the behavioral paradigms that may be per-
formed with this model. Rats are able to undergo more com-
plex behavioral tests in a shorter training time period that al-
low for the observation of more cognitive-related tasks. This 
model is one of the genetic rat lines derived from selective 
inbreeding of Wistar rats49. These animals are hyperactive50-51 
and demonstrate impulsivity, attention impairments, and 
cognitive deficits52-55. As a result the SHR has been lauded as 
the most validated model of ADHD52. There are some major 

caveats to this statement. The SHR does display a number 
of symptoms of ADHD, but these can be inconsistent, de-
pending on the task and which strain of rat is being used to 
represent the control. In addition to this, the SHR has mixed 
results as a predictive model of ADHD.
 In some studies, psychostimulants help the SHR in 
attention-related tasks, where in others it does not52,54,57-58. 
Additionally, psychostimulants do not have a calming effect 
on the hyperlocomotion aspect of this model but rather po-
tentiate the behavior59. Similar to the DAT-KOs, this model 
also displays sensorimotor deficits as measured by pre-pulse 
inhibition (PPI) studies56,60. Though studies linking PPI mea-
sures with ADHD show mixed results, the majority demon-
strate that the ADHD population does not suffer from PPI 
deficits61-63. This seems especially true when the paradigm 
does not require sustained attention of the test subjects63. 
So these PPI deficits seem more indicative of a translational 
measure for schizophrenia, not ADHD. 
 What is most disconcerting about using the SHR 
as a model for ADHD is the lack of a solid control compari-
son. Unlike mouse research, there is no designated wild type 
rat and an ADHD rat. That leaves comparing the SHR to 
other strains that are deemed as normal. The Wistar-Koyoto 
(WKY) rat oftentimes is used as the main comparison in be-
havioral studies of the SHR. Strain differences are seen in 
performance tasks involving attention and impulsivity, with 
deficits arising in the SHR52-54. In some instances, these defi-
cits are ameliorated by methylphenidate or amphetamine52,54. 
When third strains are added, however, the apparent face 
validity drastically changes. A good example of this is when 
Sprague-Dawley rats were included with WKY and SHR in 
behavioral tasks to probe timing and motivation. The re-
sults indicate the WKY strain is behaviorally similar to the 
SHRs, but none of the strains showed differential sensitivities 
to methylphenidate or amphetamine57. In a different study 
comparing attention and impulsivity between SH, WKY, 
and Wistar rats in a differential reinforcement of low-rate 
responding paradigmb, SHRs were out-performed by the 
WKY but not by the Wistars. Additionally, in a 5-choice se-
rial reaction time testc, the attentional performances of all 
three strains were equivalent, but as the task went on, it was 
demonstrated that the Wistars actually made more impul-
sive choices that were then attenuated by methylphenidate58. 
Certain studies have implicated that amphetamine potenti-

b� The differential reinforcement of low-rate responding paradigm requires 
suppression of a behavioral response for a specific latency to receive a reward. 

c� The 5-choice serial reaction time test requires a response to a light flash from 1 
of 5 options to receive a food reward; accuracy of response is considered a measure 
of attention. 
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ates some of the ADHD behaviors seen in SHRs, including 
hyperlocomotion. Additionally, SHRs were demonstrated to 
have social deficits that were exacerbated by amphetamine59. 
Additionally, atypical antipsychotics ameliorated these symp-
toms, which have also been shown in other studies with this 
rat strain and PPI deficits60. 
 With this model, however, there is a lack of under-
standing as to what is causing these behavioral changes. Stud-
ies have shown that SHRs have a down-regulation of the D4 
receptor in the prefrontal cortex56. Additionally, they have 
an increase in DA efflux in the striatum, with a decrease in 
basal norepinephrine efflux in the prefrontal cortex64. They 
also have increased levels of DAT. It has been proposed that 
this strain has a hypernoradrenergic and hypodopaminergic 
system in the prefrontal cortex, leading to some of the behav-
ioral deficits. However, what is not known currently is where 
these deficits originate. Is the initial insult in the DA system, 
the norepinephrine system, or somewhere else entirely? At 
the least, there seems to be a slight problem in using this rat 
strain in understanding the underlying etiology of ADHD. 
 
Rare DAT variants and a construct valid model

While these models provide valuable information 
for the effects that disrupted components of the DA system 
can have at the behavioral level, they lack an important fac-
tor, construct validity. As of yet, there is no construct valid 
model of ADHD, resulting in potentially serious gaps in our 
knowledge in the underlying mechanisms of ADHD. With 
all the genetic studies linking components of the DA system 
to ADHD, one is faced with the non-trivial challenge of de-
ciding which component to focus on in the development of 
a construct valid model. One issue with this is that many 
of the common variants in ADHD are associated with non-
coding regions of the genome. This leads to a variety of issues 
when considering a construct valid model of ADHD, includ-
ing the uncertainty of how non-coding regions function and 
the lack of conservation in these regions between humans 
and mice. Where does this leave ADHD research then? This 
leaves us with mutations associated with ADHD found in 
the coding regions, which are highly conserved across spe-
cies. Specifically of interest is DAT because of its implicated 
role in ADHD risk65. There are no common variants found 
in DAT associated with ADHD, but there are a wide variety 
of documented rare coding variants66. Studying rare coding 
variants of DAT would provide unique insights into func-
tionally relevant perturbations in DA functioning couched in 
genetic disruptions associated with the population of interest. 
Making a construct valid model of ADHD with DAT muta-

tions may also provide valuable insight into how the current 
pharmacotherapies of ADHD are having their paradoxical 
calming effect, a line of inquiry that has long been pursued 
in the ADHD field. Of specific interest, a rare coding variant 
was discovered in DAT in two brothers with ADHD dur-
ing a screen for DAT coding variants in a cohort of ADHD 
patients. This mutation is in the juxtamembrane junction 
of the 12-transmembrane domain and is a single-nucleotide 
polymorphism (SNP) that converts an alanine at the 559th 
amino acid position to a valine. This mutation results in a 
DAT that supports anomalous DA efflux. Interestingly, this 
efflux is ameliorated by amphetamine, methylphenidate, 
and cocaine67. This rare coding variant is important to the 
ADHD field because it provides a mechanism with which to 
help understand a potential ADHD risk. Making a mouse 
with this rare variant has the potential to provide the field 
with some unique insight into the etiology of ADHD.  
 
Conclusion

 With the high prevalence and poor outcomes of 
ADHD, progress in understanding the etiology is critical. 
While there are good models to elucidate what occurs when 
DA signaling is disrupted, none of them are directly linked 
with ADHD.  A construct valid mouse model is critical to 
increase the understanding of the molecular and cellular as-
pects of ADHD and how such aspects affect neural networks 
and behavior. A construct valid mouse model derived from a 
risk allele of ADHD could prove invaluable to this area of re-
search. Specifically, through the utilization of rare DAT cod-
ing variants found in the ADHD population insight could be 
gained to the inner workings of ADHD.
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IL-6: The Basics of a Complicated Cytokine

 The term cytokine represents a diverse group of 
small proteins used in cell signaling and are typically associat-
ed with an immune response1. One particular group of cyto-
kines, known as the interleukin-6 (IL-6) family of cytokines, 
includes IL-6, IL-11, IL-27, IL-31, ciliary neurotrophic fac-
tor (CNTF), leukemia inhibitory factor (LIF), cardiotrophin-
1(CTF-1), cardiotrophin-2 (CTF-2), and cardiotrophin-like 
cytokine factor-1 (CLCF-1)2. Members of this family bind to 
class I cytokine receptors on the plasma membrane3. Interest-
ingly, these receptors contain no inherent signaling activity. 
To signal, IL-6 family members recruit a signal transducer 
protein known as glycoprotein-130 (gp130) and form a li-
gand/class I receptor/gp130 complex. Following formation 
of the complex, multiple signaling cascades can follow. The 
most prominent cascade involves phosphorylation of the ty-
rosine kinase JAK2, followed by subsequent phosphorylation 
of the transcription factor STAT3, which influences the tran-
scription of genes involved in cell viability4, 5(figure 1). 
 Of the IL-6 cytokine family, IL-6 is the founding 
member2. Characterized in 1985, IL-6 was implicated as a se-
creted factor in an acute immune response6. IL-6 was shown 
to prompt B-cell maturation7, induce fever8, and trigger 
acute phase protein release in the liver, all to promote heal-
ing and return the body to homeostasis6. In 1988, in vitro 
studies using the rat PC12 line of neural cells demonstrated 
that recombinant IL-6 also serves as a neurotrophic and dif-
ferentiation factor in neurons9, 10, indicating a potential role 
for IL-6 activity in the central nervous system (CNS). Since 
these initial studies, IL-6 activity has been connected to both 

maintaining CNS health and exacerbating neurodegenerative 
disease2, suggesting that a delicate balance of IL-6 signaling is 
required for optimal CNS health.
 IL-6 activity is facilitated through two pathways: 
classical and trans-signaling11. Classical signaling involves 
the membrane bound IL-6 receptor (mIL-6R), while trans-
signaling uses a soluble form of the IL-6 receptor (sIL-6R). 
Unlike some soluble receptors that serve as antagonists to 
their specific ligand, sIL-6R performs as an agonist, sensitiz-
ing cells to IL-6 that do not express mIL-6R, but still express 
gp13011, 12. Synthesis of sIL-6R occurs by either alternative 
splicing of IL-6R mRNA or cleavage of mIL-6R by metallo-
proteases (i.e ADAM10, ADAM17)13. Interestingly, a soluble 
form of gp130 (sgp130) has also been characterized14. How-
ever, unlike sIL-6R, sgp130 serves as an antagonist by selec-
tively binding sIL-6R and blocking IL-6 trans-signaling14 
(figure 1). 

IL-6: CNS Expression and Actions in CNS Development
 
 Following the discovery that IL-6 is capable of acting 
as a neural growth factor, questions became geared towards 
where IL-6 and its receptors were expressed in the CNS. Vari-
ous in vitro studies indicate that neurons and glial cells are 
able to express IL-6, IL-6R, and gp130 to some degree15-17. 
Endothelial cells18 of the CNS vasculature are only able to 
express IL-6 and gp13019 (figure 1). In vivo, IL-6, IL-6R, 
and gp130 are expressed in the retina, striatum, hippocam-
pus, hypothalamus, cortex and cerebellum20-28. Interestingly, 
gp130 expression is higher compared to IL-6 and IL-6R28. 
This is most likely due to gp130 being activated by more than 

Cytokines are a class of immune-system-related signaling proteins used by cells to communicate with the external milieu. One 
particular cytokine, interleukin-6 (IL-6), is released by a variety of cells in response to multiple stressors. First characterized as a 
factor in B-cell maturation, IL-6 was shown to promote cell viability and differentiation of neurons in vitro, suggesting a role in 
the central nervous systems (CNS). In this review, the ramifications of removing or overexpressing IL-6 in models of CNS injury 
and infection will be discussed. Based on current literature, evidence suggests that IL-6 is involved in both neuroprotection and 
neurodegeneration. Interestingly, neurodegeneration seems specific to IL-6 trans-signaling, a form of IL-6 signaling that is more 
robust and often associated with chronic neuroinflammation. 
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one IL-6 family member. 
 The role of IL-6 in normal CNS processes is not 
well understood. Previously, it was mentioned that recom-
binant IL-6 promotes neuronal cell viability and differen-
tiation in vitro7,9. In vivo, IL-6 knockout (IL-6 KO) mice 
show deficits in temperature sensitivity and a reduction in 
sensory compound action potential29. In the brain, IL-6 KO 
mice show a decrease in the neural progenitor cell popula-
tion in the sub-ventricular zone and hippocampus30, which 
is coupled with learning and memory deficits31. IL-6 KO 
mice also show behaviors of increased anxiety and aggres-
sion when exposed to new environments32-34. Overall, this 
suggests that IL-6 is involved in the development of certain 
neuron populations that regulate learning, memory, and re-
sponses to stressful stimuli.

Factors That Influence IL-6 Expression
 
 Infection, injury and even basal activity are capable 
of influencing IL-6 expression in the CNS. In vitro, applica-
tion of the bacterial endotoxin lipopolysaccharide (LPS) or 
the pro-inflammatory cytokines IL-1β and TNF-α induc-

es IL-6 mRNA expression in glial cells35-37 and neurons37. 
Up-regulated production of IL-6 in the CNS is also seen in 
vivo after peripheral injection of LPS in mice38. In animal 
models of CNS trauma, IL-6 elevation is seen after optic 
nerve crush26, 39, brain ischemia40-44, closed head injury45 and 
peripheral nerve injury46. IL-6 elevation in both serum and 
CSF is also seen in people who have experienced traumatic 
brain injuries47-50. Interestingly, even acute physiological 
stressors are capable of influencing IL-6 expression. De-
polarization of the plasma membrane induces IL-6 expres-
sion51, suggesting that basic neuronal activity can induce 
IL-6 release. In addition, mechanical stressors such as eleva-
tions in atmospheric pressure can induce IL-6 expression in 
both glia and neurons52, 53. 
 How glia and neurons induce IL-6 transcription in 
response to these stimuli is not fully understood. However, 
current evidence suggests that calcium (Ca2+) influx plays a 
vital role. Removal of extracellular Ca2+ prevents pressure 
and LPS-dependent IL-6 secretion from microglia52, 54. 
In microglia exposed to elevated pressure, it also prevents 
NFκB, a transcription factor known to promote IL-6 ex-
pression, from translocating into the nucleus52.  Removal of 
extracellular Ca2+ also prevented IL-6 expression in primary 
cortical neurons after depolarization51. However, IL-6 ex-
pression induced by membrane depolarization was not de-
pendent on NFκB, indicating different stimuli are capable 
of inducing IL-6 expression in different manners51. Overall, 
these data indicate that multiple stressors are capable of in-
ducing IL-6 expression. Interestingly, mechanisms involved 
in this process appear to be Ca2+-dependent, an important 
concept since changes in intracellular Ca2+ are present in 
both neuroinflammation55 and neurodegeneration56.

IL-6 is a Potential Biomarker in Neurodegenerative Dis-
ease

 Neurodegeneration is a broad term for the progres-
sive loss of structure or function in neurons and is com-
monly associated with Alzheimer’s disease, Huntington’s 
disease, Parkinson’s, multiple sclerosis (MS), amyotrophic 
lateral sclerosis (ALS) and glaucoma57. Recently, progres-
sion of neurodegenerative disease has been linked to chronic 
neuroinflammation, a state of inflammation in the CNS 
that involves constitutively active microglia, sustained cy-
tokine production, and nervous tissue damage57. Due to its 
role in inflammation, it can be argued that IL-6 is a poten-
tial biomarker in this class of diseases. Indeed, elevation of 
IL-6 is seen in Huntington’s58, 59, MS60-62, Parkinson’s63, 64, 
Alzheimer’s64, and glaucoma65. 
 Alzheimer’s is a form of dementia associated 

Figure 1. How IL-6 signals in the CNS. In response to stress, the cells in 
the CNS (neurons, astrocytes, microglia and endothelial cells) release 
IL-6. IL-6 binds to IL-6R followed by 2 copies of gp130. From there, 
multiple signaling pathways can commence. Also, there are two types of 
IL-6Rs: membrane bound (mIL-6R) and soluble form (sIL-6R).  Sig-
naling through sIL-6R is called trans-signaling and serves as an agonist 
to potentiate the IL-6 mediated response. A soluble form of gp130 also 
exists, which serves to inhibit trans-signaling.
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with β-amyloid plaques in the brain66. It is suspected that 
β-amyloid plaques are involved in neurodegeneration66. IL-6 
is elevated in serum and cerebrospinal spinal fluid (CSF) of 
Alzheimer’s patients64. Interestingly, both in vitro and in vivo 
studies indicate that: 1) IL-6 elevation precedes plaque for-
mation67,  2) IL-6-positive glia are associated with β-amyloid 
plaques68, and 3) IL-6 up-regulates the expression of the 
β-amyloid protein precursor69. Glaucoma is characterized by 
neurodegeneration of the optic nerve followed by progressive 
loss of retinal ganglion cells (RGCs)27.The main modifiable 
risk factor is sensitivity to intraocular pressure (IOP)27. In 
patients with glaucoma, there is a significant increase in the 
levels of IL-6 in aqueous humor65. In vitro studies suggest 
that microglia are the main source of IL-6 in response to ele-
vated pressure70. However, in vivo, 24 hours of IOP elevation 
induces IL-6 expression only in the RGC cell bodies and the 
optic nerve head of rats39, 71. Altogether, these data indicate 
that elevations in IL-6 could be an early indicator of CNS 
stress. Whether these elevations are significant enough to be 
used as reliable biomarkers remains to be seen. 

IL-6: Neurotoxic or Neuroprotective in the CNS?

 In basal conditions, exogenous IL-6 is capable of 
improving cell viability and promoting cell differentiation9, 

10. When coupled with a specific stressor, pre-treatment with 
IL-6 prevents apoptosis in neural cells exposed to NMDA72-

74, elevated atmospheric pressure53, increased intracellular 
calcium75, and certain toxins39, 76, further supporting the idea 
that IL-6 is neuroprotective. This hypothesis was further cor-
roborated in models of CNS injury using IL-6 KO mice. In 
response to optic nerve crush, IL-6 KO mice show a decrease 
in the amount of axon regeneration from the injury site39. 

IL-6 KO mice also have a worsened CNS pathology after 
brain freeze lesion77, brain ischemia78, and dorsal column 
crush79. Conversely, IL-6 KO mice are resistant to sickness 
behavior80, fever81, and deficits in spatial memory82 induced 
by LPS. 
 Interestingly, systemic or neuron-specific over-ex-
pression of IL-6 causes increased glial reactivity but no defi-
cits in neuronal health83. On the other hand, mice with exces-
sive production of IL-6 from astrocytes (GFAP-IL-6 mice) 
show not only increased glial cell reactivity83, but reduced 
hippocampal neurogenesis84, reduced long term potentiation 
in the dentate gyrus85, an age-dependent increase in hippo-
campal cell death83, and an age-related decrease in avoidance 
learning86. In response to focal brain injury however, GFAP-
IL-6 mice show a more robust glial response, a decrease in 
apoptosis at the injury site and quicker healing time87.
 These studies suggest that IL-6 activity is both neu-
roprotective and neurotoxic. As a neuroprotective agent, IL-6 
may function through the JAK/STAT pathway and promote 
cell viability39. As a neurotoxic agent, chronic exposure to 
IL-6 signaling, as seen in the GFAP-IL-6 mice, may lead to 
neuron dysfunction and subsequent neurodegeneration. 

IL-6 Trans-signaling Facilitates Chronic Neuroinflamma-
tion

 The ability for the CNS to initiate and terminate 
an acute neuroinflammatory response decreases in advanced 
age, resulting in a state of chronic inflammation57. Chronic 
inflammation is characterized by longstanding activation of 
microglia and continual release of inflammatory cytokines57. 
Unlike an acute neuroinflammatory response which pro-
motes overall CNS health, chronic neuroinflammation re-

Figure 2.  A) In response to stress, IL-6 activity 
is neuroprotective by promoting transcription of 
pro-health genes. B) In a chronic inflammatory 
microenvironment, increased IL-6 activity is pres-
ent due to elevations in IL-6 trans-signaling, lead-
ing to a toxic buildup of intracellular [Ca2+].
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sults in gradual neuronal loss57. Interestingly, IL-6 may play a 
role in chronic neuroinflammation. Not only is there an age-
related increase of IL-6 expression in both humans88, 89 and 
mice90, but microglia cultured from brains of aged mice show 
a more reactive phenotype and constitutively release more IL-
690, 91.   
 Outside of the CNS, IL-6 trans-signaling is involved 
in the progression of diseases where chronic inflammation 
is thought to play a role including certain types of cancer, 
inflammatory bowel disease and arthritis92. Using a syn-
thetic version of human soluble gp130 (sgp130) to specifi-
cally block IL-6 trans-signaling in mice, results from multiple 
studies suggest that blocking IL-6 trans-signaling improves 
the outcome of these diseases93. Whether the improvement is 
due to the sole presence of classical IL-6 signaling or due to 
decreased IL-6 signaling overall is not understood. Regard-
less, this discovery leads to one important question: Does 
blocking IL-6 trans-signaling attenuate chronic neuroinflam-
mation and subsequent neurodegeneration? 
 As of now, only a few studies have shed light on this 
question. In vitro, sgp130 significantly reduces IL-6 release 
from both microglia and neurons exposed to LPS94. In vivo, 
intracranial injection of sgp130 reduces both LPS-induced 
sickness behavior and microglial IL-6 production in aged, 
but not young, mice95. In line with IL-6 trans-signaling, 
this study reports that: 1) microglia from aged mice express 
greater amounts of IL-6R than young mice95, and 2) there is 
an age-related increase in hippocampal metalloprotease (i.e 
ADAM17) gene expression95. This suggests that IL-6R shed-
ding from microglia is elevated in the aged brain, resulting in 
IL-6 trans-signaling-dependent chronic inflammation. Taken 
together, these data suggest that blocking IL-6 trans-signaling 
by sgp130 can mitigate chronic neuroinflammation and sub-
sequent neuronal defects.

The Action of IL-6 is Dependent on the Microenviron-
ment

 Whether IL-6 functions in a neuroprotective or 
neurotoxic mechanism remains to be completely under-
stood. Due to poor accessibility, studying the actions of IL-6 
in the brain in vivo is difficult. Conversely, the retina is an 
excellent model due to its high accessibility. One particular 
neurodegenerative disease of the retina is glaucoma, an optic 
neuropathy that results in the progressive loss of retinal gan-
glion cells (RGCs) causing irreversible blindness. Like many 
other neurodegenerative diseases, age is a primary risk fac-
tor, while increased sensitivity to intraocular pressure is the 
only modifiable risk factor96. In vitro data from our lab show 

that recombinant IL-6 protects RGCs from pressure-induced 
death53. In addition, elevated pressure induces Ca2+-depen-
dent IL-6 production and release by microglia, suggesting 
that microglia release IL-6 to protect RGCs70. Interestingly, 
several studies have shown that glaucoma is associated with 
elevated levels of glutamate in the vitreous, suggesting a role 
of excitotoxicity in the disease97-99.
 In the CNS, one of the main responsibilities of mi-
croglia is to detect disturbances in the CNS microenviron-
ment, and microglia are thus extremely sensitive to stressors 
such as elevated pressure and excess glutamate. It is postu-
lated that in response to these stressors, microglia influx Ca2+ 
and subsequently release IL-6 to protect neurons (figure 2A). 
However, several reports show that chronic exposure to IL-6 
increases Ca2+ influx through multiple glutamate receptors, re-
sulting in toxic amounts of intracellular Ca2+ in neurons100-102 
(figure 2B). Therefore, it is our central hypothesis that in the 
CNS, the primary role of IL-6 is to protect neurons in re-
sponse to noxious stimuli by initiating the transcription of 
genes that promote cell health. However, under periods of 
chronic neuroinflammation, extended IL-6 activity takes on 
a neurotoxic role. This may be due to increased IL-6 release 
from microglia and/or elevated cleavage of IL-6R, leading to 
an increase in IL-6 trans-signaling. This chronic IL-6 signal-
ing subsequently causes prolonged accumulation of intracel-
lular Ca2+ in neurons, resulting in apoptosis. 

Conclusion

 Communication between cell types is an important 
component to maintaining optimal health, both in the CNS 
and the entire body. IL-6, a cytokine released in response to 
neuronal stress, is capable of both protecting neurons and 
promoting their neurodegeneration. The manner in which it 
operates may be dependent on the state of the CNS microen-
vironment. As many neurodegenerative diseases are coupled 
with chronic neuroinflammation and IL-6 is a major player 
in inflammation, further understanding of the circumstances 
in which IL-6 signaling is either protective or harmful is cru-
cial for its potential use as a therapeutic.  

Further Information Rebecca Sappington’s lab: https://
my.vanderbilt.edu/sappingtonlab/
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An Integrated Neurocognitive Model of Strong Reciprocity

Matthew R. Ginther
The human species demonstrates a unique capacity for large-scale cooperation. This capacity has been linked to a 
theory of strong reciprocity, which posits that individuals, to varying degrees, show a willingness to engage in costly 
norm-enforcement in response to norm violations. Given the importance of cooperation to our modern society, the 
neurocognitive substrates of strong reciprocity have been subject to much investigation. However, these investigations 
have resulted in a division in the field. On one side is a body of research revealing the neural systems undergirding the 
phenomenon of the human proclivity towards norm enforcement. On the other is a body of research revealing the 
neural systems that support the evaluative and decision-making processes engaged by the actual decision to properly 
engage norm-enforcing behavior.  Here, I review the contemporary knowledge provided by these two camps and pres-
ent them as an integrated model.  

 As the world becomes increasingly globalized, the 
fact that humans comfortably cooperate with genetically 
unrelated individuals becomes progressively more apparent. 
Our capacity as a species to engage in such cooperative be-
havior is one of the hallmarks that distinguish us in relation 
to other species, even those with high levels of social organi-
zation1. Anthropologists and biologists have long theorized 
that our cooperative nature depends on our ability to formu-
late social norms that establish boundaries of human interac-
tion and exchange2-3. The extent to which these norms are 
culture specific is highly debated, though it is generally un-
derstood that some norms are highly dependent on culture 
and others seem to be much more ingrained in the human 
existence4. 
 The legal maxim that “for every right, there is a rem-
edy; where there is no remedy, there is no right” applies to 
social norms; where there is a norm, there is a punishment 
for violating that norm. And in the inverse, if there is no 
punishment, then there is no norm. Therefore, the phenom-
enon of social norms requires the existence of some form of 
intra-species punishing behavior. But who will be the pun-
isher? There are two initially obvious answers to this ques-
tion, though both are unsatisfactory. One is that the gov-
ernment must enforce punishment. However, inasmuch as 
we conceive of government as “by the people,” this fails to 
account for the popular support of government-sanctioned 
punishment, thus the argument becomes circular. The sec-
ond is that the individual who was harmed will enforce the 
norm. This second explanation fails to account for the fact 
that harmed individuals are frequently not in a position to 

enforce punishment and when they are, models have demon-
strated that this kind of “direct reciprocity” does not sustain 
cooperation for large group sizes5.  
 Herbert Gintis presented a solution for this prob-
lem in 2000 by identifying the phenomenon of “strong 
reciprocity”a; where disinterested parties (often referred to as 
third parties) would act as norm enforcers (i.e., strong recip-
rocators)6. Strong reciprocators are described as individuals 
“willing to sacrifice resources for rewarding fair and punish-
ing unfair behavior even if this is costly and provides neither 
present nor future material rewards for the reciprocator”7. 
Data supported this theory as well; empirical models dem-
onstrated that strong reciprocity could support maximum 
cooperation in environments where direct reciprocity mod-
els predicted no cooperation8. Behavioral studies have con-
firmed Gintis’s theories, and now neurobiological models of 
this incredible phenomenon are being compiled. However, 
contemporary models have either focused on those systems 
that detect the norm-violation9-12 or on those systems that 
evaluate and integrate the available information in order to 
formulate an appropriate response13. In this piece I review 
this literature and present an omnibus model of strong reci-
procity behavior. Along the way I present new, testable, hy-
potheses that may explain lingering questions that existing 
models leave unanswered.

Behavioral studies support strong reciprocity

a� Strong Reciprocity: An observed phenomenon wherein individuals demonstrate 
a willingness to cooperate or punish that is not explained by a rational actor 
hypothesis.

Keywords social decision-making, norm-enforcement, third-party punishment, altruism, fMRI, neuroscience and economics, neu-
roscience and law
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Empirical models of strong reciprocity have been 
supported by laboratory observations of strong reciprocity. 
Economic games have been a commonly used, and widely 
accepted, method of revealing this behavior. Specifically, ex-
perimenters primarily employ the Ultimatum Game (UG)b, 
though many other games are used as well.  
 The standard UG can best be described as a “take 
it or leave it” one-shot interaction between two individuals. 
One is given an endowment and is told to make a proposi-
tion to the other for splitting that endowment. The proposi-
tion can be whatever the proposer chooses. The offeree must 
choose to either take the offer or reject it. If they reject it, 
both parties get nothing. Even when the game is played in a 
one-shot manner—that is participants play, and know they 
play, a given opponent once—they will almost universally 
reject low offers. This behavior is characteristic of strong 
reciprocity due to the fact that the reciprocator is willing to 
forego an amount of money in order to punish another in-
dividual, even though there is no monetary or reputational 
benefit to doing so. Consistent with Gintis’s theories, the 
availability of the punishment option drives up initial offers, 
maximizing cooperation and net outcomes for the group. 
The UG can be easily modified into a third-party variant 
by adding another individual (a “watcher”) to the interac-
tion. The watcher has the ability to punish either player, at 
a cost to the watcher’s own endowment, following the two-
party UG interaction. The presence of the watcher similarly 
improves cooperation14. Another game, called the Public 
Goods Game (PGG), is, arguably, a more ecologically valid 
economic game that is also used to model strong reciprocity. 
In brief, the PGG demonstrates that, when possible, some 
individuals will altruistically punish individuals who free-
load off of public contributions. This also improves coopera-
tion and net outcomes for the group14. 

Neurobiological Underpinnings – Detection of social 
norm violations

 The act of strong reciprocity first necessitates that 
the individual become aware of a norm violation. Multiple 
studies have implicated the anterior insula (AI) as a key 
system involved in this alerting process9,10,15. Namely, in a 
UG paradigm, AI activity has been demonstrated to have a 
robust negative correlation with the size of the initial offer 
(stingy offers induce high AI activation) and AI activation 

b� Ultimatum Game: A common economic game designed to elicit strong 
reciprocity in subjects. Subjects are given the ability to accept or reject an offer 
made by another party. Rejection of the offer is always economically irrational 
but is commonly observed when the offer is below expected norms.

will reliably predict whether the offeree engages in altruistic 
punishment10. 
 These results are consistent with contemporary 
work on the AI, which has found the AI to be a critical area 
responsible for redirecting attention towards environmental 
stimuli that deviate from the expected course of events. In 
this sense it serves an alerting function for other brain re-
gions16. This is consistent with multiple studies finding that 
AI is engaged by the presentation of an oddball visual or 
auditory stimulus, an oddball being perhaps analogous to 
a norm-violation. It must be noted, however, that detect-
ing auditory and visual oddballs are distinct from the pro-
cesses that must be engaged in the detection of social norm 
violations. The latter requiring a capacity to represent, to 
some form, the desires and intentions of others. That the 
insula, which has a relatively ancient phylogeny, is capable 
of detecting such violations is somewhat puzzling. One in-
triguing explanation as to how the human AI mediates this 
complex role is that it relies on a system mediated by Von 
Economo neurons (VENs). VENs have appeared in the AI 
in only the last 15 million years and are limited to humans 
and to the great apes, though they are present in far smaller 
numbers in the apes. VENs have been linked to fast human 
judgments related to evaluating social interactions, though 
the mechanism by which it mediates these interactions re-
mains unknown17. Furthermore, immuno-cytochemical 
studies of VENs indicate a large presence of dopamine D3 
receptors17, which are linked to reward signaling18. This may, 
in part, explain the phenomenology of strong reciprocity in 
spite of the costs of action. Similar evidence that AI may be 
involved in the alerting and incentivizing process is that an-
terior insula projects to areas of the ventral striatum19, which 
has been well-established as a critical player in reward-based 
decision-making20. 
 Little is known about how the parameters of social 
norm compliance and violation are formed. For instance, in 
a UG with an initial $10 endowment, what neural system 
establishes and maintains that norm-complying behavior 
constitutes a contribution of $3-$4? The observation that, at 
least in the UG, norm estimations vary considerably across 
cultures21 strongly indicates that the parameters are not es-
tablished purely genetically but other evidence does indi-
cate at least some genetic contribution4. Given the semantic 
nature of the norm information, it is likely that the norm 
representation is largely formed through social experience 
and maintains itself outside of the medial temporal lobe. 
However, no study has yet empirically tested this assertion. 
This hypothesis may be informed by studies that test strong 
reciprocity-like behavior in patients with medial temporal 
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lobe damage. 

Neurobiological Underpinnings – Acting on social norm 
violations

 That humans can detect norm violations is a neces-
sary element of strong reciprocity, but the defining element 
of the phenomenon is the willingness, if not the desire, to 
act upon the norm violation. Some have theorized that 
strong reciprocity, as it has been observed, co-opts domain 
general processes linked to emotional urges or impulses22-24. 
Others have hypothesized that norm enforcement is de-
pendent on cognitive control of selfish desires, likely medi-
ated by dorsolateral prefrontal cortex (DLPFC)12. However, 
recent research has cast substantial doubt on this theory. 
Particularly, Rand et al. presented convincing evidence that 
costly punishment, not selfishness, was the pre-potent, or 
impulsive, response25. This evidence supports the hypoth-
esis that the decision to engage in altruistic punishment is 
an emotional response that overcomes the economically 
and evolutionarily (in the short-term, at least) rational act 
of foregoing punishment. If strong reciprocity is impulsive 
in nature, it is reasonable to hypothesize that such behavior 
derives from domain general systems that are responsible 
for trait impulsivity. 
 The systems responsible for emotion-driven impul-
sive behavior and its regulation are relatively well-charac-
terized and center on corticolimbic structures. Corticolim-
bic–mediated impulses are signals that facilitate, oftentimes 
in an adaptive manner, attention and action to pertinent 
stimuli26,27. Meanwhile, the conscious perception of emo-
tion is the phenomenological experience or awareness of 
these forces28, with the strength of the emotion directly cor-
relating with the physiological “need.” It is well established 
that the amygdala plays a primary role in the development 
of emotional urges26, and the amygdala has long been noted 
to be closely integrated with insular function29-31. Interest-
ingly, insular connectivity with the amygdala is primar-
ily associated with insula Von Economo neurons (VENs), 
which were discussed above for their possible role mediating 
the insula’s involvement in alerting neural systems to de-
viations in social behavior from the norm17. Further, effec-
tive connectivity studies confirm what has long been noted: 
amygdala activity is strongly influenced by the insula29. 
Given this evidence, it’s possible that the insula influences 
decision-making involving social norms based on reciprocal 
connections with amygdala, which translates norm devia-
tion into an arousal response. The arousal response is likely 
mediated by neurons in the central nucleus, which augment 

cortical arousal via activation of cholinergic nuclei in the 
cholinergic basal forebrain32. Increased cortical arousal may 
be responsible for the impulsive response to engage in strong 
reciprocity via biasing of the response selection process in 
premotor and supplementary motor areas. This hypoth-
esis is supported by a recent study that pharmacologically 
dampened amygdala activity and found a resulting substan-
tial reduction in strong reciprocity, with no effect on the 
individual’s perception of unfairness in relation to the stingy 
offers33. 
  While unfair offers, or any perceived norm-viola-
tion for that matter, will likely trigger an insula and amyg-
dala mediated augmentation of cortical arousal, it is clear 
that this response does not always result in action to correct 
the perception of unfairness. We can therefore infer what 
should be obvious, that emotional responses to unfair acts 
are modulated by other systems, systems that prevent mal-
adaptive responses or emotional arousal to trivial violations. 
Data indicate that this occurs through a negative-feedback 
process involving the ventromedial prefrontal cortex (VMP-
FC). The VMPFC is believed to engage in this process by 
means of assigning action values to possible responses34. As 
part of this process, VMPFC is known to down-regulate 
amygdala-driven emotional arousal by exerting a top-down 
inhibitory influence in the amygdala in order to reign in 
emotionally driven, but maladaptive response options35-37. 
The hypothesis that VMPFC acts to down-regulate an ini-
tial bias towards punishment is strongly supported by two 
observations. First, VMPFC damage is linked to a signifi-
cant increase in negative strong reciprocity in the UG. Sec-
ond, as noted before, behavioral studies have observed that 
the strong reciprocity is more likely when a fast response is 
forced or when subjects are guided to place trust in their 
instincts. Inversely, when subjects are forced to delay their 
response or distrust their intuitions, altruistic punishment 
declines substantially25. 
 Consistent with this mechanism, Cyders and 
Smith’s model of a negative urgency disorder appears to be 
compatible with observations of strong negative reciprocity 
in only a segment of the population38-40. The authors de-
fine negative urgency as an emotion-based disposition to 
engage in rash action in response to negative affect, and they 
identify VMPFC (dys)function as the primary cause of the 
disorder. Given that strong reciprocity has been linked to 
rash action, negative affect, and is tempered by an intact 
VLPFC, the possibility that a behavioral predisposition to 
strong negative reciprocity is due to a so-called urgency dis-
order is worth consideration. Another interesting and com-
pelling aspect to the possible explanation that urgency dis-
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orders drive strong reciprocity is that Cyders and Smith also 
characterize a positive urgency disorder, which they define 
as a tendency to act rashly when experiencing positive emo-
tion. A positive urgency trait may provide an explanation of 
positive strong reciprocity, which has been an understudied 
element to norm-enforcement research. Further evidence 
supporting the claim that urgency disorders may under-
gird strong reciprocity are empirical studies indicating that 
the urgency disorders, as with positive and negative strong 
reciprocity behavior, tend to not be expressed in the same 
segment of the population. Furthermore, the incidence of 
both occurs at similar rates41. Although classifying displays 
of strong reciprocity as indicative of a disorder seems to con-
tradict claims that strong reciprocity is critical to our large 
scale cooperative society, this is not necessarily so. Several 
commentators have claimed that despite the possible contri-
bution of strong reciprocity to large-scale cooperation, it is a 
maladaptive trait for the individual41. 

Neurobiological Underpinnings – Evaluating, integrat-
ing, and deciding on a response

 If a norm violation is detected, and if that violation 
is sufficient to engage strong reciprocation on the part of 
the second or third party, the final network to be engaged 
is an evaluative and integrative decision-making network. 
This late-stage network is employed to weigh the particulars 
of the environmental stimuli and guide response selection. 
A proposal of the systems that mediate this evaluation, inte-
gration, and decision process has been put forth in a recent 
review by Buckholtz and Marois13. In their review, Buck-
holtz and Marois present a convincing hypothesis that this 
process is an evolutionary adaptation of other domain-gen-
eral neural systems. They specifically focus on four regions: 
the DLPFC, medial prefrontal cortex (mPFC), Amygdala, 
and the temporoparietal junction (TPJ). Their model pro-
poses that TPJ engages in mentalizing processes to encode 
information concerning the intent and blameworthiness of 
the act. The amygdala encodes affective arousal and func-
tions as an affect-as-information system; a neural heuristic 
of the act’s harm. They propose that mPFC integrates these 
two signals and coveys an integrated signal to DLPFC and 
this is used to bias punishment selection. 
 There is some data that support Buckholtz and 
Marois’s intuitive hypothesis. Multiple studies have shown 
the TPJ to be an important component in assigning beliefs 
and intentions to others42,43. Further, Buckholtz et al. ob-
served strong TPJ activation during a task where subjects 
were prompted to make punishment ratings after reading 

scenarios in which a particular actor was either responsible, 
or had diminished responsibility due to mitigating circum-
stances44. TPJ activity preceded activity in other regions 
and was most engaged in the diminished responsibility sce-
narios, which is consistent with the fact that the offender’s 
mental state was most ambiguous in these scenarios. Studies 
have demonstrated that mPFC and amygdala demonstrate 
joint sensitivity to both harm severity and blameworthiness. 
The authors use this, and previous studies of amygdala and 
mPFC function, to support their hypothesis that the amyg-
dala is acting to code harm through affect and that mPFC is 
formulating an integrated signal based on the actor’s mental 
state and the resulting harm to arrive at an approximation of 
deserved punishment. Finally, the hypothesis that DLPFC 
is integrating and biasing signals from mPFC, is supported 
by findings that that DLPFC is engaged by the punishment 
response, and maximally engaged when participants choose 
to punish compared to no punishment selection44. 

Concluding Remarks

 In this review I outlined an omnibus model of 
strong reciprocity that draws from multiple lines of research. 
This integrated model makes several propositions about the 
nature of strong reciprocity and claims to account for some 
previously unexplained observations in the literature. Altru-
istic behavior is incredibly complex, both from an evolu-
tionary and neurobiological standpoint, and thus this model 
is hardly complete. Nevertheless, moving towards a more 
complete and harmonious understanding of this uniquely 
human behavior is important for forming a more compre-
hensive understanding of the foundations of human society. 

Further Information 
 
Lab website: http://www.psy.vanderbilt.edu/faculty/marois/
LabHome.html
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 Since the discovery of DA as a functional neu-
rotransmitter and not merely a precursor to norepinephrine 
biogenesis, the physiology of DA neurons and DA signaling 
have been the focus of much investigation1. Scientists have 
demonstrated that DA is at the crux of mediating behaviors 
key to locomotion, cognition, reward and motivation2. DA 
neurons undertake the important and rather complex task of 
integrating motor, sensory and cognitive information.  DA 
is synthesized, packaged into vesicles by the vesicular mono-
amine transporter 2 (VMAT 2) and released predominantly 
by vesicular fusion mechanisms from DA neurons present in 
the ventral tegmental area (VTA), substantia nigra (SN) and 
the retrorubral field (RRF).  DA release from the SN into the 
dorsal striatum (dStr), and VTA into the nucleus accumbens 
(NAcc) and prefrontal cortex (PFC)3 respectively, initiates a 
cascade of downstream signaling events via activation of G 
protein-coupled receptors (D1 – D5 receptors)4 ultimately 
resulting in the aforementioned behaviors. DA signaling is 
also controlled by signaling via somatodendritic and presyn-
aptic D2 receptors that dampen DA neuron activity and in-
hibit DA release5. Reuptake of DA into the terminal by DAT 
serves as the primary mechanism for the termination of DA 
signaling at the synapse6. Thus, DA signaling is regulated at 
multiple steps ranging from presynaptic control of neuronal 
firing and DA release to the downstream signaling cascades 

following receptor activation, each equally important in con-
tributing to the desired behavior. 
 It is therefore unsurprising that several studies point 
to a dysfunction in DA signaling as being causal to several 
neuropsychiatric disorders, ranging from the loss of ni-
grostriatal DA neurons in Parkinson’s Disease to enhanced 
DAergic transmission in schizophrenia, bipolar disorder and 
ADHD. This review will focus on the presynaptic mecha-
nisms involved in the initiation, sustenance and control of 
DA signaling – intrinsic mechanisms which influence DA 
neuron activity through the packaging and release of DA, the 
reuptake of DA by DAT to terminate DA signaling, and the 
modulation of DA neuron activity by DAT in both normal 
and diseased states.

Dopamine Neuron Physiology – From Activity to Behav-
ior

 The DA neurons of the SN and VTA are part of 
midbrain nuclei that encode important neural signals related 
to volition, reward and cognitive behavior. Evidence sug-
gests that the SN DA neurons project to the dorsal striatum, 
forming the nigrostriatal DA pathway, while the VTA DA 
neurons project to the ventral striatum or NAcc, making up 
the mesolimbic pathway and to the medial prefrontal cortex 
(mPFC), forming the mesocortical pathway. This trichoto-

Dopamine Neuron Physiology and Signaling – Why is DAT impor-
tant?

Dopamine (DA) signaling is dynamically regulated by multiple signals from the environment, thereby encoding in-
formation critical to the modulation of brain circuits subserving locomotion, reward and motivation. Perturbations in 
DA signaling have been attributed to multiple disorders such as Parkinson’s disease, schizophrenia, bipolar disorder, 
addiction and ADHD. Furthermore, pharmacological manipulations in DA signaling have been used in the treatment 
of several of the aforementioned disorders. DA signaling is tightly controlled at the synapse by the presynaptic DA 
transporter (DAT), which transports DA into the neuron to maintain presynaptic DA stores. While current and past 
literature has focused extensively on the modulation of DA neuron activity and its relationship to behavior, the role 
of DAT in influencing DA neurotransmission and associated behaviors is not entirely understood. This review will 
summarize the intrinsic mechanisms involved in controlling DA neuron activity and how they impact behavior. It 
will underscore the importance of DAT in DA signaling highlighting key studies using the DAT knock-out mice and 
the multiple facets of DAT function in controlling DA signaling. Furthermore, it will also illustrate how aberrant DA 
signaling contributes to disease pathology highlighting studies on the characterization of a rare, missense mutation 
impacting the DAT coding sequence isolated from attention deficit hyperactivity disorder (ADHD) patients, the DAT 
Val559 variant. 

Raajaram Gowrishankar

Keywords dopamine, dopamine signaling, tonic and phasic dopamine, dopamine transporter
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mous segregation has been suggested to be applicable to be-
havior as well, wherein the nigrostriatal pathway is involved 
in the control of movement, while the mesolimbic and me-
socortical pathways are involved in motivation, reward and 
cognition. However, recent evidence points to an inter-mix-
ing of SN and VTA DA neuron populations, wherein the 
more medial VTA DA neurons provide inputs to the ventral 
striatum, which establishes a feedback loop to more lateral 
DA neurons in the SN that project to the dorsal striatum7.
 Both SN and VTA DA neurons exhibit three dis-
tinct states of activity – 1) an inactive, hyperpolarized state, 
2) a ‘tonic’, spontaneous, irregular, single spike form of activ-
ity and 3) a ‘phasic’, depolarization-dependent, burst-firing 
pattern of activity8. Approximately 50% of all DA neurons 
are not spontaneously active and are held at hyperpolariz-
ing membrane potentials, likely due to GABAergic input 
from local GABAergic interneurons9 or afferent input from 
the ventral pallidum, in the case of a subpopulation of VTA 
DA neurons10. The spontaneous firing of DA neurons is 
established via an intrinsic pacemaking mechanism, which 
is dependent on a hyperpolarization-activated cationic con-
ductance (Ih)

11. In contrast, burst-firing results in multiple 
spikes of activity and is depolarization-dependent12, initiat-
ed via afferent control by cortical and brainstem nuclei13-15. 
Studies have demonstrated that phasic activity of DA neu-
rons is dependent on NMDA receptors, as using an NM-
DAR antagonist inhibits depolarization and that this phasic 
activity is not sustained by glutamate alone16. The bursts of 
activity are often followed by a pause (after-hyperpolariza-
tion), followed by resumption of spontaneous activity17.
 The transition from tonic to phasic firing of VTA 
DA neurons is associated with reward-related cues, reward 
prediction errors and incentive salience18-19. Phasic firing is 
also depressed in response to aversive stimuli20. While le-
sion, pharmacological and transgenic studies have provided 
evidence for the role of the DA system in these behaviors, 
only recently have studies proven its causal role with spatio-
temporal precision. To specifically interrogate the role of the 
DA neurons in reward-related behavior, Tsai and colleagues 
used a Cre-inducible adeno-associated viral vector (AAV) 
carrying a gene encoding the light activated cation chan-
nel channelrhodopsin-2 fused to an enhanced yellow fluo-
rescent protein (ChR2-EYFP), in the antisense orientation. 
Stereotactic injection of this vector into the VTA of tyrosine 
hydroxylase(TH)::internal ribosomal entry site(IRES)::Cre 
transgenic mice results in ChR2-EYFP expression only in 
VTA DA neurons. Following this, the authors were able 
to reliably elicit tonic and phasic DA release with 1-5 Hz 
and 20 Hz or higher blue light pulses respectively. In or-
der to test the role of selective activation of DA neurons 
in reward-related behaviors, the authors used conditioned 

place preference to behaviorally condition mice with either 
phasic or tonic optical stimulation. The authors found that 
phasic optical stimulation (50 Hz) sufficed to elicit behav-
ioral conditioning and established place preference. The au-
thors also found that tonic optical stimulation (1 Hz) elic-
ited a trend towards place preference21. Since this pioneering 
study, several studies have interrogated the specific role of 
the DA system in the multiple phases of reward-seeking, the 
involvement of afferents in inhibiting this behavior and the 
contribution of its dysfunction to diseased states22-26. 
 The role of tonic firing and tonic DA release in 
modulating behavior, however, has received little attention; 
although there have been a handful of studies dissecting 
the origin of tonic DA firing states10 and the importance 
of tonic DA release27. An elegant model has also been pro-
posed describing a putative role for tonic DA activity in the 
modulation of phasic firing via D2 autoreceptors, and its 
relevance to pathologies such as alcoholism, drug abuse and 
schizophrenia has also been proposed28. It is also unclear 
whether tonic DA release is vesicular or non-vesicular with 
studies proposing conflicting models. Studies on the manip-
ulation of tonic DA to measure its effects on DA signaling 
and behavior have largely focused on genetic manipulations 
of DAT, as it can be argued that changes in DAT expres-
sion would result in alterations in tonic DA without the 
requirement of a change in phasic activity. Hence, for the 
purpose of this review, it is first necessary to gather a deeper 
understanding on DAT function before delving into how its 
alterations would relate to behavior. 

Dopamine Transport and Dopamine Neurotransmission 
– Where does DAT fit in?

 DA reuptake by DAT is the rate-limiting step in 
DA neurotransmission and provides a selective mechanism 
for the transport of DA into the presynaptic terminal. DAT 
is a member of the family of Na+/Cl--dependent transporters 
(solute carrier 6 or SLC6 family) and uses the transmem-
brane sodium (Na+) gradient (along with co-transport of 
chlorine (Cl-)) to transport DA across the membrane29. Fol-
lowing reuptake, DA is repackaged into vesicles by VMAT2. 
DAT thus plays an important role in regulating extracellular 
concentrations of DA and also in maintaining the readily-re-
leasable pool of DA. In accordance with this, Giros and col-
leagues observed remarkable alterations in extracellular and 
intraneuronal DA levels in the DAT knockout (DAT KO) 
mice. The authors observed a fivefold increase in basal extra-
cellular DA levels, and at the same time a marked reduction 
in intraneuronal DA stores that are dependent on reuptake 
through DAT. Furthermore, DAT KO mice also exhibited 
a fourfold decrease in the amplitude of evoked DA release30. 
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Subsequent studies also showed that the lack of DAT-medi-
ated DA recycling resulted in DA levels in the striatum of 
DAT KO mice to be dependent solely on the rate of ongo-
ing DA synthesis31. Hence, DAT KO mice exhibit a state of 
elevated tonic DA while phasic DA is reduced due to deplet-
ed vesicular stores. Behaviorally, the elevation in tonic DA 
is manifested as spontaneous hyperactivity in both familiar 
and novel environments. Studies following this showed that 
DAT KO mice also exhibited deficits in the Morris Water 
Maze learning and memory test32, impaired behavioral in-
hibition as shown using the 8-arm maze test33, an elevation 
in reward-motivation as observed by a bias towards a posi-
tive tastant34 and marked resistance to its extinction35, thus 
highlighting the importance of DAT in DA signaling. DAT 
is also the primary target of widely abused psychostimulants 
such as cocaine and amphetamine (AMPH). Cocaine is a 
conventional DAT antagonist and blocks DA reuptake36 
whereas AMPH is a competitive DAT substrate, blocking 
DA uptake and is transported into the cell through DAT, 
thereby collapsing the vesicular pH gradient and depleting 
vesicular stores. This unpackaged cytoplasmic DA is expelled 
into the synapse via reverse transport through DAT and is 
referred to as DAT-mediated DA release37-38. Hence, based 
on this mechanism of action, it can be argued that while the 
elevation of tonic DA by cocaine is dependent on burst fir-
ing and phasic DA release, AMPH’s actions are not coupled 
to phasic DA activity. The administration of either cocaine 
or AMPH in rodents has been shown to cause hyperloco-
motion and stereotypy or repetitive behavior (at high doses), 
and increased motivation and reward-related behavior by an 
elevation in extracellular DA39. Giros and colleagues were 
instrumental in demonstrating that the hyperlocomotor re-
sponsivity to AMPH and cocaine is mediated through DAT, 
showing that this response was abolished in DAT KO mice. 
 Since the advent of the DAT KO mice, several 
strains of mice with varying degrees of DAT expression have 
been developed to further study the role of DAT in DA 
signaling. The DAT heterozygous mice (with 50% expres-
sion of DAT)40, and to a certain extent the DAT siRNA 
mice (wherein DAT was knocked down to 60% expres-
sion via siRNA)41, recapitulate many of the behavioral and 
neurochemical abnormalities of the DAT KO mice, albeit 
modestly. Of particular note are the DAT knockdown mice 
(DAT KD) where 90% of DAT expression was knocked 
down. The DAT KD mice express milder hyperactivity and 
impaired locomotion to AMPH42, and in addition show 
enhanced motivation to reward stimuli43. Recent studies 
have used DAT KD mice as a model for elevated tonic DA 
and measured its effect on the learning and acquisition of 
reward-related behaviors showing that while DAT KD mice 
were not impaired in reward learning, they exhibited a lack 

of exploitation of this learning44. In addition to mice with 
decreased DAT expression, mice with enhanced expression 
of DAT have also been developed, which show hypoactivity 
in a novel environment, but no changes in response to DAT 
antagonists. Interestingly, a recent model of robust overex-
pression of DAT showed a threefold decrease in extracellular 
DA levels and a drastic increase in response to AMPH com-
pared to wild type (WT) but not to cocaine, highlighting 
the importance of DAT in mediating AMPH-evoked DA 
release45.
 The action of psychostimulants on DAT and DA 
signaling has generated great interest in the field. While 
the action of cocaine has been fairly straightforward, re-
cent studies have yielded rather complex and intriguing 
insights into the effects of AMPH on DAT and, as a re-
sult, on the DA system. The discovery that AMPH not only 
blocks DA reuptake but also promotes DAT-mediated DA 
efflux lead to the proposal that DAT exists in both inward 
and outward-facing states depending on the nature of DA 
transport38. Recent studies using transfected DAT in het-
erologous cell systems have also shown that the inward 
and outward states are independent of each other46. DAT-
mediated DA release causes a gradual increase in tonic DA 
levels on a much larger timescale as compared to vesicular, 
phasic DA release and is dependent on intracellular calcium 
(Ca2+)47 and an increase in intracellular Na+48 (shown us-
ing transfected DAT in heterologous cell systems). How-
ever, Kahlig and colleagues demonstrated in HEK cells 
transfected with DAT that AMPH also mediates DA release 
in a complex and rare “channel-like” mode, releasing DA 
equivalent to that observed with phasic activity in the order 
of milliseconds. The authors suggest that this channel open-
ing represents a unique conductance state open only under 
certain circumstances such as drug action in this case49. It 
has been proposed that such a conductance state could also 
arise owing to inward currents through DAT, coupled or 
uncoupled with the transport of substrate. In support of this 
theory, studies have shown the increase in excitability of cul-
tured mesencephalic DA neurons in response to DA50 and 
depolarization currents passing through DAT in cultured 
C. elegans DA neurons51 that are blocked by DAT inhibi-
tors. Hence, it can be argued that such a conductance state 
helps enhance the excitability of DA neurons resulting in 
DA release, but the physiological and functional relevance 
of DAT-mediated currents has been difficult to demonstrate 
in vivo.
 The ability of DAT to efflux DA in response to 
AMPH has raised important questions. Does DAT release 
DA by itself under physiologically relevant conditions? And 
if so, what causes DAT-mediated DA efflux? Moreover, what 
does it contribute to? The existence of non-vesicular DA re-
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lease was proposed over two decades ago, after the observa-
tion that a portion of DA released from SN DA neurons 
was non-vesicular in nature52. Anthony Grace proposed that 
a sub population of DA neurons exhibited burst firing-in-
dependent, tonic DA release under afferent control by glu-
tamate and this established the tonic levels of extracellular 
DA28, although evidence that this was mediated by DAT 
was scarce and not entirely convincing. Some years later 
however, Falkenburger and colleagues conducted an elegant 
study to specifically answer all the aforementioned ques-
tions. Their study sought to understand the role for dendrit-
ic DA, and for DAT expressed in the soma/cell bodies and 
dendrites of SN DA neurons. Using an ex vivo slice prepara-
tion, the authors observed that stimulation of the sub tha-
lamic nucleus (STN), which affords afferent excitatory con-
trol of SN DA neurons resulted in the release of DA from 
the dendrites. They also observed that this DA release was 
DAT-dependent, as blockade of DAT abolished dendritic 
DA release, and non-vesicular, as extracellular Ca2+ deple-
tion did not affect it. Furthermore, it was also shown that 
dendritic DA causes inhibition of DA neuron excitability 
via activation of somatodendritic D2 autoreceptors53. Fol-
lowing this study, Opazo and coleagues showed that DAT-
mediated dendritic DA release is regulated by metabotropic 
glutamate receptors, coupled to PKC via the Gq-coupled 
signaling pathway54. Thus the authors have demonstrated 
a physiological role for DAT-mediated DA release in con-
trolling DA neuron excitability via dendrodendritic inhibi-
tion.  More recently, a voltammetric study measuring levels 
of endogenous DA in vivo in anesthetized rats has suggested 
the existence of two distinct states of DA neurotransmission 
in the dStr – 1) fast, arising from phasic DA release and 2) 
slow, arising from reverse transport of DA through DAT as 
this is sensitive to blockade by DAT antagonists. The au-
thors also suggested that the DAT-mediated DA release re-
sults in tonic autoinhibition of DA neurons mediated by the 
D2 autoreceptors55.      
 Hence, these studies establish a putative role for 
DAT in mediating an increase in tonic DA levels, and also 
in the maintenance of these levels, which could then pos-
sibly control phasic DA activity, both in the presynaptic ter-
minals and the somatodendritic regions. Conversely, stud-
ies have also suggested that somatodendritic DA release is 
vesicular in nature mediating tonic autoinhibition of DA 
neuron activity via D2 autoreceptors using ex vivo slice 
preparations56. In order to reconcile the conflicting models, 
it is necessary that future studies focus on resolving the spa-
tiotemporal properties of somatodendritic DA release and 
the properties they contribute to.

Dopamine Dysfunction and Disease – What’s DAT all 

about?

 Several studies have implicated aberrant DA signal-
ing in the pathology of neuropsychiatric disorders. These in-
clude the loss of SN DAergic neurons resulting in the deple-
tion of DA in Parkinson’s Disease57 and several genetic and 
imaging studies pointing to alterations in DA signaling in 
schizophrenia58, bipolar disorder59-60 and ADHD61-62. Fur-
thermore, all drugs of abuse and alcohol directly or indirect-
ly enhance DAergic neurotransmission; psychostimulants 
antagonize DAT, and alcohol enhances firing of DA neurons 
to increase the level of DA available both synaptically and 
extrasynaptically39. Control of DA signaling has also been 
harnessed in the treatment of these disorders – D2 recep-
tor antagonists are used in the treatment of schizophrenia 
and psychosis63 and DAT is the target of the most common 
pharmacological therapies used to treat ADHD64, Adderall 
(amphetamines) and Ritalin (methylphenidate).
 It is widely accepted that ADHD represents a case 
of functional hyperdopaminergia, whereby enhanced DA 
signaling contributes to the phenotypes such as hyperactiv-
ity, inattention and impulsivity observed in ADHD patients 
and ADHD-like rodent models65. Although the DAT KO 
mouse model has been the gold standard for understanding 
ADHD-like behavior, patients with a loss of function DAT 
allele exhibit Infantile Parkinsonian Dystonia, a syndrome 
that is in fact, a state of hypodopaminergia66. Hence, in an 
effort to clarify the DA hypothesis in ADHD, the Blakely 
lab identified several rare, heritable, functional, and highly 
penetrant DAT coding variants in many conserved sites in 
the DAT coding sequence from ADHD patients67. Mazei-
Robison and colleagues undertook the in vitro characteriza-
tion of one of these variants, the DAT Val559, and showed 
that when transfected into HEK 293 cells loaded with DA, 
the variant exhibited a DAT antagonist-sensitive, basal and 
voltage-dependent anomalous DA efflux (ADE). Further-
more, the authors observed that while AMPH caused DAT-
mediated DA efflux in cells transfected with WT DAT, DA 
efflux was blocked by AMPH in cells transfected with DAT 
Val55968. A follow up study showed that DAT Val559-trig-
gered ADE is sustained by the D2 receptor and mediated 
by a non-canonical signaling pathway involving Calcium 
Calmodulin Kinase II (CamKII)69. Previous work has shown 
that CamKII is essential for AMPH-evoked DAT-mediated 
DA release70. Hence, it is intriguing that a specific change 
in DAT function can lead to enhanced DA and possibly the 
phenotypes associated with ADHD. Current research in the 
Blakely lab has since focused on developing and characteriz-
ing a transgenic DAT Val559 knock-in mouse model, which 
would facilitate understanding of the profound changes in 
DA signaling related to ADHD.
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Concluding Remarks

 DA neurons play an essential role in relaying in-
formation necessary for locomotion, reward and cognition. 
While DAT plays an important role in controlling DA sig-
naling via reuptake (the lack of which leads to profound 
changes in DA signaling), several studies have established a 
role for DAT in controlling the excitability of DA neurons 
by virtue of different conductance states of the transporter 
and its ability to release DA. With regards to its possible 
contribution to tonic DA levels, the DAT Val559 mouse 
model could afford us an exciting opportunity to dissect the 
role of tonic DA in the modulation of behaviors controlled 
by DA. Furthermore, it could also help in developing new 
hypotheses for the role of enhanced tonic DA in ADHD.
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Origin of microglia 

Microglia represent a large portion of the brain 
parenchymal area, between 6 and 12%4-7 of all brain cells. 
While neurons, astrocytes, and oligodendrocytes all arise 
from the ectodermal layer during development, microglia 
arise from monocyte precursors originated from the me-
sodermal level. The prevailing hypothesis is that microglia 
come from early monocyte precursors residing in blood is-
lands above the yolk sac8, although there is some evidence for 
liver monocyte infiltration later9 as well as bone marrow de-
rived microglia that are able to colonize the brain after injury 
or compromise to the blood brain barrier10. Microglia from 
the mesodermal layer invade the developing nervous system 
around embryonic day 7.5(E7.5)5-6,11  just before the onset 
of neurogenesis. Because they differentiate from a hemato-
poietic lineage like macrophages, microglia are professional 
phagocytes. In the resting, uninjured brain, microglia are 
considered to be “unactivated”. However, this term is some-
what misleading because in this state they are actively survey-
ing the CNS. In their unactivated state, they have a rami-
fied morphology with extensive processes that are constantly 
probing for danger signals in the form of dead or dying cells, 
pathogens, axonal debris, or inflammatory cytokines.  In 
contrast, activated microglia take on an amoeboid-like mor-
phology, retracting their processes to facilitate phagocytosis4. 
Interestingly, this morphology is observed throughout CNS 
development as well, suggesting that microglia are primed 
to clear dead cells during times of significant apoptosis12. 

 Like macrophages, microglia can be activated differ-
entially, resulting in either pro or anti-inflammatory effects. 
M1-like activation is pro-inflammatory and detrimental to 
the brain. It leads to the production of other pro-inflamma-
tory cytokines and is therefore cytotoxic. M2-like activation 
is neuroprotective and serves to promote cell growth by in-
hibiting inflammation with anti-inflammatory cytokines and 
growth factors. Among the receptors required to mediate 
M1-like microglial activation are TLR4, IL-4R, and INFγR 

13-14. This pro-inflammatory activation, which would be evi-
dent after traumatic brain injury (TBI) or cell necrosis, causes 
the microglia to express and secrete cytokines, such as IL-6, 
IL-1B, TNFα, and free radicals. In contrast, IL-4, IL-10, and 
IL-13 can activate microglia to be neuroprotective (M2-like). 
M2-activated microglia release trophic factors such as BDNF, 
NGF, and VEGF to promote neurogenesis14-17. Most anti-in-
flammatory cytokines also function to directly ameliorate any 
pro-inflammatory response by inhibiting their intracellular 
signaling cascades.  There is some debate on the most consis-
tent molecular markers of microglia in their active and inac-
tive states, however Iba-1 seems to label all microglia while 
CD11b, CD68, and ED1 are used to distinguish M1-like 
activated microglia. In some forms of microglial activation, 
transcription of Mac1, F4/80, MCH, and FcR may also be 
increased8. Markers of M2-like neuroprotective activated mi-
croglia are arginase-1, and IL-1RA4, however there are likely 
many more that have yet to be discovered.

Role of Microglia in Development

Microglia Regulate Neurogenesis in the Developing, Adult, and 
Injured Brain

F. Edward Hickman
 While the role of microglia as phagocytic nervous system immune cells has been well established, microglia 
have also been shown to play a unique role in regulating developmental apoptosis  and neurogenesis. Develop-
mental apoptosis causes about 50% of neurons to die before postnatal day 1 (P1), and these cell corpses must be 
eliminated to prevent a detrimental inflammatory response1-2.  In addition, microglia have been shown to regu-
late neurogenesis in the adult subventricular zone (SVZ) and subgranular zone (SGZ). Only about half of these 
newborn neurons become integrated into the circuitry, and microglia are responsible for removing excess neurons 
as well as promoting the differentiation of new neurons3. Clearance of apoptotic cells, promotion of neurogenesis, 
and avoidance of inflammation  are also crucial to maintain brain homeostasis following the cell death associated 
with a traumatic brain injury. This review will highlight how microglia regulate neurogenesis by directing apopto-
sis, clearing dead or dying cells and helping to maintain a precise balance of pro- and anti-inflammatory signals.
Keywords microglia, development, neurogenesis, inflammation, phagocytosis, brain injury
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Microglia have multiple functions in the develop-
ing brain as varied as corpse clearance, promotion of cell 
death, and neuroprotection. During normal nervous sys-
tem development, about half of all newborn neurons un-
dergo programmed cell death rather than being incorpo-
rated into the circuitry. This massive cell death in the CNS 
occurs between E12 and E16 in mice, and by P1, very few 
dead cells are observed (by TUNEL and Annexin-V stain-
ing), suggesting that they are quickly and efficiently cleared 
by resident macrophages18. Apoptotic cells release “find-me” 
and “eat-me” signals to alert phagocytes, such as microglia, 
to clear them away; this aids in development and avoids 
inflammation19. The clearance of apoptotic cells during de-
velopment relies on the presentation of phosphotidylserine 
(PtS), a primarily inner membrane leaf lipid, to the outside 
of the cell by scramblase enzymes. Microglia or other “pro-
fessional” phagocytes express receptors to recognize PtS. 
While these receptors are largely unknown, the intracellular 
adaptor proteins involved, such as ELMO and Gulp, have 
been studied20-21. Binding of PtS to a receptor initiates a cas-
cade of events that result in the actin cytoskeletal rearrange-
ments within the microglia necessary for phagocytosis20,22. 
 In addition to phagocytosis of apoptotic cells, patho-
gens and cellular debris, studies examining microglia localiza-
tion and activity in various brain regions throughout develop-
ment suggest that microglia instruct and assist in apoptosis. 
In the cerebellum, microglia clear granule cells to allow room 
for developing afferent fibers to synapse properly, in addition 
to aiding in the extensive cerebellar folding that must occur23. 
They have also been shown to instruct developmental apop-
tosis in the cerebellum by promoting apoptosis of Purkinje 
cells in organotypic slices through the release of superoxide, 
a reactive oxygen species24. In neonate hippocampal develop-
ment, it has been demonstrated that microglia require the 
integrin CD11b (also a marker of classically activated mi-
croglia) acting on the immunoreceptor DAP12 to induce 
neuronal death25. The role of microglia has also been studied 
in retinal development.  Microglial activation is shown to 
correspond with a release of NGF which ultimately results in 
a signaling cascade that triggers apoptosis of cholinergic reti-
nal ganglion cells; this is possibly initiated through the inter-
action of NGF with p75NTR 20. Microglia rapidly proliferate 
in the spinal cord around E12/13 in rats, a time that precedes 
the elimination of motor neurons, of which 90% will un-
dergo apoptosis by E15. This delayed response to microglia 
and peripheral macrophages in the PNS represents a slightly 
different mechanism for regulation, in which the release of 
TNFα by early microglia primes the developing neurons for 
how they will respond to NGF later in development26.   
 Recent studies on the developing primate cortex 
have also implicated microglia populations in clearing neural 

precursor cellsa (NPCs). By genetically or pharmacologically 
blocking the activation of cortical microglia, an increase was 
observed in Pax6 and Trb2-positive NPCs. Conversely, in 
utero lipopolysaccharide (LPS) activation of microglia in the 
macaque monkey decreased the number of NPCs, suggesting 
that classically M1-like activated microglia are responsible for 
the decreasing pool of NPCs4. Microglia in the cortex can also 
provide neuroprotection. Developing cortical neurons, partic-
ularly in Layer V, require microglia-derived IGF1 as a trophic 
factor to maintain neuronal survival27. Microglia serve in an 
anti-inflammatory fashion by releasing regulatory factors such 
as NGF, brain derived neurotrophic factor (BDNF), neuro-
trophin-3 (NT3), glial derived neurotrophic factor (GDNF), 
and neurotrophic cytokines. Additionally, release of macro-
phage colony stimulating factor by microglia supports neu-
ron survival and neurite outgrowth in the developing cortex28. 
 Microglia dynamics matches developmental time 
points and microenvironments at which they are most need-
ed. Microglia are highly proliferative during development in 
order to clear the massive number of dying cells. The total 
number of PCNA+ (proliferating) microglia in rats has been 
shown to increase from 25% at E16 to almost 100% by P9 
and then microglial cell numbers remain relatively constant, 
with only locally and minimally observed apoptosis through-
out development29.  The influence of microglia on oligoden-
drocyte development is crucial. Microglia have been observed 
in high concentration in developing axon tracts at a time 
when oligodendrocytes are differentiating and myelinating 
neurons, suggesting they are important for instructing this 
developmental process30. Microglia have also been shown to 
direct axonal migration within these tracts and clear debris 
from degenerated or unused axons during axon guidance and 
synaptic pruning31. 

Microglia in adult neurogenesis 

Until seminal findings by Joseph Altman in the 
1960s, neuroscientists thought the brain ceased creating new 
neurons by the time of birth. Altman, and many others since, 
have shown that there are areas of active neurogenesis in the 
adult mammalian brain, which contain neural stem cells able to 
differentiate into neurons, astrocytes, and oligodendrocytes32. 
Similar to development, in any region where neurogenesis is 
continuously occurring, there will be associated cell death. 
Thus these two processes are intimately linked. Microglia me-
diate this linkage by controlling neurogenesis and respond-
ing appropriately to a loss of neurons (i.e. apoptosis, TBI).  
 Neurogenesis in the adult subventricular zone (SVZ) 
along the lateral ventricles results in GABAergic interneu-

a� Neural precursor cell: partially differentiated, usually unipotent cell that has lost 
most or all of the stem cell multipotency and has committed to neuronal fate.
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rons bound for the olfactory bulb. SVZ-born neuroblasts 
can either differentiate into olfactory bulb granule cells or 
periglomerular cells, depending on where they are born in 
the SVZ3. Doublecortin (DCX) positive neuroblasts migrate 
from the lateral ventricles to the olfactory bulb via the rostral 
migratory stream. Their continual birth and integration into 
the olfactory bulb circuitry and their survival are influenced 
by odor experiences, such as enriched odor exposure or odor 
discrimination learning33. Of the neuroblasts that migrate to 
the olfactory bulb, only 50% are integrated3. Microglia are 
responsible for clearing the neuroblasts that do not get inte-
grated; this occurs before they arrive at the olfactory bulb3. 
 The subgranular zone (SGZ) of the dentate gyrus of 
the hippocampus also creates new granule cells throughout 
life. Adult SGZ neurogenesis has been shown to be crucial 
for learning and memory tasks33. Recent evidence from Si-
erra, et al. has shown that excess newborn SGZ neurons in 
the adult hippocampus die within the first 4 days after birth 
and are cleared quickly and efficiently by resident microg-
lia. Remarkably, these microglia appear to be “unactivated” 
which is evident by their morphology. These microglia are 
ramified, and phagocytosis occurs in pouches on termi-
nal processes. This is in stark contrast to many studies that 
indicate that activation and the associated amoeboid mor-
phology are required for phagocytosis. This phagocytic abil-
ity does not diminish in aged animals or animals that have 
experienced prior acute inflammation34. Microglia are able 
to influence apoptotic neurons because SGZ NPCs express 
Toll-like receptors, which respond to cytokines released by 
microglia in order to alter their proliferation capability14. 
 The relationship between microglia and these neu-
rogenic zones has been elucidated in several in vitro studies. 
Both SVZ and SGZ NPCs form non-adherent proliferating 
neurospheresb in culture. These neurospheres lose their abil-
ity to be multi-potent over time in vitro and are less likely 
to become neurons after continued passaging. Co-culturing 
primary microglia with these neurospheres rescues this at-
tenuation in neural fate, suggesting that microglia residing in 
proliferative zones have a neuroprotective role keeping NPCs 
neurogenic, allowing for continued adult neurogenesis. In 
contrast, the normal loss of neurogenic activity matches the 
time scale of a decrease in microglia number caused by ag-
ing; the loss of microglia proliferation over time coincides 
with the observed decrease in neuroblasts born35. Several 
hypotheses have been formulated to explain this correlation 
between microglia and NPC differentiation during the late 
stages of neurogenesis. The loss could be a result of a termi-
nal symmetric division of proliferating precursor cells that 
produces two neurons at the end of development and thus 

b� Neurosphere: ex vivo primary cell preparation of non-adherent and proliferating 
progenitor cells

decreases the pool of NPCs36. Additionally, a surplus of stem 
cells can undergo apoptosis if they are not needed and culled 
by microglia at the end of development. It is also possible 
for these eliminated NPCs to have unknown defects that the 
microglia are able to recognize, leading to their specific clear-
ance. A final hypothesis is that the microglia are releasing 
trophic factors to support NPC proliferation. A decrease in 
microglial number or a change in their activation state may 
cause a decrease in supporting factors. Cells may naturally 
undergo phagocytosis if they are not receiving proper trophic 
support. It has been shown that some pruning of NPCs by 
microglia does not require cell death to occur first but sim-
ply requires the expression of calreticulin (CRT) on viable 
or apoptotic neurons. CRT signals microglia through lipo-
protein receptor-related protein (LRP), suggesting that these 
resident microglia can recognize and engulf healthy neurons 
before the intrinsic initiation of apoptosis and therefore have 
a much more complex role than simply clearing dead cells37.   
 Similar to developmental neurogenesis and the 
above described in vitro neurosphere studies, there also ap-
pears to be a decrease in the number of committed neuro-
blasts as an animal ages. The decreased number of neuroblasts 
in vivo could be explained by the attenuation of neural dif-
ferentiation or an increase in astrocyte promotion.  IL-6 and 
LIF release by microglia has been shown to promote astro-
cyte differentiation via JAK/STAT pathway38, similar to what 
is observed in development. Additionally, TGF-β is able to 
promote neurogenesis in NPC cultures suggesting that mi-
croglia are not simply pro- or anti-neurogenic, but regulate 
the careful balance of pro- and anti-inflammatory cytokines 
to control brain homeostasis39.  

Injury-induced inflammation and neurogenesis

Much of the research on the role of microglia in 
neurogenesis is conducted in models of brain injury or dis-
ease, which cause increases in pro-inflammatory cytokines or 
pathogens. In contrast to the developmental role of microglia, 
pro-inflammatory microglia are detrimental to neurogenesis. 
LPS activated microglia can instruct apoptosis by secreting 
TNFα, which promotes activation of BH-3 family member 
Puma via the NFκB pathway40. Blocking NFκB not only fails 
to activate Puma, but also causes an increase in survival of 
NPCs in an otherwise pro-inflammatory environment. Pro-
inflammatory cytokines such as TNFα and IFNγ inhibit 
NPC proliferation in addition to NPC migration in models of 
brain inflammation13.  The complete opposite effect observed 
between the response to IL-6 by NPCs in the SGZ and SVZ 
after hypoxia and ischemia injury exemplifies the complete 
dependence of microglia on type of activation and environ-
mental specificity41. Additionally, IL-4-activated microglia 
showed a predisposition to cause oligodendrogenesis; in con-
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trast, the IFNγ activated microglia showed a bias towards di-
recting neurogenesis42 LPS- or IL1B-induced inflammation 
is detrimental to neurogenesis in the adult hippocampus; 
however activation of neuroprotective microglia and phar-
macological anti-inflammatory treatment rescues this loss43. 
 During times of brain inflammation, microglia are 
not just able to remove detrimental pathogens or dead cells 
and release pro- or anti-inflammatory cytokines. They also 
respond to attractive chemokines that guide them toward 
NPCs, aiding in the replenishment of neurons in an injured 
region44. The chemokine CXCL10 expressed in neurons in 
response to brain injury can activate microglia via CXCR. 
For example, the migration of microglia after entorhinal cor-
tex lesion to damaged and inflamed brain regions is impaired 
in CXCR3 deficient mice7,45. A lack of migration would lead 
to a pro-inflammatory environment in the injured area, re-
sulting in a reduction of new NPCs attracted to the injury 
site. 

Alternative mechanism – are microglia the only cells at 
work?

This review focused on the plethora of data on the 
role of microglia in neurogenesis in both the developing and 
adult brain. Recent evidence has shown that macrophages 
and microglia are not the only cell type able to engulf dead 
cells. Satellite glial precursors in dorsal root ganglia can engulf 
apoptotic neurons during development to avoid detrimental 
necrosis and autoimmunity. A novel engulfment receptor, 
Jedi-1/PEAR1 is activated by eat-me signals to promote cy-

toskeletal rearrangement and clathrin-mediated endocytosis 
necessary for phagocytosis by satellite glial precursors46-47. 
Jedi-1, which was first discovered on macrophages, has been 
shown to possibly regulate macrophage/myeloid differentia-
tion48. In the central nervous system, DCX+ NPCs have been 
shown to engulf apoptotic NPCs during both SVZ and SGZ 
adult neurogenesis. This engulfment is tightly linked to effi-
cient neurogenesis. Blocking NPC engulfment by Annexin5 
in vivo (binds to and blocks PtS) significantly decreases neu-
rogenesis. These NPCs were shown to engulf dead NPCs that 
had been injected into the proliferative zones in vivo. This 
engulfment is mediated through unknown receptors acting 
through the adaptor ELMO; ELMO knockout mice show 
lower levels of neurogenesis49. Further elucidating the role of 
NPCs in neuroinflammation has potential therapeutic value. 
Several groups have shown the efficacy of transplanted NPCs 
in ameliorating T-cell activation and inflammatory signaling 
in immune cells and their protective effects from degenera-
tion and promotion of regenerative immunological proper-
ties50-52. 

Clinical significance

The failure to clear cells that are undergoing apop-
tosis has pathological implications. Deficits in clearance lead 
to inflammation and a loss of neurogenesis, which has neu-
ropathological implications, such as neurodegenerative dis-
eases, depression, and anxiety32. Selective serotonin reuptake 
inhibitors (SSRIs) have been shown to ameliorate depression-
like phenotypes by increasing adult neurogenesis.  SSRIs, as 

Figure 1. Microglia have multiple functions in the 
brain to regulate neurogenesis. Microglia can detect 
pro-inflammatory cytokines, such as TNFa, IL-
6, IL-1, and INFg. LPS or other pathogens can 
activate Toll-like receptors to mediate an inflam-
matory response. Often these cause the microglia 
to release factors such as IL1b, nitric oxide, NGF, 
BMPs to initiate apoptosis of neurons.  Anti-in-
flammatory cytokines, such as TGFb, IL-4, IL-10, 
and IL-13 cause microglia to instruct differentia-
tion of precursors as well as promote the survival 
of these precursors. Chemokines released from dy-
ing cells can cause activated microglia to migrate 
to area of injury or cell death. Apoptotic cells ex-
press PtS, which may bind to receptors such as Jedi 
or MEGF10 to promote phagocytosis.
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well as drugs that block inflammation, have proven to be 
promising drug candidates to counteract the microglial ac-
tivation that often inhibits neurogenesis16,53-54. While the 
mechanisms by which SSRIs counteract depression and 
contribute to an increase in neurogenesis are largely un-
known, one may hypothesize that SSRIs are able to act on 
microglia in a way that leads them to become less inflam-
matory and more pro-neurogenic.  A more complete under-
standing of the mechanism by which microglia may instruct 
these pathologies will surely aid in our treatment options.  
 Whether cleared by microglia, NPCs, or traditional 
macrophages, the elimination of apoptotic or otherwise un-
needed neurons is crucial to maintain brain homeostasis. 
Microglia are strategically positioned throughout the de-
veloping and adult brain to quickly and efficiently remove 
pathogens or dead cells, instruct developmental apoptosis, 
and to promote the survival of developing neurons that are 
needed for normal brain function. 
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The Involvement of Superior Colliculus Neurons in Multisensory 
Processing and Orientation Behaviors
LeAnne R. Kurela 
We are constantly bombarded with cues from our external environment in numerous sensory modalities. In order 
to properly perceive and interact with this environment, our brain must integrate this sensory information. While 
neurons located in various brain areas display this ability, the most-studied are located in the superior colliculus 
(SC), a highly conserved midbrain structure involved in both multisensory integration and orienting behaviors. 
Populations of neurons within the intermediate and deep layers of the SC have been separately studied for their 
roles in multisensory integration and saccade generation, however little research has explored the communication 
between the two systems. Previous studies have shown that multisensory stimuli increase accuracy and decrease 
reaction times of saccadic eye movements. However, evidence of a sensorimotor transform, an interaction between 
the sensory and motor systems to influence behaviors, remains controversial. Study of the neurophysiological un-
derpinnings of multisensory integration and its role in saccade generation to multisensory targets is an important 
step in the determination of how sensory stimuli transform into the perception of, and interaction with, external 
events.

multisensory, superior colliculus, electrophysiology, cat, primate, saccadeKeywords

 The world is filled with sensory signals from mul-
tiple sensory modalities. In order to fully perceive this world, 
the brain must have the ability to process these sensory sig-
nals in conjunction with one another and integrate them to 
develop one single percept of the surrounding environment. 
Research into the phenomenon of multisensory integrationa 
examines how these different sensory signals converge and are 
integrated by the nervous system, an imperative process for 
daily functioning. Multisensory processing is more efficient 
than individual sensory processing and is critical for everyday 
events. For example, the ability to understand speech in a 
noisy environment is aided by the visual information gained 
when concurrently viewing the face of the speaker1. Humans 
have greater accuracies and faster reaction times to multimod-
al stimuli compared to unimodal stimuli and the presence of 
a sound can change the perception and interpretation of am-
biguous stimuli2-5. These behavioral benefits of multisensory 
integration are crucial for normal perception of and interac-
tion with the external environment and dysfunction of such 
integration has been implicated in developmental disorders 
including those of the autism spectrum (ASD) and dyslexia6-9.  
 It was historically accepted that input from each sen-
sory modality is individually processed, converging only in 
higher-order cortical regions. It is now understood that this 

a� Multisensory integration: the ability to combine information from multiple 
sensory modalities in order to guide behavior

is not the case; convergence of sensory input occurs much 
earlier, at the single neuron level, in both early cortical and 
subcortical areas. These areas include primary sensory cor-
tices10-11, thalamic nuclei12, the superior temporal sulcus 
(STS)13 and ventrolateral prefrontal cortical (VLPFC) re-
gions14 in the primate as well as thalamic nuclei15, anterior 
ectosylvian sulcus (AES) and rostral lateral suprasylvian cor-
tex (rLS)16-17 in the cat. One subcortical structure in which 
a multitude of multisensory research has been carried out is 
the SC, an area important in both sensory processing and 
orientation behaviors.
 
Multisensory integration in the SC

The study of multisensory integration has historical-
ly taken place within the SC of the cat. This is advantageous 
due to the amount of multisensory neurons within the struc-
ture; over 50% of the neurons found in the SC are respon-
sive to multisensory stimuli18-19. However, much research is 
now conducted in non-human primate models, as the SC is 
conserved across these species and also contains multisensory 
neurons (Figure 1). A laminated structure, the SC is com-
prised of seven layers20-21. Based on morphology, connections 
and physiological properties, these can be divided into two 
functional zones: superficial and intermediate/deep. While 
the superficial layers are thought to be responsive to and re-
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ceive inputs from only visual areas22-23, the deep layers are the 
site of multisensory convergence, receiving inputs from visu-
al, auditory, somatosensory and motor-related brain regions.  
 Neurons found within the deep SC layers are di-
verse both in size and inputs received24. Sensory inputs 
arise from visual25-27, auditory28-30, and somatosensory31-32 
brain areas while premotor neurons in the SC collect in-
put from various motor-related structures33-35. Information 
received from these various regions form sensory topog-
raphies as determined by the receptive fieldsb (RFs) of the 
modality-responsive neurons, forming modality-specif-
ic maps that extend throughout the deep SC36-38. These 
topographic maps converge to form multisensory maps 
when cells respond to more than one sensory modality.  
 The overlap and interactions of these RFs contrib-
ute to the behavioral role of the SC in localization of sen-
sory stimuli and orientation behaviors39. Previous studies 
report that SC-mediated eye movement orienting behav-
iors are facilitated under multisensory conditions, which 
is apparent via improvements in speed and accuracy of 
responses40-41. The loss of proper SC action results in defi-
cits in normal responses and orientation behaviors42-43. 
The multisensory integration required for this improve-
ment in behaviors occurs within individual neurons, fol-
lowing specific coding properties and principles by which 
information is integrated from various sensory modalities.  
 Particular combinations of stimuli are more or less 
salient than others, inducing neuronal responses that are in-

b� Receptive field: a region in which the presentation of a stimulus alters neuronal 
firing 

creased or decreased relative to unisensory responses. Multi-
sensory SC neurons exhibit these enhancementsc  and depres-
sionsd in response to combinations of sensory stimuli, and 
these response changes are central in guiding localization and 
orientation behaviors. Multisensory neurons in the SC can be 
divided into two classes: overte and modulatoryf. Both of these 
cell types engage in multisensory enhancement and depression 
in response to multimodal stimuli. This enhancement and de-
pression of activity occurs based on the characteristics of the 
sensory stimuli presented. The characteristics and their subse-
quent influence on responses from multisensory SC neurons 
are captured in three principles of multisensory integration.  
 In order to properly perceive external events, the 
brain is required to determine which stimulus presenta-
tions are related to one another and which are not. Multi-
sensory neurons use specific stimulus-related factors to make 
this determination, and these factors are explained in three 
principles of multisensory integration. The first is the spatial 
principle, in which a strong relationship is seen between the 
spatial proximity of presented stimuli to one another and the 
interactions that result in their combination; the closer two 
stimuli are in space, the more likely the multisensory stimu-
lus results in neuronal response enhancement44. Conversely, 
spatially disparate stimulus presentations are more likely to 
result in response depressions. For example, when both a vi-
sual and an auditory stimulus are presented in spatial coin-
cidence within a neuron’s RF, the input is likely to produce 
a response enhancement. If, however, an auditory stimulus 
is presented within a neuron’s RF and a visual stimulus is 
presented outside of the RF, a response depression is likely to 
occur. The temporal principle, similar to the spatial principle, 
explains that the largest gain from a multisensory stimulus 
presentation results when stimuli are in close temporal align-
ment45. A large temporal disparity has the ability to change a 
response enhancement into a response depression. The third 
principle, the principle of inverse effectiveness, states that the 
weaker the individual unisensory stimuli are in eliciting a 
neuronal response, the larger the gain in response magnitude 
from the combination of stimulus presentations46. As the ef-

c� Response enhancement: response to a multisensory stimulus is statistically 
greater than the best unisensory response

d� Response depression: response to a multisensory stimulus is statistically lower 
than the best unisensory response

e� Overt neuron: neurons that show observable responses to more than one 
sensory modality 

f�  Modulatory neuron: neurons that show overt responses to one dominant 
sensory modality but have their responses modulated by the presentation of a 
sensory stimulus of a second modality

Figure 1. Distribution of sensory and motor neurons in the intermediate/
deep SC layers of the primate. Motor, sensory and sensorimotor cells are 
all found in this location. V: visual-responsive; A: auditory-responsive; 
S: Somatosensory-responsive; M: motor-responsive (adapted from 64, 
77, 82,83).
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fectiveness of the individual unisensory stimuli increases, the 
gain in response from the multisensory stimulus decreases. 
These principles depict but a few of the factors that influence 
multisensory integration. Low neuronal spontaneous activ-
ity47-48, proper sensory input from cortical regions49-53 as well 
as sensory experience54-56 are all critical for proper multisen-
sory integration to occur in the SC. Multisensory integration 
is one of the key functional characteristics of neurons within 
the intermediate/deep SC; however it is not the only vital 
role. Some neurons within this structure are also critical for 
the generation of saccadesg.

 
SC involvement in saccadic eye movements

 The generation of saccades requires the actions of 
many types of neurons, and some of these important neurons 
are located in the SC. Like multisensory neurons, saccade-
related burst neurons and fixation neurons are found within 
the intermediate/deep layers of the SC, located more dorsally 
in this zone than the multisensory neurons57. Saccadic eye 
movements are represented in an orderly topographic map; 
fixation-related neurons are found at the most rostral pole58-

59. Saccade-related burst and buildup premotor neurons en-
coding large movements are found in the caudal SC while 
those encoding small saccades are found more rostrally60. 
Fixation and saccade-related neurons are implicated in dif-
ferent steps important for saccade generation61-63. Fixation 
neurons are associated with the suppression of saccades via 
excitatory connections with neurons in the brainstem (Fig-
ure 2)58,64-65. Following the presentation of a signal to initiate 
a saccade, buildup premotor neurons in the SC exhibit re-
sponse activity, increasing in their response as the generation 

g� Saccade: an accurate, fast movement of the eyes in the same direction, used to 
precisely control gaze

of the saccade nears (Figure 2)59,64. These buildup neurons are 
involved in saccade preparation, exhibiting activity related to 
saccades of specific amplitude and direction59,64. At the time 
of buildup neuron activity increase, discharge rate of the fixa-
tion cells diminishes in anticipation of eye movement gen-
eration58. SC burst neurons begin to discharge closer to sac-
cade initiation, producing a burst of activity approximately 
25ms prior to the initiation of a saccade (Figure 2)59,64. The 
start of burst cell activity correlates with the termination of 
activity from fixation neurons, releasing inhibition and al-
lowing for the movement of the eyes58,64. Proper activity of 
these cell types is imperative for normal saccadic eye move-
ments, and this activity is not dependent upon intrinsic con-
nections with neurons in the superficial layers of the SC66.  
 Approximately 28% of neurons within the inter-
mediate/deep SC discharge prior to a saccade (Figure 1)64. 
Neuronal populations discharge immediately before saccadic 
eye movements of specific distance and direction67-69 and 
stimulation of these SC neurons evoke eye and head move-
ments70-73. Neurons within the intermediate layers of the SC 
display activity necessary for regulating the production of 
saccadic eye movements, and the inactivation of these cells 
results in changes in speed, duration, frequency and trajec-
tories of those movements2,75. Saccadic eye movements vary 
according to the sensory modality of the target; therefore, 
multisensory targets affect the dynamics of saccades2-5,40-41.

Sensory-motor interactions within the SC
 

Saccades to multisensory targets are faster than those 
to unisensory targets2. It has been shown that saccades to au-
diovisual targets have the precision of visual saccades and the 
shorter latency of auditory saccades4,41. Additionally, spatially-
aligned stimuli evoke the shortest reaction times in both non-

Figure 2. Neuronal spiking patterns of SC motor-related 
cells prior to saccade initiation. 0 ms: onset of saccadic eye 
movement (adapted from 58, 59, 64). 
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human primate models40 and humans76. The presentation of 
an audiovisual target in temporal and spatial coincidence in-
creases motor-related bursts in saccade-related burst neurons, 
supporting the idea that saccade-related neurons also have 
sensory processing abilities (Figure 1)75,77-81. While the same 
neuron can show both sensory and motor responses, the small 
amount of research focused on determining an interrelation-
ship between the two response types has been conflicting.  
 Based on behavioral evidence, there may be an inter-
action, a sensorimotor transform, occurring between the sac-
cade generation and sensory integration systems within the 
SC. However, little physiological research has been published 
to show this interaction. Intrinsic circuitry connecting motor 
neurons and multisensory neurons within the same layers has 
not been shown, and there is little research describing the 
interaction between sensory and motor responses within the 
same neurons. Future work in this field must involve exami-
nation of the physiological properties of individual sensorim-
otor cells within the SC to determine if there is an interaction 
between the sensory and motor activity that transforms the 
output of the cell and influences behavior. Likewise, much 
work is required to determine if the firing properties of mul-
tisensory neurons within the SC affect motor neurons in or-
der to command gaze and saccadic movements to environ-
mentally-relevant, multisensory targets. 

Conclusion

Multisensory integration is an imperative process 
necessary for normal perception of external events. Integra-
tion of multimodal sensory inputs occurs at the individual 
neuron level and these neurons follow specific principles for 
integrating the input of multiple sensory modalities. Mul-
tisensory neurons are found in various brain areas and are 
highly prevalent within the SC. The SC is also involved in 
the generation of saccadic eye movements and it has been 
shown that these eye movements occur faster and more ac-
curately with the presentation of multisensory compared to 
unisensory targets. This is ethologically relevant and advanta-
geous; more salient events result in an orienting movement 
more often than less salient events. However behaviorally ad-
vantageous, little physiological evidence has been published 
to support the interaction of the saccadic and multisensory 
integration systems within the SC. Understanding the neuro-
physiological underpinnings of multisensory integration and 
its potential role in saccade generation to multisensory tar-
gets within the SC is crucial to determine if sensory stimuli 
transform into a perception of and interaction with external 
events. Comprehension of how this occurs normally is the 

first step to uncovering how these mechanisms are impaired 
in dysfunctional systems and finding methods or treatments 
to resolve the behavioral deficits caused by the inability to 
properly interact with the world due to deficits in multisen-
sory integration.

Further Information: http://kc.vanderbilt.edu/multisen-
sory/
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Redox Sensors as Regulators of Mitophagic Signaling: Novel 
Targets of Therapy for Ischemic Stroke
Britney N. Lizama-Manibusan

Depletion of oxygen and glucose during cerebral ischemia results in increased intracellular reactive oxygen species 
(ROS) formation and decreased levels of ATP. If these events proceed unchecked, neuronal death can occur within 
minutes and the inflammatory cascades surrounding the ischemic core can continue to promote death for days to 
weeks. Neurons have evolved strong adaptive features whereby mild ischemia promotes biochemical modifications 
such that cells are ‘primed’ to survive subsequent stresses. Surprisingly, activation of signaling pathways commonly as-
sociated with degeneration, including the production of ROS and activation of caspases1, 2 are required for the prim-
ing event to occur yet these stressful stimuli are held in check. Based on these preconditioning studies, as well as other 
research, we have increasingly come to understand that ROS do more than simply injure cells, but are also capable of 
activating proteins and transcription factors with essential roles in neuronal survival. Moreover, several redox-sensitive 
signaling pathways have been associated with the autophagic clearance of mitochondria, a process termed mitophagy, 
which can also lead to neuroadaptation by removing these injured organelles. This review will highlight the ways in 
which ROS act as discrete signaling molecules to activate pathways guiding mitochondrial dynamics and mitophagy 
that can promote cell survival following ischemic stress.

antioxidants; HIF1α; mitochondria; mitophagy; p66shc; PINK1; reactive oxygen speciesKeywords

 Ischemic stroke encompasses 87% of all strokes in 
the United States and is the fourth most common cause of 
death in the country3. It is also the leading cause of long-term 
disability in adults3. During an ischemic stroke, a plaque or 
clot in a blood vessel results in loss of oxygen and glucose to 
the areas of the brain the vessel normally supplies causing 
neuronal excitotoxicity characterized by excessive glutamate 
release and hyperstimulation of NMDA receptors4. Once the 
plaque or clot has been removed or dissolved, re-introduction 
of oxygen promotes a second wave of ROS generation5. 
 While prolonged ischemia is clearly damaging to 
neurons, strong evidence suggests that transient ischemic at-
tack (TIA) prior to a more severe ischemic event can be neu-
roprotective6. This phenomenon, coined “ischemic precon-
ditioning”, can be elicited by a number of subtoxic stressors 
in addition to ischemia. Models of cerebral preconditioning 
share key features including: new protein synthesis, induc-
tion of heat shock proteins, activation of mitochondrial KATP 
channels and spatially and temporally limited activation of 
caspases6. We have increasingly come to appreciate that sig-
naling pathways commonly associated with apoptosis and 
cell death can also be triggered during non-lethal, precondi-
tioning events.
 Our working model of preconditioning suggests 
that ROS function as spatially- and temporally-controlled 

signals, and while we have identified a variety of redox-sen-
sitive molecules that contribute to protection, we still un-
derstand little regarding the role these molecules have on 
essential cellular processes including protein and organelle 
degradation. We hypothesize that the number and health of 
neuronal mitochondria plays an essential role in determin-
ing if neurons are preconditioned to withstand subsequent 
injury. This review focuses on the mechanisms by which neu-
rons integrate energetic, and redox stress signaling to elicit 
engulfment of mitochondria in a process referred to as ‘mi-
tophagy’ and how these events determine neural cell fate. 

Reactive Oxygen Species in Neurons

The Double-Edged Sword of Aerobic Respiration 
 Eukaryotic cells rely on mitochondria for efficient 
generation of energy through the Krebs cycle and the electron 
transport chain (ETC). Indeed, eukaryotes contain an average 
of one billion ATP molecules, which turn over approximately 
three times per minute7. The central nervous system (CNS) 
relies heavily on aerobic respiration for ATP production as 
the brain utilizes over 20% of total oxygen respired, as well 
as 0.3-0.8 μmol of glucose per gram of weight per minute 
(μmol/g/min)8, producing approximately 25-32 μmol/g/min 
of ATP. Notably, nearly 50% of this pool is required to main-
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tain cellular ion homeostasis alone, thus underscoring the es-
sential efficiency of ATP production by active mitochondria.  
 While production of energy-rich ATP by aerobic 
respiration is adaptive, it also produces free oxygen and ni-
trogen radicals. Not surprisingly, mitochondria produce the 
majority of ROS within neurons and approximately 3% of 
oxygen used for respiration captures electrons inefficiently 
resulting in the generation of superoxide anions9. Mitochon-
dria are densely packed in dendrites and axon terminals and 
neurons have higher oxidative metabolic demands than glia 
and other cells within the CNS10, 11. Neurons continuously 
undergo biogenesis, fusion and fission of new mitochondria, 
and alterations in these pathways are associated with a host of 
neurological diseases11-13.

Neurons Maintain a Highly Reducing Intracellular Environ-
ment to Combat ROS 
 One of the major ROS is superoxide anion (O2

−_), 
which is generated by electrons that escape the ETC through 
Complex I and Complex III and are transferred directly to 
oxygen14-17. Although O2

−__exhibits high reactivity; it is of-
ten short-lived and spontaneously dismutates to less reactive 
hydrogen peroxide (H2O2) with a rate constant of 8x104 M-

1sec-1. Alternatively O2
−__can be enzymatically neutralized by 

superoxide dismutases18. Hydroxyl radicals (_OH), which 
are the most reactive oxygen radical known, are generated 
through reactions of metal ions with H2O2 or through fission 
of the oxygen bonds in H2O2. Hydroxyl radicals react almost 
immediately and indiscriminately with nearby molecules9. In-
deed, these ROS are rabid electrophiles and remove electrons 
from proteins, DNA, and fatty acids9. Neurons have evolved 
a series of highly potent means to spatially and temporally 
regulate ROS. Glutathione (GSH) is the most abundant an-
tioxidant, with concentrations reaching up to 18 nmol/mg of 
total protein in neurons19, and directly reduces hydroxyl radi-
cals and superoxides. During the process of reducing ROS, 
GSH is oxidized into glutathione disulfide (GSSG), and 
subsequently reduced back to GSH via glutathione reduc-
tase. The CNS sustains a higher GSH pool by increasing sur-
face expression of the cysteine/glutamate exchanger (xCT), 
thereby increasing the availability of cysteine, which is the 
rate-limiting reagent in synthesizing GSH intracellularly20.  
 Glutathione synthesis is energy dependent and in-
volves two closely linked, enzymatically-controlled reactions. 
First, the amino acids glutamate and cysteine are combined by 
γ-glutamylcysteine synthetase. Next, GSH synthetase com-
bines γ-glutamylcysteine with glycine to generate glutathione. 
Glutathione recycling is catalyzed by glutathione disulfide re-
ductase, which uses reducing equivalents from NADPH to re-

convert GSSG to 2GSH. As glutathione accumulates, it pro-
vides a negative feedback cue to limit further GSH synthesis21. 
All of these reactions require ATP either directly or indirectly21.  
 The thioredoxin (Trx) proteins are present at intra-
cellular concentrations of approximately 100 to 1000-fold 
less than GSH, but these proteins are also highly potent re-
ducing agents22. Like GSH, Trx contains an oxidizable di-
thiol active site. Each member of the Trx family maintains 
specific intracellular localization to control local ROS flux.  
 Trx-1 is exclusively localized in the cytosol and nuclei, 
whereas Trx-2 is located solely within mitochondria. Trx pro-
teins demonstrate rapid responses to specific stressors, such as 
H2O2, hypoxia and radiation23-26. Trx-1 translocates from the 
cytosol to the nucleus when its dithiol residues are oxidized 
where it can then regulate transcription factors such as hy-
poxia inducible factor 1 (HIF1), NF-κB, and p5327, 28. Trx-2, 
on the other hand, reduces H2O2 in mitochondria and is able 
to interact directly with members of the ETC, in addition 
to regulating the mitochondrial permeability transition pore 
(mPTP)a29 where strong evidence suggests that altering Trx 
levels promotes mPTP-dependent release of cytochrome c30. 
 Other proteins, such as the superoxide dismutase 
(SOD) family of enzymes and catalases, act as neuronal anti-
oxidants, but are less abundant. These enzymes utilize metal 
ion co-factors to reduce O2

−_ into H2O2 and oxygen mole-
cules and also demonstrate unique intracellular distribution 
and function. The copper/zinc SOD (CuZnSOD) is primar-
ily cytoplasmic, while manganese SOD (MnSOD) is located 
within the mitochondria31. Overexpression of either of these 
antioxidant proteins decreases both infarct size and tissue 
damage in animal models of ischemia32 and mutations in the 
SODs have been linked to familial forms of ALS33, 34. While 
the SOD enzymes utilize a metal ion co-factor, catalases uti-
lize a heme group to reduce small molecules such as H2O2 
and are particularly active within peroxisomes. In contrast to 
other antioxidant enzymes, very little catalases are active in 
mitochondria; thus H2O2 generated by mitochondria must 
diffuse to peroxisomes to be cleared in this manner35. In sum, 
by maintaining spatially localized antioxidant defenses, neu-
rons can efficiently respond to increases in ROS.
 
ROS as Modifiers of Protein Structure and Function 
 Although ROS are often associated with DNA, pro-
tein, and lipid damage as well as cell death, it has increasingly 
become appreciated that they may also act as important mol-

a� The mPTP is a multi-protein complex that is gated by free nitrogen and 
oxygen radicals and controlled by pro- and anti-apoptotic proteins. Regulation 
of mPTP activity is poorly understood given that the components of neuronal 
mPTPs have not all been identified. 
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ecules for neuronal signaling36-38. ROS can reversibly modify 
specific amino acid residues to alter the structure and function 
of target proteins, which is akin to other post-translational 
modification mechanisms. For example, amino acid oxida-
tion can influence the strength of protein-protein interaction 
and binding, alter the subcellular localization of a protein, or 
confer new properties and binding partners39. In addition, 
much like protein conformation determines the availabil-
ity of a domain to be phosphorylated, amino acid structure 
and exposure determine the susceptibility of a protein to be 
modified by ROS. For example, proteins with exposed thiol 
groups, such as cysteine and methionine, are most easily oxi-
dized by ROS due to the potent nucleophilic nature of thiols, 
and these oxidized thiol groups often proceed to form thiyl 
radicals or disulphides9. We speculate that localized ROS in 
neurons, specifically those produced by mitochondria, can 
modify redox-sensitive proteins to confer new functions re-
lating to mitochondrial clearance and contributing to cell 
fate decisions during ischemic stress. 

Controlled Clearance of Damaged Mitochondria through 
Mitophagy

Overview of Mitophagic Signaling 
 In the last five years, the role of autophagy – the 
controlled process of intracellular “self-eating” – has been 
show to play a critical and previously unappreciated role in 
neurodegeneration. During autophagy, signaling molecules 
called autophagy-related proteins (Atgs) initiate recruitment 
and formation of lipid bilayer vesicles (autophagosomes) that 
engulf targeted intracellular organelles and upon fusion with 
lysosomes, result in component degradation. Both neurons 
and glia undergo baseline autophagy essential for cell homeo-
stasis40, 41. Therefore, perturbations in autophagic proteins 
can promote aberrant death that is most profound in CNS42, 

43. Defects in mitophagy, in particular, have been linked to 
Parkinson’s disease (PD) as animals with inherited mutations 
in PD genes have altered mitochondrial dynamics, cellular 
respiration, mitochondrial fission, fusion and mitophagy44.  
 In spite of these compelling data, we have yet to 
develop a full understanding of the events which cause mi-
tochondria to be engulfed and how endogenous signals like 
energetics and ROS combine with fusion and fission pro-
teins to promote or halt mitophagy. We hypothesize that 
local, subcellular cues are essential to determining neuronal 
fate, and that under conditions of extreme ROS formation 
or energetic stress there are redundant opportunities for mi-
tochondria to be recycled via mitophagy prior to neurons 
undergoing whole-scale autophagy. In support of this hy-
pothesis, increasing GSH levels in yeast have been shown to 
inhibit mitophagy during glucose starvation, while not af-
fecting overall rates of cellular autophagy. This suggests that 
mitophagy relies on redox-sensitive signaling elements45.  
 Our understanding of the role of genetic mutations 
and cell-specific signaling including those related to mito-
chondrial function is guided by the PD literature. Mutations 
in two genes – PARK2 and PARK6 – are associated with 
early onset familial PD, and the protein products of these 
genes are now widely recognized regulators of mitophagy46. 
The product of the PARK6 gene is PTEN-inducible puta-
tive kinase-1 (PINK1), which is a serine-threonine kinase 
that is sequence-targeted to mitochondria. In healthy mi-
tochondria, PINK1 is cleaved by proteases residing in the 
inter-membrane space and matrix and is targeted for degra-
dation via the proteasome47. When mitochondria are stressed 
or damaged, mitochondrial membrane potential decreases 
– or depolarizes – thus reducing the activity of proteases 
such as PARL48. Depolarization thereby stabilizes PINK1 
in the outer mitochondrial membrane49, allowing PINK1 
to phosphorylate target proteins via its kinase domain50.  

Figure 1. PINK1 and p66shc rapidly sense mitochondrial redox status and 
initiate mitophagy. In healthy cells, PINK1 is cleaved and degraded via 
the proteasome. During hypoxia, mitochondria become depolarized, 
produce ROS, and decrease ATP output. PINK1 stabilizes on the outer 
membrane of damaged mitochondria and recruits Parkin, initiation LC3 
recruitment and mitophagy. p66shc, a redox-sensitive kinase, also rapidly 
localizes to stressed mitochondria, where it can regulate ROS levels and 
autophagy. Through these rapid sensors of ROS and mitochondrial 
health, mitophagy may be initiated duringischemic stress to enhance 
neuronal survival by removal of compromised mitochondria. 
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 One of the known targets of PINK1 is the protein 
product of the PARK2 gene, Parkin, which functions as an 
E3-ubiquitin ligase. Recruitment of Parkin to mitochondria 
through PINK1 signaling is known to initiate mitophagy by 
activation of the mammalian homologue of Atg8, microtu-
bule-associated protein 1A/1B-light chain 3 (LC3)51 (sum-
marized in Figure 1). Thus, the ability of PINK1 to recog-
nize stressed mitochondria is crucial to the clearance of these 
damaged organelles by mitophagy. 

Induction of Mitophagy During Ischemic Stress 
 Decreases in ATP and increases in ROS are mito-
chondrial events that are linked to neuronal mitophagy in 
both ischemia and PD based on genetic and biochemical 
data.  In the context of preconditioning, mitophagy may 
be especially important, as clearance of compromised mi-
tochondria following mild stress may promote a previously 
unappreciated form of neuroprotection, culling damaged mi-
tochondria and leaving behind those most poised to survive 
subsequent stressors. 

PINK1 & Parkin are Primary Initiators of Mitophagy 
 Given that PINK1 acts as a modulator of mito-
chondrial dynamics, and mutations in PINK1 are noted in 
PD, several in vivo and in vitro models of Parkinson’s dis-
ease utilize mitochondrial uncouplers and ETC inhibitors 
to induce oxidative stress in dopaminergic neurons52. Func-
tional PINK1 has been consistently shown to regulate mito-
chondrial dynamics in these models. For instance, neurons 
expressing a PINK1-kinase domain mutant exhibited simi-
lar mitochondrial morphology and function as wild-type 
(WT) PINK1 at baseline52. However, when stressed with 
the mitochondrial uncoupler carbonyl cyanide m-chloro-
phenyl hydrazone (CCCP), neurons expressing mutant 
PINK1 exhibited greater oxidative stress and abnormal mi-
tochondrial morphology indicative of damage and energetic 
dysfunction. Additionally, PINK1 depletion causes both 
inefficient calcium uptake and ATP production, which es-
pecially under high-energy demand, causes mitochondrial 
dysfunction which cannot be rescued by PINK1 mutantsb53.  
 Ischemia in cardiomyocytes has been shown to be 
a potent means to induce PINK1-Parkin signaling and mi-
tophagy and protection against subsequent stress54. In these 
studies, Parkin-KO mice were preconditioned with transient 

b� Complete depletion of PINK1 in knockout (KO) animals, although not 
embryonic lethal, induces phenotypes consistent with PD pathophysiology, 
including progressive loss of dopaminergic neurons in the substantia nigra and 
motor function deficiency. In contrast, however, Parkin KO animals do not exhibit 
overt pathophysiological phenotypes, suggesting that compensatory mechanisms are 
involved to overcome loss of Parkin.

ischemia, followed by subsequent treatment with a more se-
vere ischemic stress. Preconditioned WT mice exhibited re-
duced infarct sizes, yet preconditioned KO mice were found 
to have similar infarct sizes to that of naive mice54. This sug-
gests that functional Parkin is necessary for cardiac ischemic 
preconditioning in vivo and that the mitophagic pathway may 
contribute to a neuroprotective phenotype. However, the in-
vestigators did not address PINK1 stabilization and upstream 
events at the mitochondria to allow Parkin recruitment.  
 While these studies are intriguing, they do not ad-
dress the failure of Parkin KO animals to exhibit overt phe-
notypes related to neuronal and motor function loss, as seen 
in PINK1 KO animals. However, because key features of 
cardiac ischemic preconditioning are recapitulated in cere-
bral ischemic preconditioning, we hypothesize that PINK1/
Parkin-mediated mitophagy is critical to determining neuro-
nal fate in response to ischemia.
 
The Redox-sensor, p66shc, is Essential for Neuroprotection and 
Mitochondrial Dynamics 
 While PINK1 localizes to mitochondria via its 
mitochondrial targeting sequence, one of the earlier redox-
sensitive proteins discovered – p66shc – becomes modified 
in response to oxidative stress and localizes to mitochondria 
upon activation. p66shc is a serine kinase belonging to the 
ShcA family of proteins, which are adapter proteins studied 
extensively in cell signaling and exist in three isoforms – p46, 
p52, and p6655. p66shc is unique in that it contains a glycine 
and proline-rich second collagen homology domain (CH2), 
allowing it to sense oxidative imbalance56. Phosphorylation 
within the CH2 domain, as well as reversible oxidation of 
cysteine 59 in the same domain, alters p66shc conformation, 
promoting its redox activity. An additional modification that 
promotes p66shc redox sensitivity is phosphorylation of serine 
36 by protein kinase C-beta (PKC). This phosphorylation 
event allows rapid relocalization of p66shc from the cytosol 
to mitochondria57. Indeed, PKC activation is a well-appre-
ciated event in ischemic signaling and neuronal cell fate58. 
 While the mechanisms that aid in interaction with 
the ETC remain elusive, once at the mitochondria, activated 
p66shc oxidizes cytochrome c to promote H2O2 production 
and impair calcium buffering59. Our group has found that 
p66shc is a critical mediator of energetic tone and autophagy 
in neuronal ischemic preconditioning. When p66shc is in-
hibited, neurons contain higher concentrations of oxidized 
lipids and exhibit increased autophagosome formation60. Ad-
ditionally, inhibition of p66shc results in failure to upregu-
late the expression of chaperone proteins that can stabilize 
mitochondria and mitochondrial stress signaling60. Together, 
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these data reveal that, although activated p66shc has been as-
sociated with cell death pathways, it is also a rapid respond-
er to redox tone and a necessary component for protective 
pathways in response to mild ischemic stress. We suspect 
that because of its rapid localization to ROS-producing mi-
tochondria and association with clearance of oxidized lipids, 
p66shc may also be an important regulator of mitophagy.
 
HIF1α Promotes Autophagic Signaling During Hypoxia 
 Parallel literature from colleagues studying oxy-
gen-sensing pathways suggest additional molecular sen-
sors may play an important role in mitochondrial deg-
radation in response to hypoxia and ischemia. In these 
studies, investigators found that prolyl hydroxylase do-
main-containing enzymes (PHDs) and hypoxia-inducible 
factors (HIFs)61, 62 converge on molecular mediators of au-
tophagy that have not yet been linked to p66shc, PINK1, 
Parkin or the chaperone molecules and may, therefore, 
represent an independent sensor of stress and means to 
modify mitochondrial number and preconditioning.  
 Under normoxia, PHDs rapidly hydroxylate 
HIF1α subunits that then recruit an E3 ubiquitin ligase to 
ubiquitinate HIF1α, thereby forcing the proteasomal degra-
dation of the protein63. Hypoxia inhibits PHD activity, pro-
moting the stabilization of HIF1α, which can then promote 
the transcriptional upregulation of genes including vascu-
lar endothelial growth factor (VEGF), glucose transport-
ers (GLUTs) and oxygen binding proteins among others64.  
 In addition to its role as a transcription factor for 
genes encoding proteins involved in energy metabolism and 
vasculature remodeling, HIF1α exerts a role in autophagic 
and mitophagic signaling by activating BNIP3/BNIP3L, 
pro-survival members of the Bcl2 family. HIF1α stabiliza-

Figure 2. HIF1a stabilizes during hypoxia and promotes pro-autophagic 
pathways. Under ideal oxygen concentrations, HIF1a activity is inhibited 
through association with PHDs and subsequent degradation via the 
proteasome. Increases in ROS and decreases in Krebs cycle activity 
promote stabilization of HIF1a. This disassociation from PHDs allows 
HIF1a to translocate to the nucleus to upregulate the pro-survival genes 
BNIP3 and BNIP3L. Subsequent increases in these proteins have been 
associated with increased autophagosome formation and the induction 
of mitophagy. We hypothesize that these proteins are involved in the 
induction of mitophagy during ischemic preconditioning and adaptation 
to mild stressors. 

tion promotes BNIP3 transcription, reducing the num-
ber of mitochondria via mitophagy65, 66. BNIP3 binding 
to Bcl2, releases Beclin1 from Bcl2 binding. Beclin1, the 
mammalian homologue of Atg6, has been studied as a pro-
autophagic protein that stabilizes PINK167. Taken together, 
these data suggest a model in which HIF1α increases expres-
sion of BNIP3, promoting free Beclin1, which would trig-
ger mitophagy (Figure 2). Other research groups have pro-
vided additional evidence for BNIP3 and BNIP3L signaling 
as essential mediators of hypoxia-induced autophagy68.  
 These roles of HIF1α are important considerations 
for our hypothesis that adaptive mitophagy occurs during 
ischemic stress to enhance neuronal survival even under 
conditions of high ROS. Yet, it is unclear whether HIF1α is 
able to promote mitophagy exclusively independent of au-
tophagy, as this has yet to be investigated in mammalian 
models.

Clinical Implications for Targeting Regulators of Mi-
tophagy

 In the last two decades, several clinical trials have 
used antioxidants and free radical scavengers as a means to 
decrease the morbidity and mortality associated with isch-
emic stroke69, with only modest improvement. One of the 
reasons for the limited success of these studies is that treat-
ments in animal models are often administered at a prede-
termined time before or immediately after controlled isch-
emic onset. Stroke, however, is spontaneous and unforeseen, 
often meaning that patients do not reach a hospital quickly 
enough or within tested time windows for treatment. For 
example, less than 3% of patients qualify for receiving tis-
sue plasminogen activator (tPA), a clot-buster and only 
FDA-approved drug for the treatment of ischemic stroke 
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(often given in conjunction with antioxidant treatment in 
animals), because it must be administered within 4.5 hours 
of stroke onsetc.
 A second, larger concern with the use of antioxi-
dants in the treatment of stroke is that preclinical data high-
lighted in this review strongly suggests that ROS are neces-
sary for inducing protection, despite the historic association 
of ROS with toxicity and cell death, and thus overzealous 
use of ROS scavengers may hinder protective pathways un-
der conditions of mild ischemia. Given that mitophagy is 
sensitive to oxygen and free radicals and downstream in cell 
stress signaling, targeting the molecular triggers of mitopha-
gy directly may provide a more efficacious means to promote 
cell survival, as there are no FDA-approved pharmaceutical 
interventions specifically for preventing neurodegeneration 
post-stroke, and very limited therapies for further neuropro-
tection. 
As genetic analysis is becoming more cost and time effective, 
researchers will be keenly interested in determining if poly-
morphisms or frank mutations in PINK1, Parkin, p66shc, 
and HIF1α, may be present in individuals who are at-risk 
for poor outcomes following stroke which may account for 
the clinical heterogeneity in presentation. 

Conclusion

Neurons are highly dependent on mitochondria for 
respiration and sufficient levels of ATP to maintain redox 
and energetic tone and synaptic transmission, and are par-
ticularly sensitive to damage from ischemia. This has led to 
an increasing desire to understand the cellular events that 
maintain redox and energetic homeostasis including high-
efficiency antioxidants and redox and oxygen sensors. We 
hypothesize that controlled mitophagy to cull damaged mi-
tochondria may be a previously unappreciated event that 
promotes cell survival and a target for therapeutic interven-
tion given that several small molecule regulators of autoph-
agy exist. 

Further Information: McLaughlin Lab Website: http://
www.mc.vanderbilt.edu/root/vumc.php?site=mclaughlinlab

c� Tissue Plasminogen Activator (tPA) is currently the only FDA-approved 
treatment for adult ischemic stroke patients. The approved window of treatment 
for intravenous tPA is 4.5 hours after symptom onset, while intra-arterial tPA 
may be given up to 6 hours after symptom onset directly to the site of the clot. 
Additional considerations for tPA administration include the fact that it is only 
effective for clearing blood clots and not other blood vessel obstructions, such as 
atherosclerotic plaques. 
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 The world is aging at an unprecedented rate. In the 
next 50 years, the proportion of older adults in the popu-
lation is expected to increase from 8 percent to 20 percent 
which will have a significant impact on economic growth, 
the labor market, and perhaps most crucially, the healthcare 
system1. Current models of social security and Medicare sim-
ply will not be able to cope with these changes, and unless 
work is done to improve the health and independence of 
older adults, the economic consequences will be disastrous. 
Intact cognitive ability is crucial to leading an independent 
life and remaining in the workforce. The decline in cognitive 
function during healthy aging has been well studied, and the 
specific cognitive domains that are typically affected include 
episodic memorya and higher-level executive function2. Epi-
sodic memory relies heavily on intact medial temporal lobe 
(MTL) function and is commonly assessed by examining a 
subject’s ability to learn and retrieve material such as word 
lists or pictures. In contrast, executive functionbb involves the 
prefrontal cortex (PFC) and is commonly assessed using tests 
of working memory, cognitive flexibility, verbal fluency, in-
hibition, and decision-making. Both episodic memory and 
executive function are critical to independent daily function-
ing. 
 Physiologically, healthy aging is often accompanied 

a. episodic memory: The conscious ability to recall an event.

b. executive function: An umbrella term used to describe a wide range of cognitive 
abilities. Although hotly debated, commonly listed executive functions are working 
memory, cognitive flexibility, verbal fluency, inhibition, and decision making.

by subtle changes in blood vessels, such as hardening due to 
atherosclerosis, reduced or aberrant blood flow, and an im-
paired ability to respond to stimuli3. Eventually, these chang-
es cause damage to the neurovascular unitcc leading to tissue 
ischemia, reactive oxygen species production, and cell death. 
Both the incidence of cerebrovascular disease and cognitive 
impairment increase with age, and it is important to under-
stand how these factors interact. Reductions in cerebral per-
fusiondd likely contribute to cognitive impairment; however, 
this relationship has not yet been extensively examined. In 
support of this claim, cardiovascular disease risk factors such 
as hypertension, increased plasma homocysteine, obesity, 
poor diet, smoking, abnormal lipid profile, and high fasting 
glucose levels have all been associated with impairments in 
cognition4-11. Conversely, activities that improve cardiovascu-
lar health such as aerobic exercise are known to improve cog-
nition12-14. Chronic hypoperfusion is known to cause atrophy 
of critical brain structures15-18, and multiple theories impli-
cate vascular dysfunction as a precursor to Alzheimer’s dis-
ease19,20. Therefore, an in-depth exploration of the impact of 
vascular function on cognition in healthy aging may provide 
information that will help to develop mechanisms to slow or 
halt the progression of future neurodegenerative disease. 
 Understanding cerebral perfusion becomes par-

c. neurovascular unit: The functional network of capillaries, neurons, and glia that 
control blood delivery to the brain.

d. perfusion: Rate of blood delivery to tissue, typically measured in mL blood/100 
g tissue/minute.
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ticularly important when considering the number of stud-
ies done using blood-oxygen level dependent functional 
magnetic resonance imaging (BOLD fMRI). Studies have 
shown both increased and decreased signal in older adults, 
and this result has been interpreted to be related to either 
impaired neuronal signaling or compensatory recruitment 
of additional brain regions, respectively21. However, because 
the BOLD signal is both qualitative and intrinsically blood-
based, signal change could be due to a number of vascular 
parameters, independent of neuronal activity. Importantly, 
accurately characterizing the relationship between blood 
and cognition will significantly improve the interpretation 
of these studies. Historically, methods for understanding 
cerebral blood flow (CBF) such as transcranial Doppler 
imaging, positron emission tomography (PET), and single 
photon emission computed tomography have been limited 
by poor spatial resolution as well as the need for exogenous 
contrast. With improvements in MRI technology, it has be-
come possible to assess vasculature non-invasively with reso-
lutions of approximately 3-5 mm.  Further, novel imaging 
such as arterial spin labeling (ASL) uses a radiofrequency 
pulse to “tag” inflowing blood water in a way that tissue 
perfusion can be quantified22,23. By manipulating labeling 
sequences, blood water can be separately tagged in the pri-
mary feeding cerebral arteries (carotid arteries, basilar ar-
tery) and can distinguish anterior and posterior perfusion 
territories (Figure 1 ). This technique, called vessel-selective 
or vessel-encoded ASL (VS-ASL, VE-ASL) is used to assess 
vessel collateralization and compensatory flow patterns and 
has been successfully applied in patients with cerebrovascu-
lar disease23. Unlike BOLD fMRI, these techniques provide 
insight into the role of vascular function quantitatively and 
not as the sum of several underlying factors. 
 It has been hypothesized that reductions in blood 
flow may be due to one of two causes: either brain tissue 
remains metabolically active and blood vessels are unable to 
react appropriately to stimuli, or brain tissue becomes hypo-
metabolic resulting in a reduced perfusion requirement. To 

Figure 1. Vessel-Encoded Arterial 
Spin Labeling (VE-ASL) can 
distinguish perfusion territories of 
the major feeding cerebral blood 
vessels. Warm colors indicate 
the perfusion territory of the 
VBA; cool colors indicate the 
perfusion territory of the ICAs 
(courtesy of Manus Donahue). 

assess cerebrovascular reactivity (CVR), subjects are typical-
ly given vasodilators (CO2, acetazolamide) and the increase 
in blood flow from baseline demonstrates cerebrovascular 
reserve. Deficiencies in CVR may be due to stiffening of the 
arterial wall and are thus independent of neuronal activity, 
although the contribution of neural factors can be inferred 
by examining the cerebral metabolic rate of oxygen and/or 
glucose (CMRO2, CMRGlu respectively).  This has typical-
ly been done in vivo using oxygen-15 (15O) or fluorine-18 
fluorodeoxyglucose (18F-FDG) PET imaging24. Studies that 
have combined ASL and 18F-FDG PET have shown that 
tissue metabolism is tightly correlated with CBF25, although 
this finding does not clarify whether reduced metabolism 
leads to reduced CBF or vice versa. 
 Studies that have explored cognition in the context 
of vascular function are the subject of this review. Although 
there is still significant work to be done, it is clear that cere-
brovascular reserve influences cognition. This may be espe-
cially true in memory and executive domains.

Memory and Vasculature

 Episodic memory, which declines over the course 
of healthy aging, requires the complex interaction of syn-
aptic integrity, glial support, and efficient energy metabo-
lism in the hippocampus. Standard neuropsychological tests 
used to assess episodic memory require learning items and 
then recalling them after some delay. Examples include the 
Consortium to Establish a Registry for Alzheimer’s disease 
(CERAD)26, California Verbal Learning Test (CVLT)27, and 
the Repeatable Battery for the Assessment of Neuropsycho-
logical Status (RBANS)28. During memory encoding, in-
formation from the sensory and association cortices flows 
through the entorhinal cortex into the dentate gyrus via the 
perforant pathway (Figure 2). Mossy fibers from the dentate 
gyrus (DG) then synapse onto the CA3 region of the hippo-
campus. The CA3 region has an extensive auto-association 
network, which is believed to be responsible for the forma-
tion and temporary storage of episodic memories29. From 
there, the CA3 region projects to the CA1 region and the 
subiculum via the Schaffer collaterals, and the subiculum 
projects to the rest of the cortex. Any interruption in this 
flow of information may result in compromised memory. 
Normal aging results in hypometabolism in the DG at 
rest30. Interestingly, pattern separation, i.e. the ability to dis-
criminate between two highly similar objects in memory, is 
dependent on the DG and is impaired during healthy ag-
ing31. Neither CBF nor CVR in the DG has been studied 
with regard to pattern separation ability, although BOLD 
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fMRI studies have indicated poor performance correlates 
with hyperactivation of the DG and CA3 during the task32. 
Knowledge of the individual roles of hippocampal subfields 
may provide an anatomically guided approach to pinpoint-
ing the influence of perfusion on specific hippocampal func-
tions. 
 The hippocampus largely receives its blood supply 
through the posterior cerebral artery39. Under normal blood 
flow conditions, the posterior cerebral artery is supplied by 
the vertebrobasilar artery (VBA). Studies examining total 
cerebral blood flow have shown that global perfusion is as-
sociated with increased cognitive reserveee 33,34, although few 
specific correlations between blood flow and memory have 
been reported. Global perfusion measurements are unlike-
ly to reach significance due to their insensitivity to subtle 
changes; therefore regional alterations in blood flow may 
more accurately predict memory performance. As previ-
ously mentioned, VE-ASL is able to track the flow territory 
of the VBA. Flow territory asymmetry, i.e. vessels supplying 
tissues outside of their typical territory, is a surrogate mea-
sure of blood vessel collateralization. Healthy older adults 
that performed poorly on a memory task showed an increase 
in flow territory asymmetry40. Future work is encouraged to 
examine the relationship between memory performance and 
blood flow in the VBA, as well as vessel reactivity, using the 
VE-ASL technique. 
 Positive35,36  and negative37,38 correlations between 
MTL blood flow and performance on a memory task have 
been reported. Despite the seemingly contradictory nature 
of these results, both may be accurate. The relationship be-
tween blood flow and performance may depend on the stage 
of dysfunction. Early in the course of aging, there seems to 
be an imbalance in excitation and inhibition, which could 
cause hypermetabolism. Later, tissue damage due to excito-
toxicity could result in a reduced requirement for oxygen

e. cognitive reserve: The brain’s ability to remain cognitively intact despite physi-
ological damage, such as atrophy or plaque build-up.

Figure 2. Blood flow and hippocampal function. A. 
Perfusion territory of the VBA, which includes the 
hippocampal formation. B. Schematic of signaling 
through the hippocampus. 

and lead to hypoperfusion. Sensitive characterization of 
subjects both physically and cognitively would indicate the 
temporal pattern of hippocampal perfusion during cogni-
tive decline.

Executive Function and Perfusion

 Like episodic memory, executive function declines 
with age2. Executive function is an umbrella term referring 
to several higher-order cognitive processes. Neuropsycho-
logical tests of executive functioning typically assess work-
ing memory, cognitive flexibility, verbal fluency, inhibition, 
and decision-making. Because executive function heavily 
relies on intact brain networks rather than individual brain 
regions, it is difficult to determine the contributions of a 
particular anatomical area42. Case studies of individuals with 
frontal lobe lesions as well as PET and MRI studies have 
provided support for many aspects of executive function to 
be dependent on intact prefrontal lobe function43,44. While 
executive functions likely involve the interaction of multiple 
brain networks, some information on anatomical locations 
required for specific processes are beginning to emerge. The 
dorsolateral prefrontal cortex (DLPFC) is believed to be 
necessary for working memory, response selection, plan-
ning, and evaluating a choice45. The ventrolateral prefron-
tal cortex (VLPFC) is important for comparison of stimuli 
being held in memory, task switching, and reversal learn-
ing. Finally, the orbitofrontal cortex (OFC) is implicated in 
emotional processing of stimuli as well as distinguishing cue 
salience and reward. It should be noted that studies have re-
ported lateralization of some executive functions in healthy 
young adults, although this lateralization disappears with 
age46. The Hemispheric Asymmetry Reduction in Older 
Adults model (HAROLD) predicts that older adults tend to 
activate more bilateral areas than young adults, potentially 
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more convoluted and tortuous with age, which might re-
strict blood flow53. Interestingly, Magnetic Resonance An-
giography (MRA), studies have shown age-associated vessel 
tortuosity can be reduced by aerobic exercise55,56. Drugs are 
already on the market to improve vascular health, and using 
them to increase perfusion to key cerebral areas may one day 
allow for the slowing or prevention of significant cognitive 
decline with age.
 There may also be impairments in signaling within 
the neurovascular unit. Vascular smooth muscle cells relax 
in response to nitric oxide (NO) and tighten in response to 
endothelin 1 (ET1), therefore the changes in vascular re-
sponse may be caused by a reduction in NO and an increase 
in ET1 bioavailability15,53,57. These factors may induce basal 
hypoperfusion leading to degeneration of the neurovascu-
lar unit and a downward spiral of both vessel and neuronal 
function50. 
 It is important to note that there are some limi-
tations to the previously mentioned studies. For example, 
most studies did not take genetic status into account, and 
there are several common polymorphisms that may dispro-
portionately affect cognition and/or vascular health. Cau-
tion must also be used in implying that impaired vascular 
health causes impaired cognition. It is possible that the re-
lationships observed are due to subjects with higher cogni-
tive abilities choosing to live more health consciously from 
a young age, and thus it is higher cognition that leads to 
better cardiovascular health and not vice versa5. Longitu-
dinal studies across the lifespan would better establish this 
relationship.
 Finally, the neuropsychological tests used in these 
studies are often designed to identify dementia and are not 
sensitive enough to find individual variation in the perfor-
mance of healthy adults. The interaction between vascular 
factors and cognition should, therefore, be examined across 
subjects stratified by extremely sensitive neurocognitive tests 
designed specifically to understand aspects of healthy aging. 

to compensate for reduced signaling on one side46. Although 
the roles of specific anatomical regions in the frontal lobe are 
more difficult to identify than in the hippocampus, the im-
pact of regional perfusion on specific functions may provide 
further information. 
 Recent work has reported that in healthy older 
adults, total CBF is positively correlated with informa-
tion processing speed, attention, and other executive func-
tions17,18,47. The frontal lobe is vascularized by the anterior 
and middle cerebral arteries, both of which receive their 
blood supply through the internal carotid arteries (ICA) 
(Figure 3). Currently, there are no studies examining execu-
tive function with vessel-specific perfusion, but ICA blood 
flow will likely be important. This becomes particularly true 
when considering potential lateralized functions in the fron-
tal cortex. 
 Regional deficiencies in both CBF and CVR have 
been found throughout the brain, but particularly in the 
frontal cortex48,49. Although no study to date has examined 
the specific relationship between CVR and executive func-
tion, the spatial distribution of vessel reactivity deficits may 
be indicative of underlying pathology as Alzheimer’s disease 
and vascular dementia  show distinct patterns from nor-
mal aging50-52. Characterizing the impact of CVR and CBF 
on executive function may indicate a dissociation between 
healthy and pathologic aging. 
 
Discussion
 
 Several mechanisms for reduced cerebrovascular 
function have been proposed. Post-mortem studies reveal 
that the greatest detectable change with age in cerebral arter-
ies and arterioles is thickening of the basement membrane as 
well as a loss of elasticity in the blood vessel due to increased 
collagen and decreased elastin53,54. This may be influenced by 
atherosclerosis or the beginning stages of amyloid angiopa-
thy51, both of which cause deposits to build up in the arterial 
wall. Some studies have indicated that blood vessels become 

Figure 3. Blood flow in the frontal cortexx. A. VE-ASL image 
showing right (green) and left (blue) ICA perfusion territories 
(data courtesy of Manus Donahue, note this image is in 
conventional radiological orientation with the left side of the 
brain on the right side of the image and vice versa) B. Schematic 
of ICA perfusion territory and commonly reported anatomical 
sites of executive function.  
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Conclusion

 Impairments in vascular health seem to be mediat-
ing cognitive deficits, and there are a number of methods 
to determine how the two factors interact. By recognizing 
impairments in blood flow, evaluating vessel reactivity, and 
comparing these measurements to sensitive and accurate 
neurocognitive tests, the impact of cerebrovascular function 
on cognition in healthy aging may be understood. Novel 
MRI techniques will be able to explore these relationships 
not only in a regionally specific manner, but also in a vessel-
specific manner, and these techniques will provide impor-
tant insight into cerebrovascular function and cognition in 
healthy aging. Critically, these findings may indicate thera-
peutic targets that will slow or prevent cognitive dysfunc-
tion in aging and disease.

Further Information

For more information about the work done in the Ally 
Memory Lab, please consult our website: http://www.
vanderbilt.edu/allylab/index2.html
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 Alzheimer’s disease (AD) is an age-dependent neu-
rodegenerative disorder recognized clinically as a progressive 
deterioration of short-term memory which expands to en-
compass increasingly global constituents of cognitive func-
tion1. Today, AD represents 50–70% of all cases of senile 
dementia and impacts nearly 35 million people worldwide. 
Notably, AD prevalence is higher in aging populations, with 
1 in every 8 Americans over the age of 65 suffering from 
the disease. This statistic is most unsettling when coupled 
with the knowledge that as of 2011, the first members of the 
baby-boom generation celebrated 65 years of life. As a conse-
quence of this demographic aging, based on current trends, 
20% of the American population or 71 million individuals 
will reach the typical age of AD onset by 20302. Notably, 
demographic aging is being mirrored in virtually all develop-
ing nations worldwide and thus threatens to compound the 
socioeconomic and public health calamity AD already repre-
sents to mankind.
 As a result of these projections, the impetus to iden-
tify and characterize relevant biomarkers for AD has never 
been greater. Once identified, AD biomarkers may be uti-
lized in three distinct applications: (i) as a diagnostic marker 
to aid in the early diagnosis of AD in clinically representa-
tive populations, (ii) as a classificatory marker capable of 
distinguishing AD from dementia subtypes that have similar 
clinical presentations, and (iii) as a prognostic marker capa-
ble of predicting disease progression with or without thera-
peutic intervention3. Here, we review the contributions of 

amyloid-β (Aβ) plaques and tau-comprised neurofibrillary 
tangles (NFTs) to the development of the cognitive deficits 
observed in AD and evaluate the potential of these two path-
ological hallmarks to serve as biomarkers. Current and future 
studies aimed at leveraging positron emission tomography 
(PET), magnetic resonance (MR) and optical-based imaging 
methods to validate Aβ plaques and NFTs as biomarkers of 
AD are discussed within the context of an increasingly re-
fined model of AD pathogenesis.   

The Role of Aβ plaque in AD pathogenesis  

 Among the pathophysiological lesions identified to 
date, Aβ plaques are considered the principal cytopathologic 
hallmark of AD in accordance with the amyloid cascade hy-
pothesis4-8. At the most superficial level, the amyloid cascade 
hypothesis holds that perturbations in Aβ peptide formation 
and clearance result in a clustering of Aβ peptides to form Aβ 
plaques, which subsequently cause neuronal death attribut-
able to direct and indirect neurotoxic insults (Figure 1)8-13. 
These neurodegenerative changes are hypothesized to con-
tribute to the cognitive deficits observed in AD by disrupting 
the function of key brain regions involved in learning and 
memory, including the hippocampal formation and entorhi-
nal cortex14. However, although amyloid-centric hypotheses 
predominate in the literature, a consensus on the role played 
by Aβ in AD pathogenesis has yet to be reached15. In all like-
lihood, AD pathogenesis reflects a multi-step cascade that 

In Pursuit of Biomarkers of Alzheimer’s Disease: Challenges and 
Opportunities in Tau and Amyloid Imaging

Alzheimer’s disease (AD) imaging research has contributed greatly to our understanding of the role Aβ plaques and 
tau-comprised neurofibrillary tangles (NFTs) play in AD pathology and has highlighted the potential utility of these 
hallmark lesions as biomarkers. As evidenced by the paucity of in vivo tau imaging studies to date, the majority of 
progress made in this field has been amyloid-centric. Although imaging of Aβ plaques has contributed significantly 
our understanding of AD pathogenesis, complimentary biomarkers such as tau must be validated and integrated into 
a more holistic diagnostic panel for the detection and study of AD. Here, we provide a review of the support for, and 
arguments against, employing PET, MR, and optical imaging technologies to track the deposition of Aβ plaques and 
NFTs in efforts to track AD progression.
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involves neurotoxicity secondary to Aβ aggregation, NFTs, 
neuronal/synaptic loss, inflammation, oxidative stress, im-
mune dysregulation, vascular disease, and additional fac-
tors16-22. Regardless of the mechanism, the notion of a 
central role for Aβ plaques in AD pathogenesis is strongly 
supported by studies which estimate that 5-10% of familial 
AD patients carry genetic mutations which favor the pro-
duction of Aβ peptides predisposed to aggregation23-25. 
 Surprisingly, despite the emphasis on Aβ plaque 
deposition in current models of AD pathogenesis, with few 
exceptions26, most studies report that the distribution and 
density of Aβ plaques correlates poorly with the severity of 
cognitive impairment27-32. Furthermore, approximately 20-
40% of non-demented adults over the age of 65 possess con-
siderable Aβ plaque burdens on postmortem evaluation32-38. 
Lastly, insight gained from Aβ imaging suggests that while 
cognitive decline progresses with time, Aβ plaque load pla-
teaus39. In stark contrast to predictions made by the amyloid 
hypothesis, such findings are more congruent with an indi-
rect role for Aβ plaque accumulation within a multi-facto-
rial model of AD pathogenesis40, 41. Notably, the discovery 
of neurotoxic Aβ oligomers provides a rationale for why Aβ 
plaque density correlates poorly with the severity of memory 
impairment. In this model, Aβ species exist in a dynamic 
equilibrium, with soluble oligomers mediating neurotoxic-
ity at a distance from Aβ plaques42-45. Reports that the abun-
dance of Aβ oligomers correlate more closely with cognitive 
decline compared to Aβ plaque distribution offer support 
for this hypothesis30. Additionally, because Aβ peptide ex-
tracts are capable of inducing Aβ plaque formation when 
injected into the brain, it is reasonable to conclude that Aβ 
oligomers possess the ability to seed AD pathology46. Thus, 
despite inconsistencies between Aβ plaque load and disease 
progression, sufficient evidence exists to support the imag-
ing of Aβ plaques as a biomarker of AD.  
  
PET Imaging of Aβ Plaques

 Of the early diagnostic modalities proposed for 
AD, PET-mediated amyloid imaging has emerged as the 
most promising approach with respect to developing a min-
imally-invasive yet clinically applicable diagnostic method-
ology. Despite limited clinical applicability imposed by the 
20-minute half-life of C11, Pittsburgh Compound B (PIB) 
currently represents the most comprehensively studied amy-
loid imaging tracer. With respect to the correlation between 
PIB retention and Ab plaque burden in vivo, a criteria re-
stricted review of seven primary studies (24 case reports) con-
cluded that sufficient evidence exists to make an association 

between PIB retention and Aβ plaque density47. Consistent-
ly, AD patients exhibit 50-90% higher rates of PIB reten-
tion compared to aged-matched, cognitively normal adults 
in regions such as the prefrontal cortex, precuneus, and pos-
terior cingulate35, 36, 48-52. In a review of fifteen studies which 
cumulatively included 341 AD and 651 cognitively normal 
subjects, the difference in PIB retention observed in AD de-
mentia subjects and cognitively normal controls was highly 
significant (p < 0.001). Furthermore, this study estimated 
the diagnostic specificity of PIB to be approximately 76%47. 
Notably however, some studies indicate that PIB retention 
correlates poorly with memory deficits in AD patients and 
healthy controls34, 37, 50, 53-57. According to some investigators, 
PIB retention may correlate poorly with observed cognitive 
deficits due to differences in cognitive reserve between sub-
jects58-62. As a prognostic biomarker,  within a follow-up pe-
riod ranging from eight months to three years, 38-82% of 
MCI patients who screened positive for amyloid pathology 
via PIB imaging converted to AD compared to a mere 7% 
convergence rate for PIB(-) MCI cohorts63-66.  Interestingly, 
although the topic is less extensively examined, clinical PET 
studies using [11C]6OH-BTA-1 (PIB), [18F]FDDNP, [11C]
SB- 13, [11C]BF-227, [11C]AZD2184, [18F]BAY94-9172, 
[18F]GE067, and [18F]AV45 have reported a diagnostic util-
ity similar to that reported for PIB. Cumulatively, this trend 
lends additional support to the efficacy of PET-mediated 
imaging of Aβ plaques as a biomarker of AD. 

MR Imaging of Aβ Plaques

 Inspired in part by positive PET-based imaging 
studies, significant progress has been made in MRI-medi-
ated detection of Aβ plaques. Two general approaches for 
MRI-mediated detection have been reported: i) high-field 
MRI and ii) Aβ-specific contrast agents. In the first ap-
proach, investigators employing optimized spin echo ac-
quisition methods have successfully detected histologically 
confirmed Aβ plaques with a 50-micrometers diameter at 
9.4 Tesla67. With respect to the second approach to MRI-
mediated Aβ imaging, a number of amyloid-specific tracers 
compatible with MRI have been reported68-70. One novel 
tracer designed to resemble Aβ40 peptides, a core constituent 
of Aβ plaques, has been labeled with gadolinium to detect 
Aβ plaques in conjunction with µMRI. Impressively, the nu-
merical density of Aβ plaques as assessed by µMRI using this 
tracer correlates well with immune-histochemical analysis69. 
Encouragingly, using similar MRI-based strategies, some 
groups have semi-quantitatively assessed Aβ plaque burden 
in AD mouse models using 19F and 1H MRI compatible 
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Optical Imaging of Aβ Plaques

 In a trend similar to that observed during the devel-
opment of PET-tracers for amyloid imaging, several groups 
have reported fluorescent derivatives of known Aβ plaque-
binding compounds (thioflavin and Congo red) to facili-
tate the optical imaging of AD animal models72-75. However, 
more recently, optically based amyloid imaging approaches 
have become increasingly focused on near-infrared (NIR) 
probes in an effort to enhance the resolution of deeper brain 
structures76, 77. In the first published study in which NIR 
technology was employed to visualize Aβ plaques in vivo, 
the fluorescence intensity of the Aβ-binding dye AOI987 
accurately detected the presence of Aβ plaques in a mouse 
model of AD78. In a similar in vivo study, the fluorescent 
signal of the amyloid-binding NIR probe THK-265 dem-
onstrated a progressive increase in proportion to increasing 
burdens of Aβ plaque79. Despite these considerable successes 
however, NIR fluorescence imaging of Aβ plaques remains 
limited by the low number of Aβ-specific probes and poor 
Aβ plaque-to-background contrast. Yet, many investigators 
believe that these obstacles can be circumvented via the de-
velopment of “smart” fluorophores which, when bound to 
their target, fluoresce with enhanced quantum efficiency, 
a shifted spectrum and/or an altered lifetime80. In a simi-
lar effort to advance the optical imaging of AD pathology, 
many groups have capitalized on the intrinsic advantages 
of fluorescence-lifetime imaging microscopy (FLIM) to 
improve the optical imaging of AD biomarkers. Using the 
FLIM approach, investigators can detect weak fluorescent 
probes in an auto-fluorescent background; a scenario in 
which traditional measures of fluorescence intensity are not 
efficacious81-83. Given that PET-mediated amyloid imaging 
lacks the sensitivity to detect individual plaques, and de-
spite its limited ability to report Aβ plaque loads more than 
several centimeters below the brain’s surface, many inves-
tigators predict that optical-based imaging methodologies 
will provide a powerful and complimentary approach to Aβ 
imaging84-86.

The Role of Tau in AD Pathogenesis 

 Despite the dominance of amyloid-centric hypoth-
eses, many studies have concluded that the density of NFTs 
comprised principally of hyper-phosphorylated tau correlate 
better with the severity of cognitive impairment observed in 
AD compared to Aβ plaques31, 32, 87-92. Under non-patholog-

ical conditions, tau has been implicated in the organization 
of cytoskeletal elements, promotion of neurite outgrowth, 
facilitation of membrane interactions, anchoring of phos-
phates and kinases, and axonal transport of vesicles and or-
ganelles93-97. Surprisingly, many of the tau’s reported func-
tions rely upon its ability to stabilize microtubules, a faculty 
which is lost upon Aβ plaque-induced phosphorylation98. 
Hyper-phosphorylated tau adopts an altered conformation, 
relocates from axonal to somato-dendritic compartments 
and loses the ability to stabilize microtubules, thus result-
ing in a disruption of cytoskeletal integrity, defective axonal 
transport and memory loss in models of tauopathy99-104. In-
terestingly, the dissociation of tau from microtubules may 
also be the initial step toward promoting the assembly of 
NFTs, as increases in the soluble tau pool may promote oligo-
merization105-111. Thus, despite the ambiguity with respect to 
how tau phosphorylation contributes to AD pathogenesis, 
virtually unanimous agreement exists regarding tau’s toxicity 
and contribution to AD neurodegeneration112-115. However, 
although considerable evidence linking tau phosphorylation 
to AD pathogenesis has been published, the utility of tau 
as a biomarker is questionable due to i) poor corroboration 
between Aβ plaques and tau deposition, ii) reports of neu-
rodegeneration in tau models without NFT formation and 
iii) its presence in other diseases.  Assuming recent reports 
of NFTs in the substantia nigra and locus coeruleus are not 
specific to AD pathology, NFT deposition follows a stepwise 
topographic distribution pattern that begins in the trans-en-
torhinal region (Braak stage I) before affecting the entorhi-
nal cortex (Braak stage II), hippocampus, temporo-occipital 
gyrus (Braak stage III), temporal cortex (Braak stage IV), 
parietal cortex (Braak stage V) and occipital cortex (Braak 
stage VI)116-119. By comparison, the topographical pattern of 
Aβ deposition is markedly different, with Aβ plaques ap-
pearing first in the neo-cortex and expanding in an antero-
grade fashion into allocortex (phase II), diencephalic nuclei, 
striatum and cholinergic nuclei (phase III), brainstem nu-
clei (phase IV) and the cerebellum (phase V)120. Given the 
amyloid-centric focus of current AD research, this anatomi-
cal separation of NFT from Aβ plaques must be interpreted 
before NFT deposition can be rationalized as a biomarker 
of AD. Further compounding the concerns that surround 
tau’s ability to serve as a biomarker of AD, neurodegenera-
tive changes and cognitive deficits have been observed in 
the absence of NFTs99, 100, 103, 121, 122. In a strategy similar to 
that observed in Aβ plaque research, some investigators have 
hypothesized that pre-tangle tau species (monomers/oligo-
mers) underlie tau-mediated dysfunction and toxicity and 
thus account for studies which report dissociations in NFT 
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density and cognitive symptoms113, 114, 123-126. Regardless of 
tau’s neurotoxic mechanism of action, studies which dem-
onstrate that only 85% of neuronal loss can be explained 
by NFT formation clearly imply the existence of non-NFT 
mechanisms which contribute to the neurodegenerative 
changes observed in AD87. Lastly, tau expression in multiple 
neurodegenerative diseases including: AD, frontal-temporal 
dementia, progressive supra-nuclear palsy, Picks disease and 
corticobasal degeneration may potentially limit its efficacy 
as an AD biomarker. However, because NFT and tau mor-
phologies differ between disease models and the elevations 
of tau in AD are significantly greater than those observed 
in alternative dementias, the evidence supports the notion 
that tau retains sufficient specificity to represent a viable 
biomarker for AD127, 128. Additionally, considerable evidence 
has emerged which links Aβ plaque toxicity with tau hyper-
phosphorylation providing additional support for its use as 
an AD biomarker117, 129, 130. For example, crossing APP-over-
producing mutants with tauopathy mouse models results in 
significant increases in NFT formation and associated tau 
hyper-phosphorylation115. Conversely, reducing tau expres-
sion in Aβ-producing mouse models protects mice from the 
cognitive deficits loosely associated with high Aβ burden in 
the brain131. Clinical evidence that supports a primary role 
for tau in AD pathogenesis is derived from measurements 
of total tau levels in the cerebrospinal fluid (CSF) of AD 
patients. Although some studies have reported that CSF tau 
does not change significantly overtime in cognitively im-
paired patients, a review of over 50 studies have estimated 
the sensitivity and specificity of CSF tau levels at 80-90%, 
with an average increase of 300% in AD patients compared 
to controls132, 133. Extrapolating the efficacy of measuring 
tau in the CSF to imaging, and considering the biological 
evidence presented, continued efforts to leverage tau as a 
biomarker for AD seem warranted. 
 
PET Imaging of Tau-comprised NFTs

 Although limited by its inability to distinguish sig-
nal retention secondary to Ab plaques or NFTs, FDDNP 
represents the most thoroughly studied PET-based reporter 
of tau accumulation in human and mouse models of AD74, 

134, 135. Following the discovery of FDDNP, 18F-FSB35 and 
18F-FP-curcumin radiotracers have been reported. However, 
not only do all of these radio-ligand bind to NFTs, they 
also bind to Aβ plaques in the brain, which substantially 
limits their value with respect to investigating tau’s contri-
butions to AD pathogenesis136-138. Despite this limitation, 
the 18F-FDDNP signal increases with cognitive decline and 

mirrors the classic trajectory of tau deposition139. Recently, 
however, a series of quinolone derivatives that bind specifi-
cally to tau NFTs in both in vivo and in vitro studies have 
been reported140. Convincingly, one of those tracers, [18F] 
THK523, exhibits low binding in the brains of transgenic 
mice overexpressing Aβ but which lack NFTs, thus demon-
strating its selectivity for tau141. Most recently, retention of 
the newly developed NFT-tau radio-ligand [18F] T807 has 
been shown to co-localize significantly with tau pathology 
and has been leveraged for in vivo imaging142, 143. Cumu-
latively, these studies indicate that tau-specific tracers are 
achieving the requirements of a sensitive and specific PET 
probe that could be used in human imaging trials.

MR Imaging of Tau-comprised NFTs

 In its infancy, MR imaging of tau relied upon the 
observed correlation between tau deposition and hippocam-
pal atrophy. Because both tau deposition and brain atrophy 
both correlate with the severity of cognitive decline in AD 
patients, many study groups have hypothesized and demon-
strated that patterns of gray matter loss as assessed by struc-
tural MRI can serve as an approximate in vivo surrogate 
indicator of tau pathology144. Unfortunately, considerably 
less progress has been made towards the development and 
characterization of tau-specific MRI probes. Currently, FSB 
and [13C]BSB are among the best characterized precursors 
capable of serving as potential contrast agents for magnetic 
resonance imaging of tau in vivo145. More recently, some 
evidence has emerged that the MRI probe CR-BSA-(Gd-
DTPA) may possess the ability to detect NFTs146. These 
compounds represent derivatives of the AB plaque and 
NFT staining dye Congo red. Therefore, of the compounds 
published to date, none are specific to tau-comprised NFTs. 
Thus, an evaluation of MR imaging of tau as a biomarker of 
AD awaits the discovery of tau-specific precursors for MRI 
probes.   

Optical Imaging of Tau-comprised NFTs

 Similar to the trends observed in PET and MR 
imaging of tau-comprised NFTs, optical-based imaging of 
tau has largely been limited due to the lack of tau-specific 
precursor molecules. Interestingly, both FSB and BSB com-
pounds posited for MRI also emit a fluorescent signal when 
complexed with NFTs making them potential candidates 
for in vivo imaging of tau in AD models136. More recently, 
investigators have shown that fluorescent trimethinine cya-
nine probes can bind to NFTs with high contrast and selec-
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tivity over Aβ plaques147.  
 When viewed in the context of an amyloid-centric 
perspective with respect to imaging biomarkers of AD, it 
is unsurprising that few precursor molecules for PET, MRI 
and optical-based imaging of NFTs have been thoroughly 
described. In addition, numerous obstacles, such as the het-
erogeneous nature of mature NFTs and their high degree 
of structural similarity with Aβ plaques, have added to the 
difficulty of characterizing tau-specific probes148. As probe 
development progresses, in vitro studies to determine the 
binding characteristics of the probe, including its equilib-
rium with paired helical filaments, will be needed. Notably, 
however, dissociation constants (Kd) and binding capacity 
(B max) determined in vitro are difficult to translate to in 
vivo conditions; thus, in vivo application in animal models 
of tauopathy are necessary in order to validate new probes 
for clinical implementation74, 108. 

Current Perspective on AD Imaging

 To date, most of the progress made towards apply-
ing imaging technologies to the study of AD has been amy-
loid-centric. As the limitations of amyloid imaging become 
increasingly recognized, interest in alternative biomarkers 
has grown substantially. However, considering current epi-
demiological projections for AD, the refinement of imaging 
technologies for the detection of alternative biomarkers, in-
cluding tau, cannot evolve over decades in a manner similar 
to amyloid imaging. In the years to come, high-throughput 
screening approaches similar to those created for Aβ plaque 
probe discovery must be adapted in order to expedite the 
validation of complimentary biomarkers for delivery into 
clinical trials149. Most likely, the imaging of AD biomarkers 

Figure 1. Amyloid Hypothesis. Pertubations in Ab-peptide clearance/
formation results in the deposition of Ab plaques which initiates a 
multitude of downstream neurotoxic insults. 

such as Ab plaques and tau will need to be integrated into 
a more holistic diagnostic panel in order to best capture the 
multi-factorial nature of AD.
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Dopamine: a Developmental Player in Brain Disorder Pathology

Kelli M. Money

neurodevelopment, D1 receptor, D2 receptor, tangential migration, neuronal differentiation

Alterations in factors that affect brain development 
have a long lasting impact on neuronal structure, function, 
or connectivity. Many neuropsychiatric disorders, such as 
schizophrenia and autism spectrum disorder, are associ-
ated with structural and functional alterations in frontal/
prefrontal cortex and striatum, which both receive substan-
tial dopamine (DA) innervations and express DA receptors. 
DA and other neurotransmitters are even expressed prior to 
synaptogenesis, and developmental alterations in DA and 
DA receptor signaling have been shown to cause enduring 
anatomical and behavioral alterations. However, the mecha-
nism by which DA and its cognate receptors alter develop-
mental processes is poorly understood.

Keywords

Figure 1. (A)During midgestation DA receptors have subtype-specific effects both on neuronal proliferation and interneuron migration; (B) During late-
gestation DA receptors continue to regulate dendritic complexity of both cortical pyramidal neurons and striatal medium spiny projection neurons in a subtype-
specific manner; (C) DA receptor expression typically peaks during adolescence and then declines. For D1 receptors in the frontal cortex, this is a “pruning” 
of a subpopulation of D1 receptors that are transiently expressed on the terminals of cortico-accumbens neurons; (D) Photomicrographs demonstrate the 
localization of D1 (red, Drd1-tdTomato reporter) and D2 (Drd2-eGFP reporter) receptors in the rostral (left) and caudal (right) striatum of the adult mouse. 

There is heavy labeling of D1 and 
D2 expressing cells within the 
CP and NAc  with very few 
of these neurons co-expressing 
both receptors. More caudally 
(right) eGFP-labeled terminals 
can be visualized within the GP, 
representing the D2 receptor 
positive indirect pathway. D1 
receptor positive axons, in contrast, 
bundle ventromedially to the GP 
and will eventually terminate in 
the substantia nigra and ventral 
tegmental area. Abbreviations: CP 
= caudate-putamen, Ctx = cortex, 
GE = ganglionic eminences, GP 
= globus pallidus, mFC = medial 
frontal cortex, and NAc = nucleus 
accumbens. The brain images in 
panels (B) and (C) are courtesy 
of the Allen Developing Mouse 
Brain Atlas and are available from: 
http://developingmouse.brain-
map.org.

DA and DA receptors develop in concert and are 
present early in development with innervation and expres-
sion patterns continuing to mature until adulthood. DAer-
gic projections reach the rodent striatum by embryonic day 
(E) 14 and pass through the striatum to innervate the cortex 
in a lateral (E16) to medial (E19) fashion. With regards to 
DA receptors, there are two subgroups based on sequence, 
pharmacology, and G protein signaling: D1-like (D1 and 
D5 receptors) and D2-like (D2, D3, and D4 receptors), and 
all are present developmentally, appearing concurrently with 
DAergic innervation. D1 and D2 receptors are the most 
prominent throughout development in both the frontal cor-
tex and striatum and modulate functions such as movement 
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and cognition.
DA plays a significant role in neuronal proliferation, 

migration, and differentiation with D1 and D2 receptor ac-
tivation often producing opposing effects (demonstrated in 
Figure 1). For example, D1-like receptor activation increas-
es, whereas D2-like receptor activation decreases neuronal 
proliferation in the lateral ganglionic eminence, the basal 
forebrain region that produces striatal neurons. Addition-
ally, alterations in GABAergic interneurons have been ob-
served postmortem in neuropsychiatric disease. DA recep-
tor activation also alters tangential migration of GABAergic 
interneurons from the basal forebrain to the cortex in a 
receptor subtype-specific manner. Disruption of dendritic 
and axonal growth as well as spine and synapse formation 
alter the quantity and nature of neural connections, which 
is found in neuropsychiatric diseases such as intellectual dis-
ability and schizophrenia. DA receptor activation in frontal 
cortex and striatum also leads to receptor subtype-specific 
effects in neurite outgrowth; and interestingly, D1 recep-
tor activation also causes region-specific changes, increas-
ing striatal and decreasing frontal cortex neurite outgrowth, 
that are currently not mechanistically understood. Models 
of DA depletion and functional excess as well as D1 and D2 
receptor knockout mice show a loss of cortical and striatal 
dendritic spines, but moderate D1-like and D2-like recep-
tor activation increase spine density in the striatum in vitro. 
Furthermore, DA depletion alters the number and structure 
of synapses and plays an important role in synapse mainte-
nance into adulthood. 

Developmental disruption of any of the above 
processes by DA would alter developmental trajectory and 
could contribute to neuropsychiatric pathology. However, 
understanding the signaling mechanisms required for these 
effects has been difficult. DA receptors are G-protein cou-
pled receptors that couple to Gαs/olf (D1-like receptors) 
or Gαi/o (D2-like receptors) to either increase or decrease 
levels of cyclic AMP, respectively, but they can also signal 
through cyclic AMP-independent mechanisms like receptor 
heteromers and arrestin. In addition to the lack of evidence 
for the mechanism of the dichotomy of D1 and D2 recep-
tor effects, studies of region-specific effects of D1 receptor 
activation on neurite outgrowth are superficial and have yet 
to provide conclusive evidence for a region-specific mecha-
nism. 

DA plays a role in typical brain development, and 
alterations in DAergic signaling disrupt normal develop-
mental processes. Our understanding of the role of devel-
opmental DA perturbations in neuropsychiatric disease is 
still maturing and will potentially provide insight into novel 

treatments for the underlying pathology of neuropsychiatric 
disease. 
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 Addiction to drugs is a devastating condition that 
adversely affects not only the addicted individual, but also 
families and society as a whole. Pharmacotherapeutics to 
supplement behavioral therapies used in treating addiction 
are in short supply. Promise exists, however, in a number of 
gut hormones with the capability to modify reward behavior 
in preclinical studies2-7. One such hormone is glucagon-like 
peptide 1 (GLP-1). GLP-1 is produced endogenously by 
intestinal L cells and possesses incretin properties in that it 
facilitates glucose-dependent insulin secretion from the pan-
creas8. It also potently reduces feeding and appetite, at least in 
part through a central effect9-11. Interestingly, GLP-1 is also 
produced by a small subset of cells located in a hindbrain 
region known as the nucleus of the tractus solitarius (NTS)12. 
These neurons project to a number of discrete subcortical ar-
eas13, suggesting that GLP-1 as a neuropeptide modifies dis-
tinct signaling pathways in these regions. GLP-1 receptors 
(GLP-1R) are predictably also expressed in the brain14-15. 
 Long-lasting synthetic GLP-1 analogues, including 
exenatide (Ex-4) and liraglutide, have been developed for the 
treatment of diabetes due to GLP-1’s incretin effect. These 
analogues have proven useful in studying the effects of GLP-
1R signaling on behavior, as they resist degradation and cross 
the blood brain barrier16-17. Their effects on feeding behavior 
and even food reward have been reviewed in detail elsewhere1, 

8, 18. The focus of this review, instead, is on the effects of GLP-
1 analogues on behaviors resulting from exposure to drugs of 
abuse, including locomotor activation and both classical and 

operant conditioned reward. This is presented as a follow up 
to a recent review published by our group and others1. This 
review will summarize its major points regarding GLP-1 ana-
logues and chemical drug reward, and build upon its discus-
sion of potential neurobiological substrates. 

GLP-1 Analogues Reduce Reward for Alcohol, Psycho-
stimulants, and Nicotine

 Drug addiction represents a major public health con-
cern. While behavioral therapies and public outreach have 
been moderately effective in approaching this problem19, 
novel therapeutics are necessary to address the neurobiologi-
cal mechanisms responsible for the effects of the drug and ad-
aptations that promote or reinforce drug taking and seeking 
behaviors. Preclinical trials in rodents suggest that the GLP-
1 analogue, Ex-4, reduces the biological effects of alcohol20, 
psychostimulants21-22 (including cocaine and amphetamine), 
and nicotine23, as measured by a reduction in the open-field 
locomotor activation that is normally observed with acute 
administration of all of these drugs24-25. Interestingly, these 
drugs have distinct mechanisms of action but are all known 
to increase extracellular levels of the neurotransmitter, dopa-
mine (DA)26 (Figure 1). Thus, a parsimonious mechanism by 
which Ex-4 attenuates locomotor activation to these different 
drugs might posit that Ex-4 regulates brain DA signaling. 
Convincing evidence for this assertion is presented in the fol-
lowing section.

Glucagon-like Peptide 1 Receptor as a Novel Target for Drug 
Addiction: Preclinical Insights

India A. Reddy

glucagon-like peptide-1; exendin-4; addiction; dopamine; reward

Gut hormones with effects on feeding are rapidly emerging as potent regulators of addictive behaviors through 
direct brain mechanisms. Glucagon-like peptide-1 (GLP-1) is one such hormone. Endogenous GLP-1 is produced 
both by the intestine and by a small subset of neurons in the brain. Long-lasting synthetic GLP-1 analogues have 
been developed to treat diabetes due to their ability to promote insulin secretion. These drugs have proven efficacy 
in diabetes and, interestingly, promote weight loss through brain mechanisms regulating food intake and appetite.  
Recent behavioral studies in rodents have suggested that central GLP-1 receptor agonism additionally promotes 
reductions in “addiction-like” behaviors, including hedonic feeding and alcohol context-reward associations. Here, 
we briefly summarize relevant preclinical studies described in a recent review1, with a particular focus on studies 
examining the effect of GLP-1 analogues on drug reward. We also expand upon this review through a description 
of mechanistic insights gained from recent publications.  

Keywords
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 To determine whether reduced acute drug effects 
also result in attenuated drug reward, studies have been per-
formed in rodents to measure the influence of Ex-4 over 
drug-induced classical and operant conditioned behaviors. 
The behavioral paradigm used to measure classical condi-
tioning to drugs is called the conditioned place preference 
(CPP) test, which measures the rodent’s preference (or aver-
sion) toward an environment paired with the drug during 
a conditioning phase. The testing phase is performed in 
the absence of the drug and measures how much time the 
rodent spends in the drug-paired compartment versus the 
vehicle-paired compartment. Acute administration of Ex-4 
attenuates the expression of CPP for alcohol20,27, cocaine2,22, 
amphetamine22, and nicotine23. Ex-4 pretreatment prior to 
drug administration also reduces the acquisition of alcohol 
CPP20. Such alterations in behavior may be relevant to the 
observation that exposure to drug-associated contexts pro-
motes drug seeking in rodents and potentially also human 
populations28. That Ex-4 modulates both the acquisition of 
CPP and its expression in these preclinical studies suggests 
that we consider its use in preventing the formation of drug-
context associations as well as preventing context-induced 
relapse. 
 Operant conditioning in the context of drug re-
ward refers to the association of a drug with an action that 
promotes acquisition of the drug. The most commonly used 
operant paradigm for measuring drug-motivated behavior 
is a progressive ratio lever press test, in which the drug be-
comes increasingly more difficult to obtain. In other words, 
the number of lever presses required to receive drug increas-
es with progressive trials. Often, a break point, or the maxi-

Figure 1. Long-lasting GLP-1 analogue, Ex-4, attenuates behavioral effects 
of nicotine, psychostimulants, and alcohol in preclinical studies. DAT = 
dopamine transporter; MOA = mechanism of action; CPP = conditioned 
place preference; PR = progressive ratio.

mum number of times an animal will lever press to achieve a 
single drug administration, will be measured. Egecioglu and 
colleagues showed that in addition to reducing alcohol in-
take in a two bottle choice assay, an acute injection of Ex-4 
reduces the number of alcohol rewards earned under this 
paradigm20. This finding is most simply interpreted as a re-
duction in the motivation to work for alcohol as it becomes 
harder to obtain. The authors of this study did not, however, 
report a break point, so this assertion cannot be made with 
complete certainty. 
 The behavioral findings reported from the studies 
described above are summarized in Figure 1. As a whole, 
they support the notion that Ex-4 modulates behavior re-
lated to acute drug effects as well as context-drug associa-
tions and drug-seeking for a diverse array of abused drugs. 
Still, these tests do not address all aspects of drug reward. 
For example, does Ex-4 reduce withdrawal symptoms? Does 
it prevent relapse to drug-taking in a rodent reinstatement 
model? These questions will need to be answered before we 
consider the clinical use of synthetic GLP-1 analogues for 
addiction. Additionally, these studies have not addressed 
the role of endogenous GLP-1 signaling in the behavioral 
response to drugs of abuse. It could reasonably be hypoth-
esized that individual differences in endogenous GLP-1 sig-
naling contribute to altered susceptibility to drug abuse and 
addiction. Studies addressing this topic will require the use 
of GLP-1R antagonists or GLP-1R constitutive or condi-
tional knockout animals.

Mechanisms of GLP-1 Analogue Effect on Drug Reward: 
neurobiological substrates 

 Given that Ex-4 reduces the rewarding properties 
of drugs with different neural targets (receptors or transport-
ers), we asked what mechanism most simply explains this 
phenomenon. DA within the mesolimbic reward system, 
which includes primarily projections from the midbrain 
ventral tegmental area (VTA) to the forebrain nucleus ac-
cumbens (NAc), is released in response to administration or 
consumption of alcohol, psychostimulants, and nicotine, as 
well as food29. Furthermore, DA signaling in particular brain 
regions is necessary for food30 and drug seeking31. Altera-
tions in DA signaling might therefore explain the reward-
attenuating effects of Ex-4 for all of these drugs. Indeed, 
Ex-4 attenuates the accumbal DA response to alcohol20, nic-
otine23, and psychostimulants22, as measured by microdialy-
sis. This finding fits with the locomotor reduction observed 
following drug administration, which is strongly correlated 
with elevations in accumbal DA24. 
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 Several brain regions involved in producing and re-
sponding to DA are implicated in the direct actions of Ex-4. 
The primary mesolimbic reward areas, the VTA and NAc, 
have been shown to express GLP-1R as well as endogenous 
GLP-1 positive terminals13. When microinjected directly 
into the VTA, Ex-4 is sufficient to reduce alcohol intake 
over water in a two bottle choice test27. Ex-4 in the NAc is 
also sufficient to reduce feeding and food reward32, although 
whether the NAc is relevant to drug reward has not been re-
ported. Additionally, the mesolimbic reward system includes 
dopaminergic projections from the VTA to the amygdala33, 
an important emotional processing center in the forebrain. 
A recent study showed that DA in the amygdala regulates 
food intake and food reward and that part of the anorexic ef-
fect of Ex-4 requires D2 DA receptor signaling34. However, 
they were not able to show that the D2 receptor was neces-
sary for Ex-4-mediated reduction in sucrose reward, nor did 
they explore the role of the amygdala in behaviors mediated 
by chemical drugs. Still, this study does suggest that other 
dopaminoceptive areas beyond the NAc deserve attention 
depending on their expression of GLP-1 receptors. 
 While we have presented evidence that DA sig-
naling may be central to the effects of Ex-4 on behaviors 
induced by different drug classes, other neurotransmitters 
may also be involved. Glutamate is another possible neuro-
chemical candidate, as it has been shown to play a critical 
role in the learning processes underlying addiction35, 36. In 
fact, a recent study revealed that non-NMDA type gluta-
mate receptors are necessary for the food intake-suppressive 
effects of Ex-4 in the VTA37. Since DA neurons in the VTA 
receive glutamatergic input from a number of regions38, 
GLP-1R signaling in the VTA could influence dopaminer-
gic neurotransmission via alterations in glutamate signaling. 
Somewhat surprisingly, Ex-4 bath applied to slices increases 
the excitability of VTA DA neurons, perhaps through a pre-
synaptic effect37. This finding is unexpected given that Ex-
4, at least when administered peripherally, attenuates DA 
elevations in the NAc20,22-23. However, given that the brain 
circuits targeted by a systemic Ex-4 injection may be very 
different from bath application to brain slices, these data 
may yet be reconciled. Future work exploring the effects 
of GLP-1 analogues on glutamate receptor signaling, long 
term potentiation or depression, and context- or cue-in-
duced reinstatement to drugs of abuse will help shed greater 
light on the mechanisms by which GLP-1R signaling affects 
drug-elicited changes in neural function and behavior.
 So far evidence suggests that Ex-4 is sufficient to 
reduce drug-associated behaviors when delivered peripher-
ally or to the VTA, but it has not been reported whether any 

particular regions are necessary in mediating the effects of 
systemically administered Ex-4, which would likely be the 
therapeutically relevant route of administration. Further-
more, we do not even know that the GLP-1R is necessary 
for the effects of Ex-4 on drug reward. Addressing these is-
sues would most benefit from targeted deletion of the GLP-
1R in the brain regions mentioned here. Interestingly, while 
the GLP-1R is expressed in the VTA, NAc, and amygdala, 
it does not appear to be highly expressed relative to certain 
other regions13. This observation has led our group to hy-
pothesize that other regions expressing very high levels of 
GLP-1R, such as the lateral septum, may regulate drug re-
ward, perhaps through circuit-level influence over the me-
solimbic reward system39. The results of targeted deletion 
studies will be very telling about the importance of these 
various regions and whether the GLP-1R is the major target 
in these areas.

Conclusion

GLP-1 analogues have demonstrated the ability to 
reduce drug effects, reward, and in some cases motivated 
behavior for drugs of abuse with diverse mechanisms of ac-
tion. The behavioral studies reviewed herein contribute to 
our understanding of which drug-associated behaviors are 
regulated by GLP-1R signaling. However, these authors did 
not address all aspects of drug reward behavior. Future work 
will need to determine how brain GLP-1R signaling influ-
ences drug relapse, which is perhaps the most relevant as-
pect of addictive behavior to human therapy. It will also be 
important to understand GLP-1’s mechanism of action in 
the brain in order to dissect out how it modulates particu-
lar behaviors and to develop novel therapeutics targeted to 
particular neuronal populations or downstream targets. As 
discussed here, GLP-1 as a neuropeptide likely modulates 
signaling by other neurotransmitters like DA and glutamate 
within discrete brain regions and circuits involved directly 
or indirectly in reward. As long-lasting synthetic GLP-1 
analogues are already FDA-approved and on the market for 
the treatment of diabetes, barriers to translating these pre-
clinical findings to clinical therapies are low.
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Introduction to Synaptic Vesicles

 Communication between neurons and their targets, 
be it other neurons or peripheral tissues, occurs at distinct 
sites termed synapses. These sites are important for the ex-
change of chemical information that can be further propa-
gated throughout the nervous system. Dysfunction in syn-
aptic transmission can lead to symptoms associated with a 
variety of diseases, such as Myasthenia Gravis, Alzheimer’s 
Disease, and Huntington’s Disease1-2. As neuronal communi-
cation is essential to proper nervous system function and has 
been implicated in such diseases, it is important to further 
understand synaptic processes. The synapse is composed of 
a pre-synaptic and post-synaptic terminal. The pre-synapse 
is responsible for the storage, release, and recycling of neu-
rotransmitters via synaptic vesicles. This review will examine 
the beginning of vesicle research and how that work led to 
the discovery of heterogeneous populations of vesicles. Ad-
ditionally, this review will summarize the experiments and 
methods that have been used to characterize these popula-
tions of vesicles and will discuss future investigations to de-
fine vesicle pools. 

Discovery of Synaptic Vesicles

 Investigation of the synapse by De Robertis in 1955 
led to the discovery of small vesicles located in pre-synaptic 
terminals of neurons3. This finding was consistent with the 
earlier work of Fatt and Katz that showed neurotransmitter 
release was quantal, indicating a regulated release mecha-
nism4. De Robertis provided a visual representation for this 
phenomenon. Additional evidence verifying this mechanism 
came from freeze-fracture experiments showing vesicle fusion 

with the membrane. This visual evidence was followed by in-
quiry of vesicle formation and maintenance5. 
 Pioneering work by Heuser and Reese succeeded in 
showing how vesicles could be derived from the membrane of 
the pre-synaptic terminal. Incubating neuromuscular junc-
tion preparations with horseradish peroxidase (HRP) allowed 
for the engulfment of these dense molecular markers during 
endocytic processes. Within minutes after stimulation of the 
nerves, large endosomal compartments filled with HRP and 
could be visualized with electron microscopy (EM). These 
endosomal compartments then produced smaller HRP filled 
synaptic vesicles5. Fried and Blaustein conducted similar ex-
periments in isolated central nervous system axon terminals, 
suggesting a common mechanism of vesicular recycling at 
pre-synaptic terminals throughout all of the nervous sys-
tem6-7.
 Experiments involving radioactive neurotransmit-
ters and their precursors have been used to examine transmit-
ter synthesis, but they have also been used to uncover vesicle 
population differences. Experiments that employed the use 
of radioactive acetylcholine to fill synaptic vesicles were able 
to show which vesicles had undergone endocytosis. Zimmer-
man et al. were able to separate membrane docked vesicles 
and undocked vesicles, allowing a separation of radiolabeled 
vesicles. The sequestration of radioactivity inside vesicles was 
concentrated to the fraction of vesicles that were closest to 
the membrane9. These experiments gave rise to the idea that 
not all vesicles in the pre-synaptic terminal were the same; 
there was heterogeneity among the population of synaptic 
vesicles. 
A major breakthrough in understanding these different vesicle 
populations came with the work of Neves and Lagnado. They 
quantified the endo- and exocytotic differences of vesicles us-

Pre-Synaptic Vesicular Pools: From Discovery to Characterization
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ing FM dyesa and electrophysiology techniques to observe 
both of these events simultaneously. The existence of three 
seemingly distinct vesicle pools was the main conclusion of 
the Neves et al. study. Short durations of electrical stimu-
lation led to two pools of vesicles that are exocytosed and 
enodcytosed rapidly. Longer or stronger stimulation rates 
revealed a third pool of vesicles exocytosed more slowly11 

(Figure 1). These first two pools are named the readily re-
leasable pool (RRP) and recycling pool and the final, and 
largest of the pools, is termed the reserve pool. Subsequent 
research using the three-pool model, has tried to further de-
scribe what distinguishes each pool from the other. 

Structure, Function, and Molecular Aspects of Vesicle 
Pools

Many decades of research have gone into character-
izing the structural and molecular identities of the function-
ally defined vesicular pools. 

Structure
 The idea of different vesicle pools assumes that there 
are distinguishing characteristics of the individual groups. 
As mentioned above, De Robertis et al. observed vesicles 
in the pre-synaptic terminal, but there were no distinctive 
identifications separating the vesicles from each other in his 
images3. Using EM and computational reconstructions to 
visualize hippocampal synapses, it was observed some vesi-
cles were organized. These studies revealed a positive linear 
relationship between active zone size and the number of ves-
icles docked. Though variable between individual synapses, 
these properties maintain an approximate proportional re-
lationship to each other12. This work narrowed in on the 
readily releasable pool and how they represent the docked 
vesicles at the active site and how, with more space, more 
vesicles could be a part of this pool. 
 3-D Reconstruction of EM work was an important 
technique in analyzing vesicle organization in different parts 
of the terminal, but it did not address how the majority of 
the other vesicles were arranged in relation to each other. 
More recently however, advanced techniques have enabled 
researchers to use photo-convertible FM dyes that are visible 
with EM13. In 2012, Marra et al. used this technique to fill a 
subset of vesicles and then observed their spatial relationship 
to the membrane, as well as other vesicles. However, vesicle 
organization proved to be more complex than just spatial 
tiers of availability. The elegant reconstructions from hip-
pocampal synapses showed that many of the vesicles were 
dispersed heterogeneously throughout the terminal14 (Figure 

a� FM dyes are lipophilic styryl dyes that fluoresce in the acidic conditions of 
synaptic vesicles or endosomal compartments10.

Figure 1. Three synaptic pool model. Reprinted with permission, 
Rizzoli and Betz46.

2). 

Function
 Electrophysiology experiments can be used to un-
cover the differences in synaptic vesicle release. More specifi-
cally, by monitoring post-synaptic terminal response, kinet-
ic changes of the pre-synaptic terminal can be determined. 
Pre-synaptically, capacitance measures can detect exocytotic 
and endocytotic events15-16. A more rapid recovery of rest-
ing capacitance can be seen after brief stimulations, whereas 
longer stimulations lead to longer times of recovery17. Dif-
ferences in rates discovered by capacitance measures indi-
cate multiple mechanisms of endocytosis, which could be 
due to differences in trafficking mechanisms18. Capacitance 
measurements have been useful in elucidating recycling 
rates of vesicles, but do not explain why these differences 
in recycling exist. Using electrophysiology in conjunction 
with fluorescent imaging provides structural and functional 
data of synaptic vesicles and produces a more complete pic-
ture of vesicle pool recycling. 
 The onset of a green fluorescent protein (GFP) 
variant that is sensitive to pH (pHluorin) allowed for the 
combinations of optical imaging and electrophysiology. 
Through genetic manipulation, neurons can express pHlu-
orin conjugated synaptic vesicle proteins. Miesenböck et 
al. explored this technique and found that simultaneous 
post-synaptic and pre-synaptic events could be recorded19. 
pHluorin proteins fluoresce when they are in the presence 
of a neutral pH, such as  the extra-synaptic space. However, 
acidification quenches the fluorescence signal upon endo-
cytosis and the reformation of synaptic vesicles or endo-
somes. This process is similar to FM dyes, which are also 
pH sensitive. Because the fluorescence signal is attached to a 
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particular protein, it is possible to monitor subsets of vesicle 
populations that have differential protein expression. 
 Tabares et al. utilized this technique in transgenic 
mice expressing synaptobrevin, a synaptic vesicle protein, 
conjugated to a pHluorin (synaptopHluorin). Monitoring 
fluorescence at the neuromuscular junction (NMJ) showed 
distinct hot spots of release, which corresponded to areas of 
intense endocytosis, indicating two possible sites of these 
activities. Moreover, Tabares et al. was able to monitor spon-
taneous and evoked end plate potentials (EPPs) while ob-
serving fluorescent changes, revealing a positive correlation 
between the fluorescence changes (indicating exocytosis) 
and post-synaptic response to neurotransmitter release20. 
The work with synaptopHluorin, in conjunction with elec-
trophysiology techniques, also proved informative about 
the release differences that are seen with various stimulation 
paradigms. Additionally, the information regarding vesicle 
release can be combined with recycling data of the pre-syn-
aptic terminal, which is vital to achieve an overall picture 
of synaptic vesicle function. However, the question of how 
the vesicles themselves, on a protein level, are different still 
remains. Researchers interested in this question have sought 
to characterize vesicle pools based on molecular characteris-
tics, such as differential protein expression.   

Molecular
There are a variety of proteins that are inserted into 

the lipid bilayer of synaptic vesicles, interact with vesicles, 
and allow exo- and endocytosis of vesicles. Researchers have 
attempted to characterize these interactions and proteins in 
order to uncover the mechanism by which vesicle pools ex-
ist. Work on key proteins showing preferential interactions 
with individual vesicle pools are examined below.

Cytoskeleton proteins
 The probability for release was what initially de-
fined different vesicular pools. Actin’s role in mobilization 
in most cells makes it a candidate as potentially limiting or 
increasing a vesicle’s release capabilities. Work by Sanka-
ranarayanan et al. found that actin’s contribution within the 
pre-synaptic terminal is one of scaffolding and not vesicle 

Figure 2. Recycling pool visualization. EM micrograph (left) and 3D 
reconstruction (right) of frog motor nerve terminal. The recycling 
pool (purple on right) is intermixed in the terminal. Reprinted with 
permission from Rizzoli and Betz46.

mobilization. Using FM dyes and pharmacological inter-
vention, Sankaranarayanan et al. determined that elimina-
tion of activity dependent dynamics of actin did not change 
the recycling pattern of synaptic vesicles. It was observed, 
however, that by disrupting actin, synapsin no longer local-
ized to the correct place21. These results indicated that syn-
apsin’s role in the pre-synaptic terminal may be important 
with regard to vesicle organization. 
 Synapsin proteins are cytoskeletal proteins that 
have been shown to interact with synaptic vesicles, as well 
as with actin21-23. Synapsin is localized within the pre-syn-
aptic terminal, and more precisely located distally from the 
plasma membrane as shown by De Camilli et al. and Hiro-
kawa et al.24-25. Location of synapsin away from the plasma 
membrane could indicate that its interactions with vesicles 
are limited to only those that are not docked or primed on 
the plasma membrane. Characterization of the synapsin 1 
knockout mouse (KO) showed few overall changes in phe-
notype, but structural changes of the synapses were observed 
using EM26. Fewer synaptic vesicles were observed in the 
synapsin 1 KO, but an even more dramatic loss was seen 
with two isoforms of synapsin knocked out26-27. In 2012, 
Orenbuch et al. showed that synapsin interacts with reserve 
pool vesicles more than with the recycling pool, and acts 
to immobilize the reserve pool28. Research on synapsin’s 
and actin’s interaction with synaptic vesicles and each other 
shows that cytoskeleton interactions have very particular 
roles within subsets of vesicles or with a specific pool, espe-
cially in regards to synapsin. These differential interactions 
with cytoskeletal proteins may be due to proteins that are 
expressed on the surface of the vesicles, which could vary 
from pool to pool.

Vesicular proteins 
 In addition to cytoskeleton proteins, vesicular pro-
teins embedded in the membrane of vesicles likely contrib-
ute to different vesicle pools. There are proteins that are 
common to all vesicles (e.g. vesicular transporters and fusion 
machinery), but one hypothesis predicts that some proteins 
only exist on vesicles in a particular pool to define the pool’s 
functional role. Investigation of the vesicle associated mem-



VOLUME 6 | 2014 | 106 VANDERBILT REVIEWS NEUROSCIENCE

C A N D I D A T E 
R E V I E W S
brane protein 7 (VAMP7) has shown to only reside on a 
subset of vesicles. This protein is a member of the soluble 
N-ethylmaleimide-sensitive factor attachment protein re-
ceptor (SNARE) complex, which is involved in fusion to 
the plasma membrane for neurotransmitter release29. Rob-
ert Edwards and colleagues showed VAMP7 associated with 
vesicles in the pre-synaptic terminal, but also that VAMP7 
positive (VAMP7+) vesicles hold different properties com-
pared to vesicles expressing VAMP2, a distinct VAMP iso-
form. VAMP7+ vesicles were shown to endocytose at differ-
ent rates when compared to VAMP2+ vesicles30. The VAMP 
isoform differences seen by Edwards et al. emphasizes the 
subtle differences between vesicle pools and suggests that 
particular proteins can dictate vesicle pool properties.
 Molecular differences not only in fusion proteins, as 
seen with the VAMP7 work, but also in endocytic interact-
ing proteins could be the key in elucidating molecular dif-
ferences in vesicular pools. As described before with Heuser 
and Reese’s work, endocytosis plays a crucial role in synaptic 
vesicle recycling and in maintaining the vesicle population5. 
Clathrin-mediated endocytosis is the main form of endo-
cytosis in the pre-synaptic terminal31. This highly regulated 
process requires many proteins to effectively endocytose the 
proper regions of membrane and proteins to form synaptic 
vesicles. The clathrin adaptor proteins (APs) are able to find 
the appropriate cargo (i.e. proteins) through endocytic mo-
tifs, like tyrosine motifsb or dileucine motifsc that are present 
on cytosolic domains of proteins. APs also possess different 
trafficking patterns from the plasma membrane34-36. This 
confers nicely with previously mentioned evidence of the 
different recovery rates of vesicles. AP-2 has been shown to 
mediate direct synaptic vesicle reformation from the plasma 
membrane, whereas AP-3 first forms endosomal compart-
ments, then vesicles bud off from those endosomes. Poten-
tial patterns of trafficking, indicated by the specific adaptor 
protein interaction, could dictate the vesicle pools and iden-
tities of vesicles. 
 Studies with the vesicular glutamate transporter 
(VGluT) have shown interesting results using vesicular 
proteins and endocytic processes that further elucidate dis-
crepancies between different kinds of vesicle pools. There 
are three main isotopes of VGluT (1-3) that have comple-
mentary expression throughout the brain, and different re-
lease kinetics37. Voglmaier et al. hypothesized endocytic traf-
ficking differences between the isoforms was responsible for 
these observed kinetic differences. By examining cytosolic 

b�  The sequence typically associated with a tyrosine motif is Yxxϕ (where Y 
denotes tyrosine, x a polar residue, and ϕ a large hydrophobic side chain)32.

c� A dileucine motif amino acid sequence is KVNEQSPLLHN33. Many times 
there are deviations, but typically acidic residues will precede the leucine portion 
of the sequence. 

amino acid sequences, it was found that VGluT1 contains 
two polyproline (PP) motifs, which VGluT2 and VGluT3 
lack. PP motifs can interact with endophilins, which are im-
portant to clathrin-mediated endocytosis because of their 
role in facilitating membrane curvature38. The PP motif also 
requires a dileucine endocytic motif to be fully functional 
and traffic VGluT-positive vesicles properly. As mentioned 
earlier, dileucine motifs can be vital for providing proper 
AP interactions. The fact that the isoforms of VGluTs have 
different motifs and therefore different trafficking patterns 
brings an interesting new line of research to the forefront. 
Proteins on the vesicles, as well as the motifs they harbor, are 
important for distinguishing the different vesicle pools18.

Choline Transporter’s Role in Vesicular Pool Trafficking

 Studies on other vesicular proteins may lead to fur-
ther insights regarding the differentiation of vesicular pools 
in distinct neuronal populations. One such protein within 
cholinergic neurons is the high-affinity choline transporter 
(CHT). CHT is responsible for transporting choline from 
the synaptic space after acetylcholine metabolism back into 
the presynaptic terminal, so it can be used to resynthesize 
acetylcholine8. CHT and its role in choline replenishment is 
seen as the rate-limiting step in acetylcholine synthesis39-42. 
Most neurotransmitter transporters (e.g. dopamine trans-
porter, serotonin transporter, etc.) are largely localized at 
the surface of the pre-synaptic terminal, but CHT is mainly 
located intracellularly on synaptic vesicles or endosomal 
compartments40. Conclusions from immuno-depletion ex-
periments show all vesicles contain the vesicular acetylcho-
line transporter (VAchT), but only about half of the vesicles 
actually contain CHT40. This novel finding indicates CHT 
could be part of defining the heterogeneity of vesicles within 
cholinergic neurons. 
 Additionally, the localization and endocytic traf-
ficking of CHT could suggest inherent differences about 
this transporter that allows for its presence on only a subset 
of vesicles. Further research of CHT has led to the discov-
ery of a dileucine-like motif present in the C-terminal tail 
of the transporter43. Discussed earlier, dileucine motifs are 
AP binding sites for clathrin-mediated endocytosis.  Further 
understanding of CHT’s endocytic trafficking based on AP 
interactions may delineate what separates CHT-positive and 
CHT-negative vesicles from each other. Work by Misawa et 
al. has already shown interaction between AP-3 and CHT44. 
Continued exploration into this interaction could be benefi-
cial in further understanding vesicle pool formation in cho-
linergic neurons. Studies from VGluT and CHT allow for 
new directions of vesicle identity research. Examination of 
vesicular proteins and the interactions they make could be 
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the final step in elucidating the differences among the pools 
of vesicles in the pre-synaptic terminal. 

Conclusion
 
 Synaptic vesicles package, store, and release neu-
rotransmitters from the pre-synaptic terminal. All of these 
functions are essential for proper neuronal signaling in the 
nervous system. Research over the past half century has been 
dedicated to examining these vesicles more closely to elu-
cidate their functions and organizations. Early studies re-
vealed the existence of synaptic vesicles, which could explain 
the quantal release phenomenon first observed by Fatt and 
Katz4,5,45. Further research into vesicle recycling and exocy-
tosis led to the observation that vesicles were actually part of 
three distinct pools11,46. Characterization of these pools, by 
structural or molecular methods, defined distinct roles by 
proteins of the pre-synaptic terminal18,28,30. These elegant ex-
periments have been useful and informative, but still many 
questions are left unanswered. Future studies on CHT could 
further define a mechanism of vesicle pool organization and 
sorting within cholinergic neurons.
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 Schizophrenia has a lifetime prevalence of approxi-
mately 1% in the general population1. It usually presents in 
early adulthood2 and is characterized by positive symptoms 
including delusions and hallucinations, negative symptoms 
including anhedoniaa and avolitionb, and cognitive symp-
toms including memory deficits and social impairment. 
Schizophrenia is defined on a temporal continuum with 
schizophreniform disorderc, which usually converts into 
schizophrenia. These illnesses have been termed “chronic dis-
orders of the young”3 and are projected to be a significant 
health burden in industrialized and rapidly industrialized re-
gions when measured via disability-adjusted life years4. Even 
though schizophrenia has been well documented in the lit-
erature for over a century5-6, it was not until 1985 that the 
hippocampus, a medial temporal lobe structure, emerged as 
an area significantly affected in the disease.

Structural changes of the hippocampus in schizophrenia

 In a landmark study in 1985, Bogerts examined 
post-mortem limbic structures in healthy controls and pa-
tients with schizophrenia. The morphometric study illus-
trated reduced hippocampal volume in schizophrenia7. Using 
non-invasive magnetic resonance imaging (MRI) techniques, 
researchers have characterized in vivo structural alterations 
in individuals with chronic schizophrenia including en-

a� Anhedonia: inability to experience pleasure from activities normally found to be 
pleasurable

b� Avolition: lack of motivation or drive to pursue meaningful goals

c� Schizophreniform disorder: mental disorder diagnosed when the symptoms of 
schizophrenia are present for at least one month but less than six months 

larged lateral ventricles and reduced medial temporal lobe 
volume8-9, most notably involving the hippocampus8,10,11. 
Meta-analyses have supported these findings by consistently 
reporting reductions in hippocampal volume in schizophre-
nia12-13. However, many of the studies include patients who 
have been treated with antipsychotic medications, and it is 
difficult to determine whether the finding of reduced hip-
pocampal volume is secondary to the illness or its treatment. 
 Several groups aimed to determine whether the hip-
pocampal volume changes seen in chronic schizophrenia are 
present early in the illness during the first psychotic break 
(‘first-episode psychosis’) or in individuals at a high risk of 
converting to a psychotic illness (‘ultra-high-risk group’). The 
literature on hippocampal volume in first-episode psychosis 
is mixed. Some report reduced volume14-15, while others do 
not16-18. Two meta-analyses both illustrate reduced hippo-
campal volume in first-episode psychosis19-20. However, the 
authors caution that the studies in the meta-analysis have 
potential confounds, including possible medication effect 
and different duration of undiagnosed illness. These can be 
serious confounders if the changes occur in close temporal 
proximity to the onset of the illness. In an effort to better 
understand hippocampal volume changes, some research 
groups have investigated individuals before they present with 
psychosis. Through the use of clinical assessment tools, these 
individuals are categorized as being in an ultra-high-risk 
group and have about a 30% risk of becoming psychotic21. In 
a longitudinal study examining structural changes in ultra-
high-risk individuals who eventually develop psychosis and 
group-matched healthy individuals, notable changes were ev-
ident in many areas of the brain, including bilateral cingulate 
gyri and left parahippocampal gyrus21. This study highlights 
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Schizophrenia affects 1% of the general population and is characterized by positive symptoms, negative symptoms, 
and cognitive deficits. Within the last 20 years, the hippocampus has emerged as an intense area of investigation. 
In this review, the structural and functional changes seen in chronic schizophrenia, first-episode psychosis, and 
ultra-high-risk individuals are reviewed. These results are provided in the context of emerging literature that has 
focused on a sector-dependent pathology in the hippocampus. Finally, these findings are placed into a perspective 
of the hippocampus interacting with other brain regions to illustrate how hippocampal dysfunction can lead to a 
larger circuit abnormality that affects executive function and long-term memory.
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that volume changes occur when individuals first convert to 
psychosis from an ultra-high-risk group. However, due to 
the small sample size, varying scan interval, and medication 
effect, no definite conclusions can be drawn about hippo-
campal volume changes early in the disease process. Much 
research is still needed to determine when these structural 
changes occur in the course of the illness.
 There is emerging literature that attempts to better 
understand the location of the volume changes within the 
hippocampus. Before reviewing the literature on this topic, 
a brief review of hippocampal anatomy is necessary. The 
longitudinal axis of the hippocampus can be divided into 
anterior and posterior parts. The anterior hippocampus con-
tains the uncus, which is defined as a folding over and rota-
tion of the anterior portion of the hippocampus that occurs 
during brain development22. Thus, the anterior hippocam-
pus is defined as containing more than one cut through the 
hippocampus (due to the uncus) in the coronal view23. From 
the lamellar hypothesis of hippocampal organization, the 
hippocampus can also be viewed as a series of independent, 
transverse slices stacked along the longitudinal axis24. Each 
transverse slice of the hippocampus contains several sectors, 
including the subiculum, cornu Ammonis 1 (CA1), CA2, 
CA3, CA4, and the dentate gyrus. These regions are con-
nected to the entorhinal cortex through an intrinsic system 
called the tri-synaptic pathway (see Figure 1). The entorhi-
nal cortex receives inputs from polymodal association corti-
ces25 and sends excitatory, glutamatergic projection fibers via 
pyramidal cells to the hippocampus and dentate gyrus. The 
glutamatergic fibers either project directly to the CA1 sector 
of the hippocampus (direct pathway) or project indirectly to 
the CA1 sector by traveling through the dentate gyrus and 
CA3 sector (indirect pathway)26. Fibers from the CA1 sector 
then project to the subiculum and other brain regions. To-
gether, the transverse and longitudinal axes can allow for the 
hippocampus to be examined through a three-dimensional 
coordinate system (e.g., left anterior CA1, right posterior 
subiculum), especially in the context of disease states such 
as schizophrenia.
 Further investigation into specific regions within 
the hippocampus in schizophrenia has been revealing. In 
a cross-sectional study investigating ultra-high-risk indi-
viduals, first-episode psychosis, and chronic schizophrenia, 
Velakoulis et al. found that patients with chronic schizo-
phrenia have bilaterally reduced hippocampal volume while 
patients with first-episode schizophrenia have selective 
left hippocampal volume reduction compared to control 
subjects14. Interestingly, patients with first-episode schizo-
phreniform disorder and the ultra-high-risk individuals 
did not have reduced hippocampal volume14. This was an 
important finding given that the first-episode schizophreni-

Figure 1. Hippocampal tri-synaptic pathway. The hippocampal tri-synap-
tic pathway is shown in solid lines. Dashed lines represent direct projec-
tions from the entorhinal cortex (EC) to CA3 and CA1. DG = dentate 
gyrus, sub = subiculum. Reprinted with permission Tamminga et al. 
Schizophrenia bulletin 2012.

form group differed from the first-episode schizophrenia 
group only in duration of illness. The authors interpret 
these results to suggest that the left hippocampus is affected 
early in the illness, and right hippocampal volume reduc-
tion reflects illness duration. Other studies have shown that 
the anterior, but not the posterior hippocampus, is affected 
in schizophrenia27-28. Post-mortem studies have illustrated 
molecular pathology within sectors CA3, CA4, and the su-
biculum, with very little pathology in the CA1 sector (re-
viewed in 29). Recently, shape analyses have been conducted 
in the hippocampus to determine sector-specific changes in 
schizophrenia. Studies have reported volume reductions in 
the anterior and midbody CA1 and CA2 subfields30, pos-
terior hippocampus31, and both anterior and posterior hip-
pocampus32. The results provide useful information about 
hippocampal shape in schizophrenia but are difficult to in-
terpret given population heterogeneity and different shape 
modeling methods. 

Functional changes of the hippocampus in schizophre-
nia

 The structural changes in the hippocampus in 
schizophrenia are not without functional consequences. 
The hippocampus is responsible for declarative memory and 
spatial navigation33-34. Meta-analyses of functional deficits in 
schizophrenia have illustrated significant memory impair-
ment35-36, especially declarative memory37. Further studies 
have shown abnormal hippocampal recruitment in schizo-
phrenia38-39. In a transitive inference task, healthy controls 
and patients with schizophrenia had to learn a hierarchical-
ly-organized paradigm (A>B, B>C, C>D, and D>E). They 
were then tested on the non-relational (A>E) and the rela-
tional (B>D) pairs. Patients with schizophrenia performed 
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just as well as controls performed on the non-relational pair, 
but they were less accurate than controls on the relational 
pair40. Several studies have shown that declarative memory 
deficits are present in first-episode schizophrenia41 and even 
before the diagnosis of schizophrenia can be made42. How-
ever, not all studies have shown memory deficits in the early 
stages of psychosis16, highlighting the significant population 
heterogeneity under the diagnosis of schizophrenia. 
 It is important to recognize that the hippocampus 
is not one homogeneous functional unit. Just as the hip-
pocampus can be partitioned into several structural units, it 
is currently accepted that the hippocampus is divided into 
several functional modules, with each subfield of the hippo-
campus participating in a different task43 (see Figure 2). The 
entorhinal cortex functions in brief memory retention44, 
and the subiculum is responsible for memory retrieval. The 
CA1 sector is responsible for input integration (comparing 
old and new stimuli); the CA3 is responsible for pattern 
completion (retrieving information based on partial cues)45; 
and the dentate gyrus is responsible for pattern separation 
(distinguishing between similar events at different time pe-
riods)46. These modules work together to process and route 
multisensory information for long-term storage in the cor-
tex.
 Given the different functions within each sector of 
the hippocampus, it should not be surprising that research-
ers have utilized high-resolution spatial imaging techniques 
to test hypotheses involving sector-dependent pathology in 

Figure 2. Sector-specific function of the hippocampus.The entorhinal cortex 
(EC) is responsible for brief retention in hippocampal-dependent mem-
ory tasks, and the subiculum (sub) is involved in retrieval of memories. 
The CA1 sector is responsible for input integration, the CA3 has a role 
in pattern completion, and the dentate gyrus (DG) is involved in pat-
tern separation. Reprinted with permission Small et al. Nature reviews 
Neuroscience 2011.

schizophrenia. Examination of sector-dependent functional 
activity within the hippocampus arose out of an apparent co-
nundrum: resting-state (baseline) positron emission tomog-
raphy (PET) scans have shown increased hippocampal re-
gional cerebral blood flow, a correlate of neuronal activity47, 
while functional tasks have illustrated decreased task-depen-
dent hippocampal activation (reviewed earlier). In order to 
resolve this apparent paradox, it has been recently suggested 
that the two are related: decreased hippocampal activation is 
due to increased perfusion at baseline39,48. Several lines of in-
vestigation support this idea, although the literature is quite 
mixed on the individual sectors. One group has suggested 
that there is increased activity within the CA3 sector49. If 
this occurs in the context of a partial dentate gyrus failure, 
which would create specious associations, then CA3 hyper-
activity can lead to increased pattern completion, resulting 
in delusions or psychosis49. Another group has implicated 
CA1 sector hyperactivity in schizophrenia. Through the use 
of a functional MRI (fMRI) variant that measures resting-
state (baseline) cerebral blood volume (CBV), a proxy of 
neuronal activity, the authors were able to illustrate several 
key findings: CBV is increased in the anterior CA1 subfield 
of the hippocampus, baseline CA1 CBV differentially pre-
dicts progression to psychosis from an ultra-high-risk group, 
and that antipsychotic medications do not likely confound 
the results50. This finding has significant implications given 
the CA1 sector’s function in novelty detection. Hyperactiv-
ity within the CA1 sector can lead to incorrect assessment 
between memories that are stored in the hippocampus and 
new memories that are processed through the entorhinal 
cortex. Since all parts of the tri-synaptic pathway need to 
be intact to allow the hippocampus to function properly, 
dysfunction in the CA1 sector can lead to memory distur-
bances seen in schizophrenia39,51-52. In a follow-up study by 
the same group, they found that ultra-high-risk subjects 
have hyperactivity in the CA1 sector, which then spreads to 
the subiculum after psychosis onset53. They further illustrate 
that hyperactivity of the CA1 sector predicts eventual hip-
pocampal volume loss in that sector, signifying that hippo-
campal hyperactivity may serve as a functional marker that 
precedes volume loss53. This research has started a new area 
of investigation that will hopefully lead to a better under-
standing of sector-dependent pathology in schizophrenia. 

Functional implications for other brain regions

 Anatomical studies in rats, cats, and non-human 
primates unequivocally show that the hippocampus is con-
nected to many other brain structures. The connectivity of 
the hippocampus is quite distinctive, with the anterior hip-
pocampus having a different connectivity profile than the 
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posterior hippocampus (see Figure 3). Here the focus of the 
differential connectivity will be on the major outputs of the 
hippocampus: the CA1 sector and the subiculum. The an-
terior (ventral in mice) CA1 sector projects to the olfactory 
bulb; the anterior CA1 and subiculum both project directly 
to the periventricular and dorsomedial zones of the hypo-
thalamus, the caudomedial portion (shell) of the nucleus ac-
cumbens, the bed nucleus of the stria terminalis, the amyg-
dala, and the medial prefrontal cortex54. This connectivity 
profile is believed to allow the hippocampus to modulate 
emotion and affect. Meanwhile, the posterior (dorsal in 
mice) CA1 sector and subiculum send multisynaptic pro-
jections to the retrospleniald and anterior cingulate corti-
ces54.  Furthermore, the posterior subiculum projects to the 
anterior thalamic complex, medial and lateral mammillary 
nuclei, the rostolateral portion of the nucleus accumbens, 
and the rostral caudoputamen in mice54. The connectivity of 
the posterior hippocampus to other brain regions facilitates 
cognitive processes such as spatial memory, navigation, and 
exploration54.
 The differential connectivity profile of the hippo-
campus may have some significance in schizophrenia. Al-
though it is unclear which brain region is the first to be in-
volved in the disease, the structural and functional changes 
that occur in the hippocampus in first-episode patients sug-
gests that the hippocampus is at least one of the primary 
affected regions. A couple of recent studies have shown how 
changes in the CA1 sector correlate with positive symptoms 
in schizophrenia50,55, illustrating the possibility that these 
symptoms could be due to downstream consequences (func-
tional and eventually structural) in many different areas of 

d� Retrosplenial region: part of the cingulate cortex defined by Brodmann areas 
26, 29, and 30

Figure 3. Major projections from the hippocampus to oth-
er brain regions. The anterior and posterior hippocam-
pus have different connectivity patterns. The anterior 
hippocampus is believed to regulate mood and affect 
while the posterior hippocampus is involved in spatial 
memory and navigation. BNST = bed nucleus of the 
stria terminalis

the brain, including the amygdala, medial prefrontal cortex, 
and orbitofrontal cortex. Mechanistically, in rats, excess glu-
tamate from pyramidal neurons has been shown to stimu-
late the nucleus accumbens to inhibit the ventral pallidum, 
resulting in a loss of inhibition to the ventral tegmental area 
(VTA)56-58. Decreased inhibition to the VTA leads to dysreg-
ulated dopamine release into several locations, including the 
hippocampus and prefrontal cortex; this may manifest as 
positive and negative symptoms of psychosis59. Examination 
of the white matter tracts in the brain using diffusion tensor 
imaging has suggested abnormal connectivity between fron-
tal and temporal lobes, mainly in the uncinate fasciculus, 
cingulum bundle, and the arcuate fasciculus60. Using fMRI 
to examine functional circuits involving the hippocampus, 
researchers have shown that patients with schizophrenia 
have either non-optimal activation or recruit other brain 
regions in tasks that probe executive function and memory. 
For example, in a working memory and long-term memory 
task using nonverbal and verbal stimuli, impaired activation 
of the right dorsolateral prefrontal cortex and the medial 
temporal lobe was found in both tasks in schizophrenia61. 
In another study that investigated error monitoring, healthy 
controls activated the anterior cingulate, the right medial 
frontal, and the left posterior parietal cortex while there was 
no error-related increase in brain activity in patients with 
schizophrenia62.  This suggests reduced error sensitivity in 
schizophrenia. Thus there are structural and functional ab-
normalities between the hippocampus and other brain re-
gions connected to the hippocampus, although the use of 
antipsychotic medication remains a significant caveat. Lon-
gitudinal studies that chart progression from the early stages 
of psychosis into chronic schizophrenia will shed light upon 
the timeline of structural and functional changes in the hip-
pocampus and other brain regions.  
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Conclusion

It has been over 100 years since schizophrenia has 
been characterized. After the initial discovery of the hippo-
campus as an area of dysfunction in schizophrenia, many 
imaging studies have investigated the structure and function 
of this medial temporal lobe structure. It is quite clear that 
the hippocampus is reduced in chronic schizophrenia. Im-
paired hippocampal recruitment during related functional 
tasks is thought to be due to increased baseline activity.  In 
both cases, it is unclear when in the natural history of the 
disease these functional and volumetric changes occur in the 
hippocampus.

Recent advances have been made on two fronts. 
The first is focusing on sector-dependent pathology in the 
hippocampus, and the second is capturing structural and 
functional changes in the hippocampus in ultra-high-risk 
and first-episode individuals. Longitudinal studies that en-
compass the progress of both of these areas will be necessary 
to better understand the disease progression. If indeed there 
are functional changes preceding structural changes that can 
be examined using non-invasive imaging techniques, as sug-
gested by recent literature, then future therapies may be de-
signed to intervene early in the disease before notable struc-
tural changes occur in the hippocampus and other brain 
regions. This may reduce the social and economic burden 
associated with treating a chronic disease.
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 Calcium (Ca2+) ions play an important role in regu-
lating a variety of neuronal processes1-3. Ca2+ concentrations 
are tightly controlled and changes can be restricted to a con-
fined subcellular compartment to perform a specific func-
tion4. Subcellular Ca2+ levels are regulated by multiple events: 
extracellular influx through Ca2+ channels5, release from 
ER6,7, reverse transportation by Ca2+ pumps and exchangers8, 
as well as buffering by intracellular organelles or molecules9. 
This review will focus on the voltage-gated calcium channels, 
which mediate extracellular Ca2+ influx down the electro-
chemical gradients upon membrane depolarization. The pro-
cesses these channels regulate are as diverse as neurotransmit-
ter release10, repetitive firing11, gene regulation and synaptic 
plasticity12. I will first give a brief overview of voltage-gated 
calcium channels (VGCCs) and then focus on one family: 
the L-type calcium channels (LTCCs), which play an im-
portant role in synaptic plasticity and gene regulation. I will 
discuss the multi-layer regulations of LTCCs and functions 
of LTCCs in the brain. For a more general article of VGCCs 
and their regulations and functions, please refer to the 2011 
review by Catterall13. 

VGCC Overview: classification and molecular compo-
nents

VGCC classification

 Ca2+ channels were identified through different 
types of currents they mediate. There are six types of Ca2+ 
currents based on electrophysiological and pharmacological 
criteria14. Among these, L-type currents are sensitive to dihy-
dropyridines; P/Q-type and N-type currents are sensitive to 
w-agatoxin and w-CTx-GVIA, respectively5. Table 1 is a brief 
summary of the six Ca2+ current types and their correspond-
ing channels.

Molecular components of VGCCs
 The different types of Ca2+ currents are determined 
by the pore-forming a1 subunits (Table 1). Biochemical pu-
rifications show that a channel comprises a pore-forming a1 
subunit, an intracellular b subunit, and a highly-glycosylated 
a2 subunit which is disulfide-linked to a trans-membrane d  
subunit. In skeletal muscles and cardiac myocytes, there is 
also a four-transmembrane g subunit, which is not present in 
neuronal Ca2+ channels15.
 The a subunit contains four domains (I to IV), each 
of which has six transmembrane segments (S1 to S6). The 
voltage sensor locates in S4 of each domain, and the pore is 
formed by S6. Ten a1 subunits are divided into three fami-
lies based on their structural and phylogenic relationships. 
The amino acid sequences are more than 70% identical 
within a family but less than 40% identical among fami-
lies14. b subunits bind to the intracellular loop between do-
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main I and II of a1 subunits (a-interacting domain, AID, 
Fig.1)16. This antagonizes an ER retention signal within the 
I-II loop and therefore promotes the surface expression of 
the a1 subunit17. In addition, b subunits also modulate 
the inactivation kinetics and the opening probability of the 
Ca2+ channels (see below). g  subunits seem to enhance the 
voltage-dependent inactivation of the channel and reduce 
the Ca2+ currents18, 19. a2-g  subunit has little effect in het-
erologous cells but is shown to be the target of antiepileptic 
drugs that reduce neurotransmitter release and neuronal ex-
citability20.

Regulation of LTCCs 

 LTCCs play an important role in synaptic plasticity 
and gene regulation. The selective influx through LTCCs is 
therefore tightly controlled. In this section, multiple types of 
LTCC regulation will be addressed: 1) calcium-dependent 
inactivation; 2) calcium-dependent facilitation; 3) alterna-
tive splicing and proteolysis. LTCCs also undergo slow volt-
age-dependent inactivation21, which will not be discussed 
in detail here. It should be pointed out that, although most 
studies have only isolated and examined one type of regula-
tion, different regulation types may interact with each other 
to generate diversified channel regulation.

Calcium-dependent inactivation 
 Calcium-dependent inactivation of Ca2+ channels 
was first discovered by Brehm and Eckert in Paramecium22. 
When applied a sustained depolarization, the channel dis-
plays inward Ca2+ currents with a rapid decrease within 10 
milliseconds, a phenomenon not seen when using Sr2+ or 

Table 1. Ca2+ currents and corresponding Ca2+ channels. 
Abbreviations: sk. muc.: skeletal muscle; car. muc.: car-
diac muscle; endo. cell, endocrine cells

Ba2+ as charge carrier. This inactivation can also be manifest-
ed using a double-pulse depolarization protocol; the peak 
amplitude of the Ca2+ currents elicited by the second pulse 
is dependent on the amplitude of Ca2+ currents generated by 
the first one23. Although the exact physical process underly-
ing CDI is still not clear, we now have a clearer idea of the 
calcium sensor and the molecular determinants of CDI.
 Specifically, the N-terminal third of the C-tail of 
Cav1 subunits contains a putative Ca2+ binding motif24 (an 
EF hand, Fig. 1). Deletion of the entire EF hand ablates the 
CDI, and donation of this domain to a non-inactivation 
Cav2.3 channel confers CDI24. However, point mutations 
in the EF hand that should decrease the Ca2+ binding af-
finity by 10- to 1000-fold produce only a modest effect on 
CDI, suggesting that the EF hand is not the bona fide Ca2+ 
sensor25. Yue and colleagues then identified a putative IQ-
like domain C-terminal to the EF hand in Cav1.2 (Fig. 1). 
IQ motifa is known to bind to Calmodulin (CaM), there-
fore it is possible that CaM may serve as the Ca2+ sensor 
for Ca2+ channels26. CaM has four EF hand pairs, each of 
which can bind one Ca2+ ion. Overexpression of a mutant 
form of CaM, which lacks Ca2+-binding in all four sites, 
completely ablates CDI with a dominant-negative effect in 
HEK293 cells26. Consistent with this, the alanine mutant of 
isoleucine in the IQ-like motif also completely abolishes the 
CDI, suggesting a role of CaM/C-tail interaction in CDI 
induction27. The dominant-negative effect of the mutant 
CaM also suggests that CaM may bind to the Cav1.2 C-tail 
at the basal Ca2+ level. This was confirmed by studies using 

a�  IQ motif. An amino acid sequence motif that binds to calmodulin in a Ca2+-
independent way. The term IQ reflects the fact that the leading amino acids are 
isoleucine (I, or F/L/V) and glutamine (Q). 
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either gel shift assays or fluorescence resonant energy trans-
fer (FRET) assays showing that the Ca2+-free CaM can bind 
to a region that includes the IQ-like domain and a region 
designated pre-IQ domain (N-terminal to the IQ-like do-
main, Fig. 1)28, 29. 
 What is the molecular machinery that blocks Ca2+ 

channels, and how is the Ca2+ sensor linked to this machin-
ery? Charnet and colleagues found that coexpression of dif-
ferent b subunits have different effects on the inactivation of 
Ca2+ channels30. Since the I-II loop harbors the a-interact-
ing domain essential for b subunit binding, they hypothe-
size that the I-II loop and the bound b subunit might be the 
pore blocker during channel inactivation. Consistent with 
this hypothesis, they observed an increased inactivation of 
the Ca2+ channels when overexpressing the I-II loop30. Stud-
ies of the voltage-dependent inactivation of Cav2 channels 
using a series of chimeras also point to the essential role of 
the I-II loop in channel inactivation31. These data suggest 
that the I-II loop may occlude the channel in both Ca2+- and 
voltage-dependent inactivation. Pitt and colleagues exam-
ined the relationship between the Ca2+ sensor (CaM/C-tail 
complex) and the inactivation machinery (I-II loop), and 
found that: 1) the conformation of CaM/C-tail complex 
changes in response to Ca2+, as revealed by a peak shift in gel 
filtration assay; 2) Ca2+ sensor complex binds to the I-II loop 
in a Ca2+-dependent manner; 3) the EF hand and the mul-
tiple N-terminal regions to the IQ-like domain are required 
to link the Ca2+ sensor to the I-II loop32. These data from 
Pitt’s group also explain why earlier studies found EF hand 
critical for CDI. Together, these data support the concept 
that the CaM-tethered C-tail conveys the Ca2+ effect to the 
I-II loop, which then inactivates the channel.
 Another question regarding channel specificity 
is why LTCCs (specifically Cav1.2 and Cav1.3) exhibit lo-
cal Ca2+ sensitivity while other VGCCs exhibit global Ca2+ 

Figure 1. Structure of Cav1.2 and Cav1.3. The 
black bar C-terminal to the IQ-like domain 
indicates the position of alternative spliced 
exon 42a.

sensitivity. This is manifested when recording the Ca2+ cur-
rents using Ca2+ buffers with different buffering kinetics. 
With 0.5 mM ethylene glycol tetraacetic acid (EGTA), CDI 
of VGCCs is present. However, applying 10mM BAPTA, 
which chelates Ca2+ much faster than EGTA and leaves only 
a nano-domain near the channel for free Ca2+, ablates all 
CDIs except those of Cav1.2 and Cav1.333. Recently, Yue 
and colleagues identified another CaM-binding domain in 
the N-terminus of Cav1.2 and Cav1.333-35. They proposed 
that this element, which they termed NSCaTE (for N-
terminal spatial Ca2+ transforming element), can confer a 
local Ca2+ sensitivity to the Ca2+ channels34. In contrast to 
the C-terminal CaM binding region, the NSCaTE binding 
to CaM is Ca2+-dependent, with a higher binding affinity 
to the N-lobe of CaM34. How the local and global CDIs 
are coordinated and interact with each remains a key unex-
plored question.

Calcium-dependent facilitation 
 Ca2+ influx can also facilitate Ca2+ channel func-
tion. When a series of repetitive depolarization pulses are 
applied to the cell, Ca2+ current will progressively increase 
and plateau after five pulses23, 36. The Ca2+/CaM-dependent 
Kinase II (CaMKII) has long been thought to mediate this 
calcium-dependent facilitation37. However, the mechanisms 
underlying facilitation of Cav1.2 and Cav1.3 appear to be 
different. CaMKII can directly interact with Cav1.2 (pre-
sumably through the C-tail of Cav1.238, 39) and phosphor-
ylate Ser1512 and Ser1570 sites39. Mutation of either site 
decreases facilitation of channel function, and the double 
mutation completely abolishes facilitation39. Consistently, 
homozygous knockin mice carrying alanine mutants of 
these two sites exhibit a significantly reduced CDF in car-
diomyocytes40. 
 Another mechanism of Cav1.2 facilitation involves 
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the auxiliary b2a subunit. Colbran and colleagues showed 
that CaMKII can phosphorylate Thr498 in the b2a subunit, 
and this phosphorylation event can increase the opening 
probability of the channel, therefore facilitating Ca2+ cur-
rents41-43. Conversely, Hofmann and colleagues found that 
mutation of b2a Thr498 does not affect CaMKII-mediated 
facilitation39. However, different electrophysiological proto-
cols were used in these studies, which may not only explain 
the discrepancies between the results, but also point to the 
complex nature of the facilitation process. The Hofmann 
study was done with a pre-pulse protocol where a strong 
depolarization (+160mV, 200ms) was applied before the 
test pulse39. The Colbran study did signal channel record-
ings and step-depolarization41. It is possible that CaMKII 
facilitates Cav1.2 in multiple ways, each of which requires a 
unique phosphorylation event. 
 CDF of Cav1.3 may employ a different mechanism. 
Unlike the Cav1.2 C-tail, the Cav1.3 C-tail may not bind to 
CaMKII directly; coexpression of CaMKII with Cav1.3 does 
not facilitate Ca2+ influx in HEK293 cells44. However, when 
CaMKII and Densin-180b, a CaMKII-interacting protein45, 
are coexpressed, Cav1.3 channels do exhibit CDF during 
repetitive depolarizations44. Densin-180 harbors a PDZ do-
main that can bind to the Cav1.3 C-tail; it is possible that 
Densin-180 acts as a scaffold protein and tethers CaMKII to 
Cav1.3 channels. CaMKII may also mediate IGF-1-induced 
facilitation of Cav1.346. Alanine mutation of Ser1486 within 
the C-tail of Cav1.3 blocks this CaMKII-mediated facilita-
tion. However, it is unknown if Ser1486 is phosphorylated 
by CaMKII. Future studies should also investigate whether 
Ser1486 is critical in Densin-180/CaMKII-mediated facili-
tation.
 The relationship between both Cav1.2 and Cav1.3 
facilitation and the calcium-dependent inactivation is not 
well understood. Reuter and colleagues have shown that 
CaM is required for both CDI and CDF, and mutation of 
the isoleucine in the IQ-like domain can convert CDI to 
CDF27. This suggests that CDI and CDF might employ 
some overlapped molecular determinants, and some forms 
of CDF we observed might be a result of antagonized CDI. 
Further efforts to examine CDI and CDF side by side will 
help us better understand Ca2+ channel regulation mecha-
nisms.

Channel regulation by alternative splicing and proteolysis 
 In addition to transient CDI and CDF regula-

b� Densin-180. Also known as Leucine Rich Repeat Containing 7 (LRRC7), is 
a scaffold protein that binds to CaMKII. The PDZ domain in Densin-180 can 
bind to Cav1.3 C-tail.

tion, LTCCs undergo long term and irreversible regulation 
by alternative mRNA splicing and proteolysis. The Cav1.3 
mRNA is alternatively spliced at three regions: the I-II loop, 
the S2-S4 of domain IV and the C-tail47. The mutually ex-
clusive splicing event in the C-tail is especially intriguing 
because the use of exon 42a leads to a frame shift of the 
downstream codons, resulting in the truncation of about 
500 amino acids (Fig. 1)47,48. Shorter isoform Ca2+ channels 
exhibit a faster and stronger inactivation compared to the 
longer isoform49. 
 Despite these effects of slicing on channel kinet-
ics, the regulation of splicing events in the brain is not well 
understood. Soong and colleagues have generated isoform-
specific antibodies to probe the spatial regulation of the 
two isoforms50. They observed a similar expression pattern 
of the two isoforms in the regions they examined50. How-
ever, whether the two isoforms show different subcellular 
localizations or cell-type specific localizations within a brain 
region and whether the splicing event is modulated in an 
activity-dependent manner still remains unexplored.
 In addition to splice variants that generate channel 
diversity, the LTCC a1 subunit also undergoes proteolysis. 
When LTCCs were first purified in the brain, Catterall and 
colleagues noted the presence of different size a1 subunits51. 
Using a series of antibodies that recognize different epitopes 
within the a1 subunit, they showed that the a1 subunit un-
dergoes proteolysis in the C-tail52, 53. The proteolysis event 
results in an a1 subunit that is ~35kD smaller than the full 
length protein. They then showed that the Ca2+-dependent 
protease Calpain1 and Calpain2c cleave the a1 subunit C-
tail, and that specific activation of NMDA receptor can in-
duce the conversion of the long form of Cav1.2 into the 
short form54. This raises the possibility that LTCCs might 
undergo activity-dependent proteolysis that fundamentally 
changes their kinetics.
 More recently, Dolmetsch and colleagues showed 
that Cav1.2 undergoes another proteolysis event that cleaves 
Cav1.2 in the C-tail but generates a ~75 kD protein55. Sur-
prisingly, they found that this cleaved product can translo-
cate to the nucleus and act as a transcriptional factor. Over-
expression of this fragment in neurons causes expression 
level changes of a wide array of genes, including the sodium-
calcium exchanger, cation channel TRPV4, axon guidance 
factor Netrin4 and RGS5, a regulator of G protein signal-
ing55. Targeting of Ca2+ exchangers and channels suggests 
that there might be a transcription-based feedback mecha-

c� Calpains. A family of Ca2+-dependent protease. Calpains function at neutral 
pH with high substrate specificity, suggesting their role in cells is regulatory 
rather than digestive. Calpain1 knockout mice show deficits in LTP.
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nism that regulates long term Ca2+ homeostasis. A more re-
cent study has shown that the cleaved 75 kD product can 
inhibit promoter activity of Cav1.2, generating a negative 
feedback loop56. However, which protease mediates this pro-
teolysis event and how this specific proteolysis event is regu-
lated remain unknown. It is interesting that the alternative 
splicing literature is solely on Cav1.3, while the proteolysis 
literature is on Cav1.2. Whether Cav1.3 and Cav1.2 adopt 
different mechanisms to achieve similar channel regulation 
or whether two regulation mechanisms exist in both chan-
nels is also unknown.

Role of LTCCs in the Brain

 LTCCs seem to play a role in both synaptic long-
term potentiation (LTP) and long-term depression (LTD). 
LeDoux and colleagues showed that in the thalamoamygdala 
pathway, LTP can be induced by two different protocols: te-
tanic presynaptic stimulation or paired weak tetanic afferent 
stimulation with postsynaptic depolarization57. Application 
of NMDA receptor antagonist AVP can only block tetanus-
induced LTP but not pairing-induced LTP57. In contrast, 
blocking LTCCs using Nifedipine ablates pairing-induced 
LTP but not tetanus-induced LTP57, 58. This suggests mul-
tiple forms of LTP may exist in the amygdala, and that 
NMDA receptors and LTCCs may contribute differently to 
LTP in the amygdala. However, we do not yet understand 
the downstream cascades that mediate these forms of LTP.
 Do LTCCs also contribute to LTP in other brain 
areas? Johnston and colleagues showed that LTCCs may 
also play a role in inducing the LTP of mossy fiber input to 
CA3 pyramidal neurons in the hippocampus59. Two forms 
of LTP were found, and LTCC is required for the postsyn-
aptic form of LTP59. Like amygdala LTP, these findings add 
to growing evidence that LTPs elicited by different protocols 
might involve different molecular and cellular mechanisms. 
 LTCCs also play an important role in long-term 
depression in striatum medium spiny neurons (MSNs). By 
using pharmacological blockers, researchers have realized 
that induction of LTD in the striatum requires functional 
LTCCs60. Which form of LTCCs is involved in LTD in-
duction was unknown until recently, when Surmeier and 
colleagues found that deletion of Cav1.3 completely blocks 
LTD induction, while blocking the Cav1.2 with 2mM Ni-
modipine (which spares ~50% of Cav1.3) does not block 
LTD induction61. These findings also suggest that Cav1.3 
activity is repressed by the muscarinic receptor M1, which 
enhances synaptic transmission, presumably by repressing 
Cav1.3 activity62.

 Gene expression, regulation, and protein synthesis 
are thought to underlie long-term memory formation. Sig-
naling from the neuronal surface to the nucleus is critical 
to these processes. The phosphorylation of CREBd at the 
Ser133 site is required to activate CREB and subsequent 
gene expression63. Tsien and colleagues showed that CaM 
translocation from the cytosol to the nucleus can activate 
nuclear Ca2+/CaM-dependent Kinase IV, which then phos-
phorylates CREB at the Ser133 site64, 65. Upon stimulation 
of the neuron, Ca2+ influx that causes CaM translocation 
is highly selective. L-type calcium channels contribute to 
the Ca2+ concentration increase to a lesser extent than N- 
and P/Q-type channels. However, blocking L-type calcium 
channels, but not N- and P/Q-type calcium channels, re-
duces the CaM translocation and the subsequent CREB 
phosphorylation, highlighting the important role of L-type 
calcium channels in regulating gene expression65. Recent 
data from the Tsien lab suggest that the specific mitochon-
dria buffering effect of Ca2+ influx through the N- and P/Q-
type calcium channels may underlie their low excitation-
transcription coupling efficacy66. However, it still remains 
unclear how Ca2+ influx through the L-type calcium chan-
nels drives the translocation of CaM into the nucleus and 
activates gene transcription.

Concluding Remarks

L-type calcium channels represent an important 
subtype of voltage-gated calcium channels that regulate syn-
aptic plasticity and gene expression. LTCCs are diversely 
regulated and critical to a variety of neuronal processes. Al-
though we have a clear idea of some of the regulatory pro-
cesses that moderate LTCC function and expression, such 
as calcium-dependent inactivation, other mechanisms, in-
cluding calcium-dependent facilitation, splicing variation 
and proteolysis require more exploration, especially in the 
context of a specific neuronal process. A better understand-
ing of the diverse mechanisms underlying LTCC regulation 
will help us better appreciate the complexity of neuronal 
function.

Further information: Colbran Lab URL:
http://www.mc.vanderbilt.edu/root/vumc.
php?site=Colbran Lab

d� CREB. cAMP response element-binding protein is a transcriptional factor that 
can bind to the cAMP response element (CRE) and regulate the transcription of 
the downstream genes.
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 Over one billion adults have a body mass index 
(BMI) of 25-30 kg/m2 (overweight) worldwide and more 
than 300 million have a BMI greater than 30 kg/m2 (obese)1.  
Within the last decade, the prevalence of obesity and obesity-
related diseases has increased markedly within the US adult 
population1.  Simply stated, body weight is determined by 
the balance between energy intake and energy expenditure2.  
A shift towards excess energy intake leads to increased adipose 
tissue deposition, obesity, and increased risk for associated 
metabolic disorders including dyslipidemia, cardiovascular 
disease, stroke, insulin resistance, and type 2 diabetes3.  Obe-
sity is also associated with reduced cognitive performance in 
adolescents and adults4–6.  
 Adipose tissue, once considered to be primarily in-
volved in energy storage, is now understood to function as an 
endocrine organ that secretes various bioactive substances7-8.  
Of these bioactive substances, adipose tissue secretes a variety 
of humoral factors, consisting of pro- and anti-inflammato-
ry adipokines and hormonal factors9.  Some of these hor-
monal factors (e.g. leptin, insulin) serve as negative adipos-
ity feedback signals that convey information pertaining to 
energy storage and availability to the brain, specifically the 
hypothalamus10.  The hypothalamus senses and integrates 
these adiposity signals and maintains energy homeostasis by 
controlling feeding behavior and energy expenditure11.  Hy-
pothalamic control of energy homeostasis, however, is not 
resistant to insult.  Both animal models and human stud-
ies show that diet-induced obesity (DIO) and high-fat diet 
(HFD) can induce an inflammatory response that affects hy-

pothalamic areas associated with control of feeding behavior 
and energy expenditure12–14.  Chronic inflammation, through 
gliosis or insulin/leptin resistance, may result in maladaptive 
alterations of the hypothalamic circuitry that maintains en-
ergy homeostasis15.  Therefore, chronic inflammation associ-
ated with HFD is one possible mechanism contributing to 
the increasing prevalence of obesity and the extraordinary 
challenges associated with weight loss16.  
 Because the structural changes within the hypothala-
mus lead to significant functional consequences (e.g. uncon-
trolled weight gain), it is likely that structural changes within 
other neural regions will disrupt that region’s typical func-
tion.  Therefore, investigation of structural alterations within 
well-characterized regions, such as the hippocampus, frontal 
cortex, and striatum, may give insight into the causes of func-
tional impairments associated with obesity (e.g. cognition, 
impulsivity, reward).    

Major Signaling Hormones

 There are three primary hormones that regulate en-
ergy intake and expenditure within the hypothalamus: insu-
lin, leptin, and ghrelin.  Insulin is synthesized and secreted 
by β cells in the pancreas and regulates metabolic function 
by acting in the liver, muscle, adipose tissue, and the brain.  
Systemically, insulin facilitates glucose transfer into the cell, 
glycogen synthesis, and glycolysis.  In the brain, however, el-
evated levels of circulating insulin augment counter-regula-
tory responses to hypoglycemia and alter feeding behavior by  
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acting on insulin receptors distributed throughout the hy-
pothalamus17-18.  Leptin synthesis and secretion by adipose 
tissue is dependent upon the total amount of adipose tissue.  
Several rodent studies demonstrate that leptin functions as 
a feedback mechanism to inhibit food intake and regulate 
body weight by acting on leptin receptors in the hypothala-
mus19–22.  Ghrelin is a peptide secreted from the stomach, 
gastrointestinal tract, pancreatic α cells, adrenal cortex, and 
the hypothalamus23–26.  Ghrelin secretion is largely depen-
dent upon nutritional state, showing preprandial increases 
and postprandial decreases27-28.  These three primary hor-
mones influence systemic and hypothalamic energy regula-
tion in a highly complex manner (for a comprehensive re-
view, see references10,29,30). 

Hypothalamic Signaling Pathways 

 The hypothalamus has long been implicated as a 
primary region for controlling food intake and energy ex-
penditure31.  Lesion studies in rats first suggested the hypo-
thalamus as a satiety center, and further studies suggest the 
hypothalamus also functions as a hunger center31-32.  Stellar 
later posited that individual nuclei within the hypothalamus 
performed unique tasks33.  Lesion studies in the ventrome-
dial hypothalamic nucleus (VMN) resulted in hyperpha-

Figure 1. Organization of hypothalamic nuclei associated with energy intake 
and expenditure and their projections. POMC/CART are anorexigenic (red 
represents decrease feeding) and Npy/AgRP are orexigenic (green represents 
increase feeding). Abbreviations- (AgRP) agouti-related peptide (ARC) 
arcuate nucleus, (CART) cocaine- and amphetamine-related transcript 
(DHA) dorsal hypothalamic area, (DMN) dorsomedial nucleus, (NPY) 
neuropeptide Y, (NTS) nucleus of solitary tract, (LH) lateral hypothalamus, 
(PFA) parafornicular nucleus,(POMC) proopiomelanocortin, (PVN) 
paraventricular nucleus, (VMN) ventromedial nucleus

gia33.  Conversely, a lesion in the lateral hypothalamic area 
(LHA) resulted in hypophagia33.  Current opinion, how-
ever, does not designate individual hypothalamic nuclei as 
independent centers controlling food intake.  Instead, the 
hypothalamus is viewed as a region consisting of discrete 
pathways responsible for generating integrated responses to 
afferent input related to changes in bodily energy storage.  
This intricate system is highly coordinated by the arcuate 
nucleus (ARC).    
 The ARC contains neurons expressing neuro-
peptide Y (NPY) and agouti-related protein (AGRP) and 
neurons expressing pro-opiomelanocortin (POMC) and 
cocaine- and amphetamine-related transcript (CART) that 
act as sensors for bodily energy stores and subsequently co-
ordinate a complex network of neurons that ultimately con-
trol hunger and satiety signals34.  These neurons are capable 
of detecting both immediate and chronic changes in levels 
of hormones or nutrients in the blood stream (e.g. insulin, 
leptin)34.  NPY/AGRP neurons stimulate food intake when 
activated and are inhibited by insulin and leptin35-36.  NPY/
AGRP neurons also project to POMC/CART neurons, in-
hibiting their action via release of GABA37.  POMC/CART 
neurons inhibit food intake and are activated by insulin and 
leptin2.  Ghrelin has the reverse effect of leptin and insu-
lin on both cell types, as it activates NPY/AGRP to initiate 
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ing25,28,38.  Both cell subpopulations project to adjacent ar-
eas, paraventricular nucleus (PVN) and lateral hypothalamic 
area (LHA).  The PVN is comprised of neurons that reduce 
food intake (anorexigenic), whereas the neuron within the 
LHA increase food intake (orexigenic).  Signal propagated 
from the PVN or LHA is directed downstream to the nucle-
us of the solitary tract (NTS), an area implicated in satiety 
signaling (Figure 1)2.  The co-localization of these distinct 
cell types among various nuclei suggests the hypothalamus 
plays a highly specialized role in energy homeostasis.

Obesity and Diet Lead to Inflammation
 
 Accumulating evidence suggests that chronic in-
flammation plays a major role in the pathogenesis of obe-
sity-related metabolic and neural dysfunction39–41.  Beyond 
functioning as a long-term energy storage organ, adipose 
tissue plays a key role in the integration of systemic energy 
metabolism via secretion of various adipokines. The secre-
tion of these adipokines is tightly controlled during normal 
body weight conditions, resulting in a balance of pro- and 
anti-inflammatory factors42.  However, excess energy storage 
leads to an increase in pro-inflammatory adipokines (e.g. 
CRP, IL-6, IL-1β, TNFα) and a decrease in anti-inflamma-
tory adipokines (e.g. adiponectin, SFRP5).  This imbalance 
leads to chronic low-grade neural inflammation, insulin and 
leptin resistance in the brain, and increased recruitment of 
both microglia and astrocytes43–46. It has also been shown 
that the consumption of a high fat diet similarly affects the 
balance of pro- and anti-inflammatory factors, even before 
the development of an obese phenotype47.  It remains un-
clear whether this shift towards a pro-inflammatory envi-
ronment in the brain is caused by increased adipose tissue, 
a high fat diet, or both.  There is, however, a clear under-
standing of which signaling cascades lead to an increase in 
pro-inflammatory adipokine expression.    
 There are a few primary signaling cascades that are 
consistently implicated in the neural inflammatory process.  
A 20-week HFD feeding study found increased reactive 
oxygen species production (ROS), increased prostaglandin 
E2 production, and upregulation of NF-κB signaling in the 
rat cortex48.  In the hypothalamus, investigators reported in-
creased activation of both Jnk and IKKβ/NF-κB pathways, 
as well as induction of ER stress49–53.  Not only does acti-
vation of these pathways increase expression of pro-inflam-
matory adipokines, IL-1β, TNFα, and IL-6, the increased 
activation of these pathways has a timecourse similar to that 
of the development of hypothalamic insulin resistance54-55.  
Targeting these signaling cascades, specifically IKKβ/NF-
κB, may be an effective strategy to reduce the chronic, low-

grade neural inflammation and the insulin/leptin resistance 
associated with HFD and DIO.         

Established and Novel Strategies for Detecting Neural 
Inflammation
   

The alterations in neural parenchyma associated 
with DIO and HFD have yet to be fully characterized, espe-
cially in humans.  Direct, but invasive, techniques common-
ly used in rodent studies are not feasible in human popula-
tions.  Fortunately, much work is being done to address the 
shortcomings associated with current non-invasive imaging 
techniques for human research.  Within the context of neu-
ral inflammation, the currently available invasive techniques 
used in rodents, the non-invasive techniques utilized in hu-
mans, and effective techniques being developed for both ro-
dents and humans will be summarized.  

Invasive
 Stereological techniques have been used to examine 
changes in hypothalamic volume and neuronal density in 
mice after exposure to HFD.  Namavar and colleagues show 
that mice on HFD for 8 weeks have increased hypothalamic 
volumes and a decrease in hypothalamic neuron density.  
These results suggest two important conclusions: 1) HFD 
alters the neuronal structure of the hypothalamus and 2) 
HFD increases intercellular space in the hypothalamus, pos-
sibly by inflammation or gliosis56. Due to the heterogeneous 
population of cells within the hypothalamus (neurons, as-
trocytes, microglia), immunohistochemical techniques are 
used to examine which cell populations are affected by 
DIO.  Using glial fibrillary acidic protein (GFAP) to exam-
ine the differential distribution of astrocytes within the hy-
pothalamus, researchers found that DIO is associated with 
astrogliosis (increased astrocyte population and density) in 
hypothalamic nuclei proximal to the third ventricle, spe-
cifically the PVN57.  Utilizing the histochemical microglial 
markers ionized calcium-binding adapter molecule 1 (Iba1) 
and GFAP, Thaler and colleagues observed an increase in 
glia cell density and morphological changes in the medio-
basal hypothalamus (MBH) of rats and mice fed HFD.  Im-
portantly, these changes were observed within 1 to 3 days of 
HFD, persisted for up to 8 months, and were further sup-
ported by an increase in inflammatory markers in serum13.  
These studies clearly show that DIO induces changes in to-
tal number, density, and morphology of neural cells within 
the hypothalamus.  Unfortunately, neither the techniques 
nor the results observed in rodent models can be directly 
applied to human subjects.  
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Magnetic Resonance Imaging
 Investigators have developed novel techniques uti-
lizing magnetic resonance imaging (MRI) to address the 
methodological limitations of exploring the neural changes 
associated with DIO in humans.  This technique – building 
from studies correlating T2-weighted MRI signal and post-
mortem tissue gliosis in patients with neurodegenerative dis-
ease – quantifies subtle changes in T1- or T2-weighted sig-
nal as a marker for neural changes associated with DIO58–60.  
Simply stated, an increase in signal on a T2-weighted scan or 
a decrease in signal on a T1-weighted scan suggests gliosis. 
A landmark study by Lee and colleagues utilizing MRI and 
immunohistochemical techniques reported a positive corre-
lation of T2-weighted signal in mouse MBH with BMI and 
a positive correlation of T2-weighted signal in mouse MBH 
with mean fluorescent intensity of GFAP staining in mouse 
MBH14.  These results strongly support the hypothesis that 
neural changes associated with DIO can be measured with 
MRI.  A similar study in humans extracted the signal from a 
priori regions of interest from T2-weighted MRI scans and 
showed a positive correlation of BMI with signal change in 
the MBH, suggesting that obesity is associated with MBH 
gliosis13.  The results of these studies do have their limita-
tions.  As previously discussed, the MBH is a heterogeneous 
collection of cell types (neurons, glia) and neuron subpopu-
lations (e.g. AGRP, POMC).  Current MRI technologies do 
not have the spatial resolution to discern the signal from a 
specific cell type or neuron subpopulation.  Lee and col-
leagues report that elevated mean fluorescent intensity of 
GFAP staining, but not the observed elevated Iba1 staining, 
correlates with T2-weighted signal.  The authors then as-
sert, citing the lack of a statistically significant correlation, 
that T2-weighted MRI is sensitive to changes in astrocytes 
rather than microglia14.  This assertion is overreaching in 
that a lack of a statistically significant correlation does not 
translate to a lack of biological relevance.  This limitation, 
however, does not mean that utilizing MRI in human stud-
ies is ineffective.                 

Positron Emission Tomography
 Positron emission tomography (PET) has been used 
to identify brain regions with elevated levels of activated mi-
croglia in disorders associated with neuroinflammation.  In 
Alzheimer’s disease (AD), the brain demonstrates increased 
cytokine levels and increased concentrations of inflamma-
tory metabolites of arachidonic acid (AA)61–63.  Therefore, 
AA metabolism is likely elevated in the AD brain, partic-
ularly in areas that have high densities of senile (neuritic) 
plaques with activated microglia. AA cannot be synthesized 
de novo, converted from linoleic acid, and is unaffected by 
changes in regional blood flow This makes radiolabeled AA 

an ideal tracer for imaging brain AA metabolism, a marker 
for activated microglia64–68.  Esposito and colleagues success-
fully used PET and radiolabeled AA in a rat model of in-
flammation and human AD patients to show that activated 
microglia can be reliably quantified69.  A similar technique 
can be applied by use of [1-11C] DHA (docosahexaenoic 
acid)70.  There is a growing body of evidence suggesting 
that increased microglial activation is associated with au-
tism spectrum disorder (ASD)71–75.  Another way to identify 
activated microglia activation via PET is by use of the ac-
tivated microglia radiotracer, [11C](R)-(1-[2-chrorophynyl]-
N-[1-methylpropyl]-3 isoquinoline carboxamide) ([11C]
(R)-PK11195)76–78.  Suzuki and colleagues successfully used 
PET and ([11C](R)-PK11195) to show an increase in acti-
vated microglia in ASD patients79.  Although these studies 
are focused on disorders other than obesity, they examine 
the common mechanism of activated microglia associated 
with inflammation.  Future studies utilizing both PET and 
MRI in tandem may contribute a great deal of knowledge 
regarding the inflammatory effects on various brain regions 
associated with DIO in both rodent and human studies.                      

Inflammation May Affect More Than Just the Hypothal-
amus

 The inflammatory effects associated with DIO may 
impact brain regions beyond the hypothalamus.  Obesity, 
metabolic syndrome, and type 2 diabetes have been linked 
to various dysfunctions in cognition, impulsivity, and re-
ward processing.  Regions associated with these processes ex-
press dense populations of insulin and leptin receptors30,80–85.  
A meta-analysis performed by Thamotharan and colleagues 
revealed that impulsivity was greater among overweight and 
obese children relative to healthy weight children86.  Elevat-
ed impulsivity in adults was also associated with increased 
circulating leptin levels87.  Furthermore, adolescents with 
type 2 diabetes had reduced prefrontal cortex (PFC) vol-
umes while obese adults with abnormal cholesterol profiles 
had abnormal white matter integrity in the PFC88,89. The 
presence of altered PFC volume and structure and increased 
impulsivity paired with abnormal cholesterol levels and in-
creased levels of circulating leptin suggests that inflamma-
tion associated with DIO may play a pivotal role in neural 
alterations beyond the hypothalamus.  
 Cognitive impairment has also been documented 
in obese individuals.  Obese adolescents have decreased 
arithmetic skills, spelling ability, attention, and mental flex-
ibility4.  The same population of adolescents also had de-
creased hippocampal volumes, suggesting that obesity may 
be altering brain regions often implicated in cognition4.  
Similar studies report a negative correlation of hippocampal 
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grey matter density with neuron-specific enolase, a marker 
for neuronal injury90. The striatum is also affected by DIO.  
Consumption of HFD impairs striatal activation of the 
insulin-activated signaling kinase, Akt, which leads to re-
duced dopamine transporter cell expression and function91.  
Disrupted dopamine homeostasis in the striatum leads to 
alterations in reward-driven behavior, including an increase 
in food intake92–96.  Taken together, these results strengthen 
the hypothesis that inflammation associated with DIO has a 
global effect on the brain.
 
Conclusion

Obesity is a widespread disorder affecting children, 
adolescents, and adults that leads to an increase in stored 
adipose tissue.  Adipose tissue secretes pro- and anti-in-
flammatory adipokines and excessive adipose tissue leads 
to excessive secretion of pro-inflammatory adipokines and 
reduced anti-inflammatory adipokines.  This imbalance of 
pro-inflammatory adipokines results in insulin and leptin 
resistance, as well as gliosis.  The inflammatory effects as-
sociated with DIO have been partially characterized within 
the hypothalamus and sparsely studied in other brain re-
gions.  There is a great deal of evidence suggesting that DIO 
is similarly affecting other brain regions.  There are signifi-
cant structural and functional deficits in the hypothalamus, 
hippocampus, and other brain regions associated with DIO.  
Rodent models have laid the framework for using non-
invasive techniques to examine neural changes associated 
with DIO.  Given the alarming prevalence of obesity and 
the widespread negative effects of DIO, the development 
and implementation of sensitive, non-invasive techniques in 
humans is crucial.

References

1. Flegal, KM, Carroll, MD, Ogden, CL & Curtin, LR (2010). Preva-
lence and trends in obesity among US adults, 1999-2008. JAMA 303, 
235–41.

2. Schwartz, MW, Woods, SC, Porte, D, Seeley, RJ & Baskin, DG (2000). 
Central nervous system control of food intake. Nature 404, 661–71.

3. Kopelman, PG (2000). Obesity as a medical problem. Nature 404, 
635–43.

4. Yau, PPL., Castro, MGM, Tagani, A, Tsui, WH. & Convit, A 
(2012). Obesity and metabolic syndrome and functional and struc-
tural brain impairments in adolescence. Pediatrics 130, e856–64. 
This is the first study demonstrating the association of brain abnor-
malities and cognitive deficits among obese adolescents.

5. Cohen, JI, Cazettes, F & Convit, A (2011). Abnormal cholesterol 
is associated with prefrontal white matter abnormalities among obese 
adults, a diffusion tensor imaging study. Neuroradiol. J. 1, 989–997.

6. Elias, MF, Elias, PK, Sullivan, LM, Wolf, PA & D’Agostino, RB 
(2003). Lower cognitive function in the presence of obesity and hyper-
tension: the Framingham heart study. Int. J. Obes. Relat. Metab. Disord. 
27, 260–8.

7. Berg, AH & Scherer, PE Adipose tissue, inflammation, and cardio-
vascular disease (2005). Circ. Res. 96, 939–49.

8. Ouchi, N, Kihara, S, Funahashi, T, Matsuzawa, Y & Walsh, K 
(2003). Obesity, adiponectin and vascular inflammatory disease. Curr. 
Opin. Lipidol. 14, 561–6.

9. Olefsky, JM & Glass, CK (2010). Macrophages, inflammation, and 
insulin resistance. Annu. Rev. Physiol. 72, 219–46.

10. Zhou, Y & Rui, L (2013). Leptin signaling and leptin resistance. 
Front. Med.. 

11. Lam, TKT., Schwartz, GJ & Rossetti, L (2005). Hypothalamic 
sensing of fatty acids. Nat. Neurosci. 8, 579–84.

12. Velloso, LA (2009). The brain is the conductor: diet-induced in-
flammation overlapping physiological control of body mass and me-
tabolism. Arq. Bras. Endocrinol. Metabol. 53, 151–8.

13. Thaler, JP, Yi, C, Schur, EA, Guyenet, SJ, Hwang, BH, Di-
etrich, MO, Zhao, X, Sarruf, DA, Izgur, V, Maravilla, KR, 
Nguyen, HT, Fischer, JD, Matsen, ME, Wisse, BE, Mor-
ton, GJ, Horvath, TL, Baskin, DG, Tschop, MH & Shwartz, 
MW (2012). Obesity is associated with hypothalamic in-
jury in rodents and humans. J. Clin. Invest. 122, 153–62. 
This is the first study to use MRI to demonstrate neural changes 
caused by inflammation associated with DIO in obese adults.

14. Lee, D, Thaler, JP, Berkseth, KE, Melhorn, SJ, Schwartz, 
MW & Schur, EA (2013). Longer T2 relaxation time is a 
marker of hypothalamic gliosis in mice with diet-induced 
obesity. Am. J. Physiol. Endocrinol. Metab. 304, E1245–50. 
This is the first study showing a direct correlation of immunohisto-
chemical measures of gliosis with MRI measures of gliosis in mice.

15. Cazettes, F, Cohen, JI, Yau, PL, Talbot, H & Convit, A (2011). 
Obesity-mediated inflammation may damage the brain circuit that 
regulates food intake. Brain Res. 1373, 101–9.

16. Hirai, S, Takahashi, N, Goto, T, Lin, S, Uemura, T, Yu, R & 
Kawada, T (2010). Functional food targeting the regulation of obesity-
induced inflammatory responses and pathologies. Mediators Inflamm. 
2010, 367838.

17. Fruehwald-Schultes, B, Kern, W, Deininger, E, Wellhoener, P, 
Kerner, W, Born, J, Fehm, HL & Peters, A (1999). Protective effect 
of insulin against hypoglycemia-associated counterregulatory failure. J. 
Clin. Endocrinol. Metab. 84, 1551–7.

18. Rodin, J, Wack, J, Ferrannini, E & DeFronzo, RA (1985). Effect of 



VOLUME 6 | 2014 | 129VANDERBILT REVIEWS NEUROSCIENCE

C A N D I D A T E 
R E V I E W S

insulin and glucose on feeding behavior. Metabolism. 34, 826–31.

19. Sahu, A (2003). Leptin signaling in the hypothalamus: emphasis on 
energy homeostasis and leptin resistance. Front. Neuroendocrinol. 24, 
225–253.

20. Schwartz, MW, Peskind, E, Raskind, M, Boyko, EJ & Porte, D 
(1996). Cerebrospinal fluid leptin levels: relationship to plasma levels and 
to adiposity in humans. Nat. Med. 2, 589–93.

21. Pelleymounter, MA, Cullen, MJ, Baker, MB, Hecht, R, Winters, D, 
Boone, T & Collins, F (1995). Effects of the obese gene product on body 
weight regulation in ob/ob mice. Science 269, 540–3.

22. Halaas, JL, Gajiwala, KS, Maffei, M, Cohen, SL, Chait, BT, Rabi-
nowitz, D, Lallone, RL, Burley, SK & Friedman, JM (1995). Weight-
reducing effects of the plasma protein encoded by the obese gene. Science 
269, 543–6.

23. Korbonits, M, Kojima, M, Kangawa, K & Grossman, AB (2001). 
Presence of ghrelin in normal and adenomatous human pituitary. Endo-
crine 14, 101–4.

24. Date, Y, Nakazato, M, Hashiguchi, S, Dezaki, K, Mondal, MS, Hoso-
da, H, Kojima, M, Kangawa, K, Arima, T, Matsuo, H, Yada, T & Matsu-
kura, S (2002). Ghrelin is present in pancreatic alpha-cells of humans and 
rats and stimulates insulin secretion. Diabetes 51, 124–9.

25. Nakazato, M, Murakami, N, Date, Y, Kojima, M, Matsuo, H, Kan-
gawa, K & Matsukura, S (2001). A role for ghrelin in the central regula-
tion of feeding. Nature 409, 194–8.

26. Kojima, M, Hosoda, H, Date, Y, Nakazato, M, Matsuo, H & Kan-
gawa, K (1999). Ghrelin is a growth-hormone-releasing acylated peptide 
from stomach. Nature 402, 656–60.

27. Ariyasu, H, Takaya, K, Tagami, T, Ogawa, Y, Hosoda, K, Akamizu, 
T, Suda, M, Koh, T, Natsui, K, Toyooka, S, Shirakami, G, Usui, T, Shi-
matsu, A, Doi, K, Hosoda, H, Kojima, M, Kangawa, K & Nakao, K 
(2001). Stomach is a major source of circulating ghrelin, and feeding 
state determines plasma ghrelin-like immunoreactivity levels in humans. 
J. Clin. Endocrinol. Metab. 86, 4753–8.

28. Cummings, DE, Purnell, JQ, Frayo, RS, Schmidova, K, Wisse, BE & 
Weigle, DS (2001). A preprandial rise in plasma ghrelin levels suggests a 
role in meal initiation in humans. Diabetes 50, 1714–9.

29. Morton, GJ, Cummings, DE, Baskin, DG, Barsh, GS & Schwartz, 
MW (2006). Central nervous system control of food intake and body 
weight. Nature 443, 289–95.

30. Plum, L, Schubert, M & Brüning, JC (2005). The role of insulin 
receptor signaling in the brain. Trends Endocrinol. Metab. 16, 59–65.

31. Anand, BK & Brobeck, JR (1951). Localization of a “Feeding Cen-
ter” in the Hypothalamus of the Rat. Exp. Biol. Med. 77, 323–325.

32. Brobeck, JR, Tepperman, J & Long, CN (1943). Experimental Hypo-
thalamic Hyperphagia in the Albino Rat. Yale J. Biol. Med. 15, 831–53.

33. Stellar, E. The physiology of motivation (1994). 1954. Psychol. Rev. 
101, 301–11.

34. Flier, JS & Maratos-Flier, E (1998). Obesity and the hypothalamus: 
novel peptides for new pathways. Cell 92, 437–40.

35. Doyon, C, Drouin, G, Trudeau, VL & Moon, TW (2001). Molecular 
evolution of leptin. Gen. Comp. Endocrinol. 124, 188–98.

36. Farooqi, IS, Jebb, SA, Langmack, G, Lawrence, E, Cheetham, CH, 
Prentice, AM, Hughes, IA, McCamish, MA & O’Rahilly, S (1999). Ef-
fects of recombinant leptin therapy in a child with congenital leptin defi-
ciency. N. Engl. J. Med. 341, 879–84.

37. Horvath, TL (2005). The hardship of obesity: a soft-wired hypothala-
mus. Nat. Neurosci. 8, 561–5.

38. Wren, AM, Seal, LJ, Cohen, MA, Brynes, AE, Frost, GS, Murphy, 
KG, Dhillo, WS, Ghatei, MA & Bloom, SR (2001). Ghrelin enhances 
appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 
86, 5992.

39. Cai, D (2009). NFkappaB-mediated metabolic inflammation in pe-
ripheral tissues versus central nervous system. Cell Cycle 8, 2542–8.

40. Cai, D & Liu, T (2012). Inflammatory cause of metabolic syndrome 
via brain stress and NF-κB. Aging. 4, 98–115.

41. McNay, DEG, Briançon, N, Kokoeva, MV, Maratos-Flier, E & Flier, 
JS (2012). Remodeling of the arcuate nucleus energy-balance circuit is 
inhibited in obese mice. J. Clin. Invest. 122, 142–52.

42. Ouchi, N, Parker, JL, Lugus, JJ & Walsh, K (2011). Adipokines in 
inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97.

43. Kim, F, Pham, M, Maloney, E, Rizzo, NO, Morton, GJ, Wisse, BE, 
Kirk, EA, Chait, A & Schwartz, MW (2008). Vascular inflammation, in-
sulin resistance, and reduced nitric oxide production precede the onset of 
peripheral insulin resistance. Arterioscler. Thromb. Vasc. Biol. 28, 1982–8.

44. Weisberg, SP, Mccann, D, Desai, M, Rosenbaum, M, Leibel, RL & 
Ferrante, AW (2003). Obesity is associated with macrophage accumula-
tion. J. Clin. Invest. 112, 1796–808 .

45. Mori, MA, Liu, M, Bezy, O, Almind, K, Shapiro, H, Kasif, S & 
Kahn, CR (2010). A systems biology approach identifies inflammatory 
abnormalities between mouse strains prior to development of metabolic 
disease. Diabetes 59, 2960–71.

46. Xu, H, Barnes, GT, Yang, Q, Tan, G, Yang, D, Chou, CJ, Sole, J, 
Nichols, A, Ross, JS, Tartaglia, LA & Chen, H (2003). Chronic inflam-
mation in fat plays a crucial role in the development of obesity-related 
insulin resistance. J. Clin. Invest. 112, 1821–30.

47. Chatterjee, TK, Stoll, LL, Denning, GM, Harrelson, A, Blomkalns, 
AL, Idelman, G, Rothenberg, FG, Neltner, B, Romig-Martin, SA, Dick-
son, EW, Rudich, S & Weintraub, NL (2009). Proinflammatory pheno-
type of perivascular adipocytes: influence of high-fat feeding. Circ. Res. 
104, 541–9.



VOLUME 6 | 2014 | 130 VANDERBILT REVIEWS NEUROSCIENCE

C A N D I D A T E 
R E V I E W S
48. Zhang, X, Dong, F, Ren, J, Driscoll, MJM & Culver, B (2005). High 
dietary fat induces NADPH oxidase-associated oxidative stress and in-
flammation in rat cerebral cortex. Exp. Neurol. 191, 318–25.

49. De Souza, CT, Araujo, EP, Bordin, S, Ashimine, R, Zollner, RL, 
Boschero, AC, Saad, MJA & Velloso, LA (2005). Consumption of a fat-
rich diet activates a proinflammatory response and induces insulin resis-
tance in the hypothalamus. Endocrinology 146, 4192–9.

50. Milanski, M, Degasperi, G, Coope, A, Morari, J, Denis, R, Cintra, 
DE, Tsukumo, DML, Anhe, G, Amaral, ME, Takahashi, HK, Curi, R, 
Oliveira, HC, Carvalheira, JBC, Bordin, S, Saad, MJ & Velloso, LA 
(2009). Saturated fatty acids produce an inflammatory response predomi-
nantly through the activation of TLR4 signaling in hypothalamus: impli-
cations for the pathogenesis of obesity. J. Neurosci. 29, 359–70.

51. Ozcan, L, Ergin, AS, Lu, A, Chung, J, Sarkar, S, Nie, D, Myers, MG 
& Ozcan, U (2009). Endoplasmic reticulum stress plays a central role in 
development of leptin resistance. Cell Metab. 9, 35–51.

52. Posey, KA, Clegg, DJ, Printz, RL, Byun, J, Morton, GJ, Vivekanan-
dan-Giri, A, Pennathur, S, Baskin, DG, Heinecke, JW, Woods, SC, 
Schwartz, MW & Niswender, KD (2009). Hypothalamic proinflamma-
tory lipid accumulation, inflammation, and insulin resistance in rats fed a 
high-fat diet. Am. J. Physiol. Endocrinol. Metab. 296, E1003–12.

53. Zhang, X, Zhang, G, Zhang, H, Karin, M, Bai, H & Cai, D (2008). 
Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to 
energy imbalance and obesity. Cell 135, 61–73.

54. Fam, BC, Morris, MJ, Hansen, MJ, Kebede, M, Andrikopoulos, S, 
Proietto, J & Thorburn, AW (2007). Modulation of central leptin sensi-
tivity and energy balance in a rat model of diet-induced obesity. Diabetes. 
Obes. Metab. 9, 840–52.

55. Münzberg, H, Flier, JS & Bjørbaek, C (2004). Region-specific leptin 
resistance within the hypothalamus of diet-induced obese mice. Endocri-
nology 145, 4880–9.

56. Namavar, MR, Raminfard, S, Jahromi, ZV & Azari, H 
(2012). Effects of high-fat diet on the numerical density and 
number of neuronal cells and the volume of the mouse hypo-
thalamus: a stereological study. Anat. Cell Biol. 45, 178–84. 
This is the first study to evaluate the effects of HFD on the neuron 
density and number in the hypothalamus using unbiased stereologi-
cal techniqus.

57. Buckman, LB, Thompson, MM, Moreno, HN & Ellacott, KLJ 
(2013). Regional astrogliosis in the mouse hypothalamus in response to 
obesity. J. Comp. Neurol. 521, 1322–33.

58. Coulthard, A, Hall, K, English, PT, Ince, PG, Burn, DJ & Bates, 
D (1999). Quantitative analysis of MRI signal intensity in new variant 
Creutzfeldt-Jakob disease. Br. J. Radiol. 72, 742–8.

59. Marshall, VG, Bradley, WG, Marshall, CE, Bhoopat, T & Rhodes, 
RH (1988). Deep white matter infarction: correlation of MR imaging 
and histopathologic findings. Radiology 167, 517–22.

60. Briellmann, RS, Kalnins, RM, Berkovic, SF & Jackson, GD (2002). 

Hippocampal pathology in refractory temporal lobe epilepsy: T2-weight-
ed signal change reflects dentate gliosis. Neurology 58, 265–71.

61. Zhou, Y, Wang, Y, Kovacs, M, Jin, J & Zhang, J (2005). Microglial 
activation induced by neurodegeneration: a proteomic analysis. Mol. Cell. 
Proteomics 4, 1471–9.

62. Sun, GY, Horrocks, LA & Farooqui, AA (2007). The roles of NADPH 
oxidase and phospholipases A2 in oxidative and inflammatory responses 
in neurodegenerative diseases. J. Neurochem. 103, 1–16.

63. Bazan, NG, Colangelo, V & Lukiw, WJ (2002). Prostaglandins and 
other lipid mediators in Alzheimer’s disease. Prostaglandins Other Lipid 
Mediat. 68-69, 197–210.

64. DeMar, JC, Lee, HJ, Ma, K, Chang, L, Bell, JM, Rapoport, SI & 
Bazinet, RP (2006). Brain elongation of linoleic acid is a negligible source 
of the arachidonate in brain phospholipids of adult rats. Biochim. Biophys. 
Acta 1761, 1050–9.

65. Robinson, PJ, Noronha, J, DeGeorge, JJ, Freed, LM, Nariai, T & 
Rapoport, SI (1992). A quantitative method for measuring regional in 
vivo fatty-acid incorporation into and turnover within brain phospholip-
ids: review and critical analysis. Brain Res. Brain Res. Rev. 17, 187–214.

66. Chang, MCJ, Arai, T, Freed, LM, Wakabayashi, S, Channing, MA, 
Dunn, BB, Der, MG, Bell, JM, Sasaki, T, Herscovitch, P, Eckelman, WC 
& Rapoport, SI (1997). Brain incorporation of [1–11C]arachidonate in 
normocapnic and hypercapnic monkeys, measured with positron emis-
sion tomography. Brain Res. 755, 74–83.

67. Giovacchini, G, Chang, MCJ, Channing, MA, Toczek, M, Mason, 
A, Bokde, AL W, Connolly, C, Vuong, B, Ma, Y, Der, MG, Doudet, 
DJ, Herscovitch, P, Eckelman, WC, Rapoport, SI & Carson, RE (2002). 
Brain incorporation of [11C]arachidonic acid in young healthy humans 
measured with positron emission tomography. J. Cereb. Blood Flow 
Metab. 22, 1453–62.

68. Giovacchini, G, Lerner, A, Toczek, MT, Fraser, C, Ma, K, DeMar, 
JC, Herscovitch, P, Eckelman, WC, Rapoport, SI & Carson, RE (2004). 
Brain incorporation of 11C-arachidonic acid, blood volume, and blood 
flow in healthy aging: a study with partial-volume correction. J. Nucl. 
Med. 45, 1471–9.

69. Esposito, G, Giovacchini, G, Liow, JS, Bhattacharjee, AK, Green-
stein, D, Schapiro, M, Hallett, M, Herscovitch, P, Eckelman, WC, 
Carson, RE & Rapoport, SI (2008). Imaging neuroinflammation in Al-
zheimer’s disease with radiolabeled arachidonic acid and PET. J. Nucl. 
Med. 49, 1414–21.

70. Umhau, JJC, Zhou, W, Carson, RER, Rapoport, SI, Polozova, A, De-
mar, J, Hussein, N, Bhattacharjee, AK, Ma, K, Esposito, G, Majchrzak, 
S, Herscovitch, P, Eckelman, WC, Kurdziel, KA & Salem, N (2009). Im-
aging incorporation of circulating docosahexaenoic acid into the human 
brain using positron emission tomography. J. Lipid Res. 50, 1259–68.

71. Corbett, BA, Kantor, AB, Schulman, H, Walker, WL, Lit, L, Ash-
wood, P, Rocke, DM & Sharp, FR (2007). A proteomic study of serum 
from children with autism showing differential expression of apolipopro-
teins and complement proteins. Mol. Psychiatry 12, 292–306.



VOLUME 6 | 2014 | 131VANDERBILT REVIEWS NEUROSCIENCE

C A N D I D A T E 
R E V I E W S

72. Ashwood, P, Krakowiak, P, Hertz-Picciotto, I, Hansen, R, Pessah, I 
& Van de Water, J (2011). Elevated plasma cytokines in autism spectrum 
disorders provide evidence of immune dysfunction and are associated 
with impaired behavioral outcome. Brain. Behav. Immun. 25, 40–5.

73. Suzuki, K, Matsuzaki, H, Iwata, K, Kameno, Y, Shimmura, C, Kawai, 
S, Yoshihara, Y, Wakuda, T, Takebayashi, K, Takagai, S, Matsumoto, K, 
Tsuchiya, KJ, Iwata, Y, Nakamura, K, Tsujii, M, Sugiyama, T & Mori, 
N (2011). Plasma cytokine profiles in subjects with high-functioning au-
tism spectrum disorders. PLoS One 6, e20470.

74. Zimmerman, AW, Jyonouchi, H, Comi, AM, Connors, SL, Milstien, 
S, Varsou, A & Heyes, MP (2005). Cerebrospinal fluid and serum mark-
ers of inflammation in autism. Pediatr. Neurol. 33, 195–201.

75. Vargas, DL, Nascimbene, C, Krishnan, C, Zimmerman, AW & 
Pardo, CA (2005). Neuroglial activation and neuroinflammation in the 
brain of patients with autism. Ann. Neurol. 57, 67–81.

76. Cagnin, A, Brooks, DJ, Kennedy, AM, Gunn, RN, Myers, R, Tur-
kheimer, FE, Jones, T & Banati, RB (2001). In-vivo measurement of 
activated microglia in dementia. Lancet 358, 461–7.

77. Banati, RB (2002). Visualising microglial activation in vivo. Glia 40, 
206–17.

78. Ouchi, Y, Yoshikawa, E, Sekine, Y, Futatsubashi, M, Kanno, T, Ogu-
su, T & Torizuka, T (2005). Microglial activation and dopamine terminal 
loss in early Parkinson’s disease. Ann. Neurol. 57, 168–75.

79. Suzuki, K, Sugihara, G, Ouchi, Y, Nakamura, K, Futatsubashi, M, 
Takebayashi, K, Yoshihara, Y, Omata, K, Matsumoto, K, Tsuchiya, KJ, 
Iwata, Y, Tsujii, M, Sugiyama, T & Mori, N (2013). Microglial activa-
tion in young adults with autism spectrum disorder. JAMA Psychiatry 70, 
49–58.

80. Huang, XF, Koutcherov, I, Lin, S, Wang, HQ & Storlien, L (1996). 
Localization of leptin receptor mRNA expression in mouse brain. Neu-
roreport 7, 2635–8.

81. Bjørbaek, C, Elmquist, JK, Michl, P, Ahima, RS, van Bueren, A, Mc-
Call, AL & Flier, JS (1998). Expression of leptin receptor isoforms in rat 
brain microvessels. Endocrinology 139, 3485–91.

82. Mercer, JG, Hoggard, N, Williams, LM, Lawrence, CB, Hannah, LT 
& Trayhurn, P (1996). Localization of leptin receptor mRNA and the 
long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent 
brain regions by in situ hybridization. FEBS Lett. 387, 113–6.

83. Baskin, DG, Schwartz, MW, Sipols, AJ, D’Alessio, DA, Goldstein, BJ 
& White, MF (1994). Insulin receptor substrate-1 (IRS-1) expression in 
rat brain. Endocrinology 134, 1952–5.

84. Morris, JK, Zhang, H, Gupte, AA, Bomhoff, GL, Stanford, JA & 
Geiger, PC (2008). Measures of striatal insulin resistance in a 6-hydroxy-
dopamine model of Parkinson’s disease. Brain Res. 1240, 185–95.

85. Ho, L, Yemul, S, Knable, L, Katsel, P, Zhao, R, Haroutunian, V & 
Pasinetti, GM (2012). Insulin receptor expression and activity in the 
brains of nondiabetic sporadic Alzheimer’s disease cases. Int. J. Alzheim-

ers. Dis. 2012, 321280.

86. Thamotharan, S, Lange, K, Zale, EL, Huffhines, L & Fields, S 
(2013). The role of impulsivity in pediatric obesity and weight status: a 
meta-analytic review. Clin. Psychol. Rev. 33, 253–62.

87. Sutin, AR, Zonderman, AB, Uda, M, Deiana, B, Taub, DD, Longo, 
DL, Ferrucci, L, Schlessinger, D, Cucca, F & Terracciano, A (2013). Per-
sonality traits and leptin. Psychosom. Med. 75, 505–9.

88. Bruehl, H, Sweat, V, Tirsi, A, Shah, B & Convit, A (2011). Obese 
Adolescents with Type 2 Diabetes Mellitus Have Hippocampal and Fron-
tal Lobe Volume Reductions. Neurosci. Med. 2, 34–42.

89. Cohen, JI, Yates, KF, Duong, M & Convit, A (2011). Obesity, orbi-
tofrontal structure and function are associated with food choice: a cross-
sectional study. BMJ Open 1, e000175.

90. Mueller, K, Sacher, J, Arelin, K, Holiga, S, Kratzsch, J, Villringer, A & 
Schroeter, ML (2012). Overweight and obesity are associated with neu-
ronal injury in the human cerebellum and hippocampus in young adults: 
a combined MRI, serum marker and gene expression study. Transl. Psy-
chiatry 2, e200.

91. Speed, N, Saunders, C, Davis, AR, Owens, WA, Matthies, HJG, 
Saadat, S, Kennedy, JP, Vaughan, RA, Neve, RL, Lindsley, CW, Russo, 
SJ, Daws, LC, Niswender, KD & Galli, A (2011). Impaired striatal Akt 
signaling disrupts dopamine homeostasis and increases feeding. PLoS One 
6, e25169.

92. Palmiter, RD (2007). Is dopamine a physiologically relevant mediator 
of feeding behavior? Trends Neurosci. 30, 375–81.

93. Palmiter, RD (2008). Dopamine signaling in the dorsal striatum is 
essential for motivated behaviors: lessons from dopamine-deficient mice. 
Ann. N. Y. Acad. Sci. 1129, 35–46.

94. Stice, E, Spoor, S, Bohon, C & Small, DM (2008). Relation between 
obesity and blunted striatal response to food is moderated by TaqIA A1 
allele. Science 322, 449–52.

95. Volkow, ND & Wise, RA (2005). How can drug addiction help us 
understand obesity? Nat. Neurosci. 8, 555–60.

96. Johnson, PM & Kenny, PJ (2010). Dopamine D2 receptors in ad-
diction-like reward dysfunction and compulsive eating in obese rats. Nat. 
Neurosci. 13, 635–41. 


