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LETTER FROM THE EDITORS

Dear friends and colleagues of the Vanderbilt Brain Institute,

It is with great enthusiasm that we present to you the 11th Volume of the Vanderbilt Reviews
Neuroscience (VRN), a journal showcasing the work of the newly-minted class of Ph.D.
candidates in the Neuroscience Graduate Program (NGP). Over the past decade of its
existence, the VRN has evolved to reflect the changing needs and wants of our neuroscience
community, while still preserving many foundational traditions. Importantly, at its core, the
VRN remains trainee-centric, with the contributions and content coming predominantly
from current graduate students. Last year [Volume 10, 2018], the VRN welcomed an
excellent and inaugural team of Editor-in-Chief and Associate Editors to compose its superb
publishing process. This year, two Editors from respective Systems/Cognitive and
Cellular/Molecular tracks of the NGP join efforts and assemble interdisciplinary insights
into review articles of the current volume, highlighting the strength and accolades of the
VBI.

First, we are honored to share with you warm messages and welcoming notes from Dr. Lisa
Monteggia (Director) and Dr. Bruce Carter (Graduate Studies), as well as updates and
ongoing efforts provided by the officials of the Neuroscience Student Organization (NSO).
Also, we are privileged to work alongside with an outstanding administrative team, to whom
we would like to dedicate our special appreciation and gratitude.

In Volume 11, you will find reviews from the brilliant cohort of doctoral candidates –
composing rising scientists entering through the Interdisciplinary Graduate Program
(IGP) or directly from the NGP, as well as promising scholars on the M.D./Ph.D. track via
the Medical Scientist Training Program (MSTP). The breadth of this year’s topics is quite
exceptional: learning and memory (Collins), network science (Conrad), anxiety and
abstinence form alcohol (Flook), environmental adversity and emotional socialization
(Nguyen), Huntington’s disease (Wilcox), chronic stress exposure (Williford), and
neuroscience of numerosity (Yeo).

Aside from capturing the remarkable and insightful lines of research budding among our
rising scientists, we highlight the wealth of productivity and accolades from our colleagues,
including a number of first-author manuscripts.

We are excited to enjoy the continued success and growth of the NGP and the VBI at large.

Your Editors,

Bridget E. Collins & Tin Q. Nguyen
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MASTHEAD

Vanderbilt Brain Institute
6133 Medical Research Building (MRB) III
Nashville, TN 37232
(615) 936-3705

Vanderbilt Review Neuroscience (VRN) is an open-access journal. VRN is the official
journal of the Vanderbilt University’s Neuroscience Graduate Program (NGP) and the
Vanderbilt Brain Institute (VBI). VRN is a collection of reviews submitted by the NGP’s
trainees whilst qualifying for doctoral candidacy. The journal also offers highlights and
commentary on neuroscientific research conducted in laboratories at Vanderbilt as well as
around the world. VRN was founded in 2009 in an effort to consolidate and recognize the
hard work by each class of Ph.D. qualifiers, and is published annually by the VBI.

Review Process
Reviews submitted for doctoral qualifications must be approved by a committee of at least
four tenured or tenure-track faculty members. Approved reviews accepted by the VRN.

Reprints of individual articles are available from the authors or on the website, which can be
found here. Requests for permission to reprint material(s) published in the VRN should be
made in writing and addressed to the attention of the Journal Permissions, Vanderbilt
Reviews Neuroscience, 6133 Medical Research Building III, Nashville, TN 37232. The
request must include a citation of the exact material that will be reprinted and specific
information about where it will be used. One must receive written permission from the
[corresponding] authors whose work will be reused. All copyrights are held by the authors.

2019 Editorial Board

Bridget E. Collins
Cell/Molecular

Tin Q. Nguyen
Systems/Cognitive

https://medschool.vanderbilt.edu/brain-institute/
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A Message from Director of the Vanderbilt Brain Institute

OUTREACH + EDUCATION

We are facing a year of unprecedented crisis, one that is upending
people’s lives, killing people, causing economic uncertainty, and
raising a much needed focus on societal issues. COVID-19 is
characterized as a pandemic and is producing once in a lifetime
effects on people throughout the world. In these rather extraordinary
times we also find ourselves asking questions on systemic racial
injustice in the US, racial equity, and diversity as individuals and as
scientists. 2020 has been quite a year and it is during this time that
the doctoral students in the Vanderbilt Neuroscience Graduate
program move forward to candidacy in the program.

The transition of a graduate student from the classroom to the
dissertation phase represents the compilation of years of study, the
fulfillment of numerous requirements including the publication of a
review in the Vanderbilt Reviews Neuroscience (VRN), and the ability
to successfully complete examinations by a candidacy committee.
The preparation that goes into this process requires perseverance,
critical thinking, passion for the field, and the ability to receive and
act on constructive criticism. While this process is overall
constructive and facilitates a student transition to an independent
scientist, the current situation renders it somewhat stressful. Yet, the
Vanderbilt graduate students met these challenges with hard work
and determination and demonstrated why they are truly outstanding
and promising scientists. These graduate students have brought
great joy to our program in their scientific research endeavors and
the manner in which they contributed to our program.

I offer my congratulations to our graduate students for their
insight and scholarly aptitude as they present a review in their
research area in the VRN. Seeing such talented young investigators
thrive in the time of such uncertainty renews our hope about the
future of scientific discovery.

Sincerely,

Lisa M. Monteggia, PhD
Barlow Family Director of the Vanderbilt Brain Institute
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A Note from Director of the Neuroscience Graduate Program

OUTREACH + EDUCATION

With Lisa Monteggia starting this fall as our new Brain Institute
Director, this is a particularly exciting year for the Neuroscience
Graduate Program! Lisa brings new ideas and enthusiasm to our
program and we look forward to how she will reshape and grow the
VBI, including the Neuroscience Graduate Program! We also are very
grateful to Ron Emeson for serving as Interim Director. Ron ensured
that the program continued to flourish and worked to create a more
equitable and balanced system for everyone. Ron consistently served
as a champion of equal treatment for all students and we are all very
grateful for the battles he’s fought on behalf of the program.

It has been another successful year of recruiting new students.
We admitted 6 students through the direct admit route and accepted
10 from the IGP and 2 MSTPs. As usual, they represent the cream of
the crop and are from a wide variety backgrounds and locations.

As always, our curriculum continues to evolve, with substantial
input from the students. Our Fundamentals of Neuroscience course,
8340, was significantly revamped this year under the direction of its
new director, Thilo Womelsdorf. He plans for interesting new topics,
fewer lecturers and a much more student-engaged approach. We look
forward to seeing how this innovative revision develops! The
Neuroscience Discussions course is now focusing on statistics, aiming
at improving our training on rigor and reproducibility.

The remarkable scientific achievements, the bold leadership and
the commitment to service by our students never ceases to amaze me.
I am always impressed by the scholarly reviews written by our
students for their Qualifying Exam and published in the VRN. These
reviews serve as a springboard for further high quality publications
based on their thesis research. Our students also continue to organize
our annual retreat, the Brain Blast outreach program, as well as other
activities and events, including running this unique publication
(thank you to Tin Nguyen and Bridget Collins for this edition), which
they founded. It is a privilege to serve as the Director of Graduate
Studies for such a fantastic group of students!

Sincerely,

Bruce Carter, PhD
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MASTHEADOUTREACH + EDUCATION

A Letter from President of the Neuroscience Student Organization

It was a prestigious honor to serve as the President of the NSO for the
2018-2019 academic year. The goal of the NSO is to uphold long-
standing values that entail promoting diversity and inclusion,
professional, and academic success of neuroscience graduate students
through curricular support, community engagement, and public
outreach. None of which, could have been achieved without the
collective work of the NSO officers, VBI administration, and Faculty.

I would like to recognize and congratulate this year’s neuroscience
graduate students for passing the rigorous qualifying exam, and
successfully becoming doctoral candidates. Their reviews featured in
this year’s VRN issue, reflects the impressive range of research taking
place in the VBI. Many thanks to Bridget Collins and Tin Nguyen for
this year’s VRN. I would like to extend my gratitude to the Academic
Committee (Bridget Collins, Elizabeth Flook, Jordyn Wilcox) for
preparing students for their qualifying exam, by leading and review
sessions and mock exams. And, thank you to the Curriculum
Committee Resh Gupta and Sierra Palumbos for ensuring the didactic
curriculum meets the satisfaction of neuroscience graduate students.

The VBI and NSO achieved exceptional accomplishments. The
VBI’s commitment to outreach efforts has been made possible thanks
to the Outreach Committee led by Jacob Ruden, Rachana Nitin, and
Kellie Williford. Several successful outreach engagements include: the
annual Brain Blast, Neuroscience lectures (VBI, Osher Lifelong
Learning Institute), sheep brain dissections at Metro Nashville Public
Schools, and the Camp Vandy. I would also like to thank the
incredible support by faculty members Rebecca Ihrie, Suzanna
Herculano, and Ron Emeson. Tin Nguyen organized and steered this
year’s VBI Retreat at the Nashville Public Library, which featured Dr.
Miguel Nicolelis as the keynote speaker, and new faculty talks by Alan
Lewis, Kate Humphreys, Catie Chang, and Ege Kavalali.

Finally, I would like to thank the Barlow Family Director of the
VBI, Lisa Monteggia on ensuring a smooth transition of leadership
and supporting training efforts in strengthening the VBI. I am
thankful to have been a part of the NSO leadership, and to be
surrounded by an incredibly talented team of individuals.

Salma Omer
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Community Outreach
Second Harvest Food Bank

Campy Vandy
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MASTHEADOUTREACH + EDUCATION

A Report from the Outreach Committee

Community outreach is a key component of the VBI, with the NSO’s
Outreach Committee and the VBI’s Faculty Outreach Committee
forming the core. These committees are dedicated to planning
outreach events designed to engage the Nashville community, both
adults and children. These events include, but are not limited to,
learning activities for children, seminars for adults, and invited talks.

The VBI’s biggest outreach event of the year is Brain Blast and is
held during the annual Brain Awareness Month celebration in
March. Brain Blast targets children in elementary and middle school
and seeks to raise awareness about brain health and disease. This
year, the VBI partnered with the Nashville Public Library
(Downtown) to host Brain Blast. Over 25 VBI-affiliated laboratories
sponsored interactive booths that showcased their research and
helped children learn about brain function. Over 400 visitors
participated in hands-on activities, such as extracting DNA from
strawberries, visualizing brain waves using portable EEG machines,
dissecting brains, and learning about neurons using animal models.

Throughout the year, the NSO outreach committee actively
conducted classroom-based neuroscience series in Nashville Metro
Public Schools. VBI’s faculty, post-doctoral fellows, and graduate
trainees volunteered to visit schools during class hours, and led
guided, hands-on brain dissections with middle school and high
school students through basic neuroanatomy. We also teamed up
with Camp Vandy (an annual summer camp for kids on Vanderbilt’s
campus), where we led sheep brain dissections for kids ages 8 and up,
and helped the younger campers assemble real-life sheep brain
puzzles. Moreover, faculty, post-doctoral fellows, and senior graduate
trainees were involved in organizing educational seminars as part of
the Osher Lifelong Learning Institutes’ lecture series. Topics covered
included neurophysiology, addiction, interface of technology and the
brain, and the neuroscience of mindfulness.

The VBI hopes to continue sponsoring and leading such events
and demonstrating the unwavering commitment that its trainees and
faculty committees have to Neuroscience outreach. We are dedicated
to making science more accessible and fun as an innovative way to
gather interests, disseminate knowledge, and engage the community.
Rachana Nitin, Kellie Williford, and Jacob Ruden
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HIGHLIGHTS + BRIEFS

Autism-linked dopamine transporter mutation alters striatal dopamine 
neurotransmission and dopamine-dependent behaviors

DiCarlo, G. E., Aguilar, J. I., Matthies, H. J. G., Harrison, F. E., Bundschuh, K. E., West, 
A., Hashemi, P., Herborg, F., Rickhag, M., Chen, H., Gether, U., Wallace, M. T., & Galli, A.

Read more:
DiCarlo, G. E. et al. (2019). Autism-linked dopamine transporter mutation alters striatal
dopamine neurotransmission and dopamine-dependent behaviors. Journal of Clinical
Investigation, 129(8), 3407-3419.

Dopaminergic neurotransmission and the components underlying its regulation are
instructive to motor activity, motivation, attention, and reward processing. Dopaminergic
dysregulation has been linked to a variety of neuropsychiatric disorders including substance
use disorder, attention deficit hyperactivity disorder, bipolar disorder, and autism spectrum
disorder (ASD). Mechanistic insights into how dopaminergic dysregulation leads to
associated behaviors could direct development and refinement of therapeutic approaches for
these disorders. Gabby DiCarlo, a neuroscience graduate from Dr. Mark Wallace’s lab, and
her colleagues employed chronoamperometry, voltammetry, and murine behavior to
investigate the impact of an ASD-associated dopamine transporter mutation (DAT T356M)
on striatal dopamine signaling and ASD-associated behaviors.

The DAT T356M mutation, a threonine-to-methionine substitution, was reported in an
individual with ASD and is positioned in a transmembrane domain near the transporter’s
ion binding site. DiCarlo and colleagues modelled DAT T356M by studying mice
homozygous for the mutation. Employing chronoamperometry and voltammetry studies in
striatal slices, authors were able to examine transporter function and measure tissue-level
dopamine metabolism. While the T356M mutant DAT is able to traffic to the membrane and
is expressed at normal levels, dopamine reuptake from the extracellular space is reduced,
leading to high levels of synaptic dopamine. As a result of this reduced clearance, the DAT
T356M mutation drives increased dopamine metabolism and decreased dopamine synthesis
in the striatum, which the authors suggest is due to dopamine receptor desensitization.

Following these neurophysiological studies, DiCarlo and colleagues turned to murine
behavior to elucidate the behavioral correlates of the DAT T356M mutation. Homozygous
mice display a range of abnormal behaviors, some of which correspond to ASD-associated
behaviors in humans. Prominent among these is a persistent spontaneous hyperlocomotion;
however, repetitive rearing behavior, reduced marble burying, and altered social behaviors
are also seen. Interestingly, the increased spontaneous locomotor activity phenotype can be
attenuated with administration of a dopamine antagonist, suggesting that this phenotype
results from anomalous dopamine efflux rather than reduced dopamine uptake.

In linking the neurophysiological effects of a dopamine transporter mutation with ASD-
associated behaviors in a murine model, this work both furthers a molecular understanding
of dopaminergic dysfunction and provides clinical insights for neuropsychiatric disorders.
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Network Topology of Symbolic and Nonsymbolic Number Comparison.
Conrad, B. N., Wilkey, E. D., Yeo, D. J., & Price, G. R.

Read more:
Conrad, B. N., Wilkey, E. D., Yeo, D. J., & Price, G. R. (2020) Network topology of symbolic 
and nonsymbolic number comparison. Network Neuroscience. doi: 10.1162/netn_a_00144

Mathematics, and the manipulation of numerical information, draws on individuals’ ability
to process both symbolic (e.g., Arabic digits; “1, 2, 3”) and nonsymbolic (e.g., dots) formats
of number representation. More refined understanding of the shared versus unique neural
patterns of activity that underlie these formats of number representation may enable more
targeted intervention strategies for, e.g., learning difficulties.

To unpack the link between number representation and neural activity, Ben Conrad, a
neuroscience graduate, and his colleagues from Dr. Gavin Price’s laboratory applied cutting-
edge strategies and leveraged functional brain imaging (e.g., fMRI) and network theory.
Functional brain imaging approaches such as fMRI allowed Conrad and colleagues to
examine the extent to which different formats of number representation (symbolic,
nonsymbolic) elicit neural activity across different regions. For instance, central to both
symbolic and nonsymbolic number processing is the involvement of the intraparietal sulcus
(IPS), a region within the parietal cortex implicated in quantity encoding.

Conrad and colleagues extended this notion by applying network theory, and asked as to
whether brain regions operate together as systems to underlie, and differentiate, number
processing. Notably, the IPS is among the regions within the broader fronto-parietal
network, which is thought to support attentional control and cognitive flexibility. It is not
altogether surprising, then, that Conrad and colleagues found support for the relations
between the fronto-parietal network and both symbolic and nonsymbolic formats of number
processing. Though, what distinguishes the two is their additional involvement of the
auditory network for symbolic processing, versus the salience network (or cingulo-opercular
network) for nonsymbolic processing.
• The engagement of the auditory network, which includes the left superior and middle

temporal gyri, during symbolic processing is implicated in the involvement of
phonological processing and verbal retrieval of arithmetic fact.

• The salience network, or cingulo-opercular network that includes the cingulate cortex,
may operate in parallel with the fronto-parietal network to adaptively meet the cognitive
demand during nonsymbolic processing.

Overall, this study by Conrad and his colleagues elucidates the intricate link between
number representation and neural activity, and at the same time, provides nuanced insights
for future research and intervention strategies for individuals with learning difficulties.

http://10.1162/netn_a_00144
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During myelination, it is estimated that Schwann cell
plasma membranes expand 6500-fold during myelination
(Webster 1971, The Journal of Cell Biology). This number
may seem impossible to imagine but using high
magnification Electron Microscopy on Sciatic nerve tissues
allows us a glimpse at the amazing complexity of the
myelin membrane. In the upper left corner, we see an axon
surrounded by a perfect ring of compacted myelin
enmeshed in the dots and speckles of a no less complex
extracellular matrix. However, much as in life,
myelination does not always go quite as planned, and in
the lower right we can an esthetically pleasing but much
less conductively practical example. Encouragingly, all
nerves will occasionally have these errors in organization,
which may result in a bit of shakiness and blurred focus,
but unless the errors overwhelm the successes the signal
will be carried on in the nerve regardless.

Rose Follis
Carter Lab
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CANDIDATE REVIEWS

Histone H3 lysine K4 methylation
and its role in learning and memory

Bridget E. Collins

Abstract
Epigenetic modifications such as histone methylation permit change in chromatin structure
without accompanying change in the underlying genomic sequence. A number of studies in
animal models have shown that dysregulation of various components of the epigenetic
machinery causes cognitive deficits at the behavioral level, suggesting that proper epigenetic
control is necessary for the fundamental processes of learning and memory. Histone H3
lysine K4 (H3K4) methylation comprises one component of such epigenetic control, and
global levels of this mark are increased in the hippocampus during memory formation.
Modifiers of H3K4 methylation are needed for memory formation, shown through animal
studies, and many of the same modifiers are mutated in human cognitive diseases. Indeed,
all of the known H3K4 methyltransferases and four of the known six H3K4 demethylases
have been associated with impaired cognition in a neurologic or psychiatric disorder.
Cognitive impairment in such patients often manifests as intellectual disability, consistent
with a role for H3K4 methylation in learning and memory. As a modification
quintessentially, but not exclusively, associated with transcriptional activity, H3K4
methylation provides unique insights into the regulatory complexity of writing, reading, and
erasing chromatin marks within an activated neuron. The following review will discuss
H3K4 methylation and connect it to transcriptional events required for learning and
memory within the developed nervous system. This will include an initial discussion of the
most recent advances in the developing methodology to analyze H3K4 methylation, namely
mass spectrometry and deep sequencing, as well as how these methods can be applied to
more deeply understand the biology of this mark in the brain. We will then introduce the
core enzymatic machinery mediating addition and removal of H3K4 methylation marks and
the resulting epigenetic signatures of these marks throughout the neuronal genome. We next
foray into the brain, discussing changes in H3K4 methylation marks within the
hippocampus during memory formation and retrieval, as well as the behavioral correlates of
H3K4 methyltransferase deficiency in this region. Finally, we discuss the human cognitive
diseases connected to each H3K4 methylation modulator and summarize advances in
developing drugs to target them.

Keywords: Learning, Memory, Epigenetics, Neuroepigenetics, Histone methylation, H3K4
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Read more:
Collins B.E., Greer C.B., Coleman B.C., & Sweatt J.D. Histone H3 lysine K4 methylation and
its role in learning and memory. Epigenetics Chromatin, 12:7 (2019).
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Network neuroscience
of numerical cognition: A new horizon

Benjamin N. Conrad

Abstract
It has long been presumed that the function of neurobiological systems is a product of
distributed, parallel processes, occurring among complex networks of neural tissue1,2. Until
recently however, the study of network organization in the nervous system has been limited.
Advances in the acquisition and modeling of neural data have provided increasingly rich
datasets which present new opportunities for understanding neural organization across
many levels, from protein and cellular interactions to functional circuits and large-scale
brain dynamics. Researchers have increasingly turned to the mathematical framework of
graph theory to characterize these data, which allows for the quantification of topological
properties in complex networks based on a representation of the connections among
constituent units in the system3. Graph theoretical measures have been applied in the study
of not only biological systems, but other real-world networks including social affiliations
among individuals and links between computers over the internet4. The application of these
tools in neuroscience, dubbed “network neuroscience,” holds the promise of unifying our
understanding of the relationships between brain structure and function, and information
integration and segregation, as well as bridging descriptions of neural data across multiple
spatial and temporal scales5,6. In this paper we discuss the prospect for application of these
techniques in cognitive neuroscience (e.g. see7 for review), and focus on the particular
domain of numerical processing in the brain as a model system. We suggest a new horizon
for the field of numerical cognition and argue that network approaches not only complement
prior work but offer a novel framework for investigating cognitive mechanisms.

Keywords: Network, Numerical Cognition, Connectivity, Brain Organization, MRI
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The capacity for the representation and manipulation of numbers in the brain has long been
a fundamental topic of interest in cognitive psychology and philosophy. While early theories
suggested that the human capacity for number and arithmetic operations was solely a
product of human linguistic faculties, a large body of work has demonstrated that number
processing is present in many species, including in fish, birds, and other mammals8. While
these species do not perform complex arithmetic, they do demonstrate a basic concept of
number and set size. Furthermore, preverbal human infants have been shown to process
numerical quantities9.

Studies have also shown that many non-industrialized cultures demonstrate no system
for exact quantification, but do retain a basic capacity for quantity discrimination in line
with many other animals10. It has thus become clear that numerical approximation and
quantification is, on some level, a primitive and innate faculty of the nervous system. In
contrast, the ability for humans to perform higher-level mathematics is not fully explained
by these inherited capacities for magnitude processing. Instead, the learning and efficient
processing of number symbols (e.g. Arabic digits) is an integral feature of human
mathematical cognition, which provides, for instance, an exact reference and notation
system by which numbers can be flexibly represented and manipulated. The acquisition of
basic numerical literacy thus involves the linking of visual symbols of Arabic numerals to
physical quantities and abstract numerosity11. Additionally, the human language system may
provide a structure for mathematical cognition via verbal representation and associations,
such as through counting, rule-based procedures, and learning of arithmetic facts such as
multiplication tables. The mapping of numerical quantities and number symbols to spoken
number words is also important for early numerical literacy. It is thought that the uniquely
human capacity for both numeral processing and reading represent a “recycling” of core
brain circuits (such as magnitude and language networks), given the evolutionarily recent
appearance of these systems in human cultures12. A final note is that domain-general
capacities including working memory, fluid intelligence, and processing speed, support
numerical and mathematical abilities13,14. Neurobiological accounts should strive towards a
more unified understanding of how numerical cognition overlaps with and engages
associated systems and mechanisms in the brain.

Number Sense

A prevailing framework for understanding number processing in the primate brain is that of
the Triple-Code Model (TCM), and later refined in the “three parietal circuits” model15,16.
Put forth by Dehaene and colleagues and motivated by earlier work by McCloskey, this
theory postulates that number forms are first processed by early sensory mechanisms
through which they are translated into an abstract representation independent of modality17.

The Triple-Code Model and Beyond
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Figure 1. The Triple Code Model (TCM) of human number processing and calculation; The updated 
TCM (i.e. TCM+) from Arsalidou & Taylor, based on meta-analysis; Graph theoretical concepts for 

brain network analysis.
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Dehaene hypothesized that three general systems subserve number processing in humans: 1)
a quantity code providing an analog magnitude representation involving bilateral parietal
areas, 2) a visual code for processing Arabic numerals housed in inferior occipito-temporal
regions of the visual ventral pathway, and 3) a verbal code for auditory/linguistic
representations of number and operands and utilization of verbal working
memory/articulatory loops, housed in the left-lateralized language areas such as
superior/middle temporal gyrus and inferior frontal gyrus16,18. While originally based on
observations from lesion studies, subsequent neuroimaging studies have largely supported
the primary components of the model.

Under the TCM framework (Fig. 1), the quantity code supports processes such as
approximation, estimation, and numerical comparisons and engages the so-called
“approximate number system”. The intraparietal sulcus (IPS) has been particularly
implicated as a region involved in quantity processing and semantic representation of
numerical magnitude, responding to a variety of numerical stimuli both in the context of
explicit number tasks and in passive viewing of number forms19,20. Neurophysiological work
in macaques has corroborated these findings by demonstrating that a small proportion of
IPS neurons are tuned to a particular numerosity, independent of presentation modality8,21.
Topographically organized maps of numerosity preference have also been described in the
parietal lobes, suggesting parietal areas contribute to representations of numerical
magnitude22. In the ventral occipito-temporal cortex (vOTC) proposed to house the visual
code, selective responses to number symbols have been shown in both neuroimaging and
electrophysiological studies in humans23,24, with a recent meta-analysis demonstrating at
least some convergence across fMRI studies and providing evidence of functional
specialization in right vOTC for number symbols25. Finally, angular gyrus (AG) and left
perisylvian language areas have been shown to be involved during symbolic number
processing and arithmetic, particularly in the case of addition and multiplication which are
thought to tap into rote verbal memory, supporting the TCM’s account of a verbal code for
number16,26–29. The TCM rests on the assumption that the areas involved in the processing of
each numerical code have reciprocal functional connections which facilitate the transfer of
information as required for a given task. Whether these areas do indeed integrate their
information into large-scale functional networks during numerical cognition is an open
question which is particularly amenable to functional network analysis.

The TCM focuses on representational encoding of numerical information in higher-order
sensory/perceptual and posterior association areas. Dehaene’s original formulations did
acknowledge that other regions play important roles in numerical cognition, including
frontal cortex supporting domain-general “strategy choice and planning” processes, left
inferior frontal regions supporting verbal-based “articulatory loops”, and left hemisphere
cortico-striatal loops supporting arithmetic fact-retrieval18. However, the TCM is lacking in

its explanation of how numerical “codes” are incorporated and manipulated across
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distributed cognitive systems. One consistent finding largely unaccounted for in the TCM is
activation in both the lateral and medial prefrontal cortices (PFC) during numerical tasks,
including from basic magnitude processing to higher-order mathematical thinking. Recent
meta-analyses suggest revisions to the TCM regarding the fundamental role of PFC and its
various subdivisions in numerical cognition30–32. The function of the (lateral) PFC has
traditionally been attributed to working memory processes, including short-term storage
and manipulation of information. Across many variants of the “n-back” working memory
task, for instance, where subjects compare a present stimulus to one n-steps back in a
sequence of stimuli, lPFC activity increases with increasing working memory load33,34.
Understandings of the role of lPFC and its subdivisions (e.g. ventral versus dorsal) in
cognition have become more nuanced, with lPFC areas now thought to support more than
just working memory per se, but multiple aspects of cognitive control including response
inhibition, top-down attentional control, and rule implementation35. The mPFC is also
functionally heterogeneous and thought to be involved in goal setting and task
maintenance36. Findings in the numerical cognition literature suggest PFC neuronal
populations subserve a diverse set of domain-general functions, including maintenance and
monitoring of multiple items, response selection, and procedural processes, with increasing
involvement related to increasing task difficulty30. Interestingly, electrophysiological
recordings of both lPFC and mPFC neurons in monkeys have revealed selective tuning for
particular numerosities with properties similar to those in IPS neurons, suggesting at least
some activity in PFC is domain-specific21,37,38. This indicates PFC may play an important role
not only in manipulation and monitoring, but also representation, of numerical information.
In accordance with this account, a recent meta-analysis of number comparison, involving
simple judgments of magnitude, and passive viewing tasks, involving no explicit number
processing, found consistent activation of mPFC across studies. The authors conclude their
results “offer no reason to think that the parietal cortex is more specialized for number than
the frontal cortex”39. Taken together, findings of diverse PFC involvement expand the
framework put forth in the TCM and suggest the existence of a distributed network
fundamental to numerical cognition involving both posterior and frontal brain regions.

Towards a Unification of Functional Segregation
and Integration
Since the advent of PET and fMRI several decades ago, cognitive neuroscience has largely
followed a localization agenda in which hypotheses are tested regarding neural activity
levels40. Massively univariate statistical models are used to assess functional specialization,
asking at each voxel the same question, is the underlying tissue significantly “active” during
the process of interest41? Note that this rests on neural activity level as the primary
dependent variable, i.e. does local activity increase or decrease within an experimental
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context. Experiments are designed to probe activity levels using task manipulations and
condition contrasts, for instance to control for shared processing mechanisms via “cognitive
subtraction”42. Subject activation maps are often carried on to group-level statistical tests to
look for common effects across subjects (e.g. at each location, is the relative activity level
difference between an experimental and control condition significantly greater than zero
across the group?). The results of this endeavor have revolutionized neuroscience by
providing an unprecedented mapping of cognitive functions and their spatial segregation
across the brain43. The vast majority of neuroimaging studies of numerical cognition fall
within this framework, purported to reveal “where” numerical information is locally
processed in the brain. Importantly, these findings appear to corroborate observations from
lesion studies, highlighting the utility of localization information in clinical settings44. For
instance, a case study showed that a restricted infarct to the left IPS induced deficits in tasks
which required processing of numerical quantities45. Lesion-deficit findings have been
considered to indicate regions necessary for a behavior (i.e. if region X is lost then behavior
Y is lost) and complement functional localization findings which indicate the regions
sufficient for a behavior (i.e. if regions X and Y are active during behavior Z, they are
sufficient for Z). While this framework has been useful, there are problems with both
assumptions which highlight fundamental issues in the localization agenda46,47. For
instance, localization findings are subject to concerns of sensitivity, such that some
necessary regions may not reach the significance threshold for activation. And, lesion
studies have been particularly challenged by findings of inter-subject variability,
degeneracy, and plasticity, where the same cognitive function can be achieved via multiple
brain regions or pathways48.

Another central issue arising from localization work in numerical cognition is the finding
of strikingly high overlap of activity maps during numerical tasks compared to maps from
other domains. Indeed, IPS and PFC regions are consistently activated across many
cognitive tasks that require attentional control (i.e. composing what is generally referred to
as the frontoparietal network)49, calling into question the specificity of these areas for
number processing. The IPS, for instance, long held as region housing semantic
representations of numerical quantity, is now understood in the numerical cognition field to
be involved in a generalized magnitude processing system, including during judgments of
physical size, temporal duration, or luminance, rather than selectively tuned to numerical
quantity per se39,50,51. Other work has shown that IPS regions encode abstract
representations of behaviorally relevant stimuli unassociated with magnitude information,
such as the identity of faces presented at different viewing angles (e.g. Matt Damon versus
George Clooney)52. To complicate matters further, IPS activity is consistently observed in
working memory tasks33 and has additionally been associated with spatial cueing, visual
orienting, saccadic eye movements, shifts in attention, and guiding selection between
competing stimuli49,53–55. It thus appears that areas most strongly activated during
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numerical processing are multi-functional, at least at the spatial scale of fMRI (i.e. a voxel is
typically 2-3mm3, conceivably representing a summation of information from 600,000+
neurons)56,57. Note that while stimulus-selective neurons have been demonstrated via
electrophysiological recordings, they are likely intermixed among neuronal populations
tuned for different purposes within a sampled voxel. From this perspective it may be rather
unsurprising to observe co-localization of activity across domains, highlighting a
fundamental limitation in the interpretation of the voxel-level fMRI signal. However,
compared to other noninvasive imaging techniques, the spatial resolution of fMRI affords a
relatively high level of specificity in terms of cytoarchitectonic and anatomical location. We
may have some confidence, for instance, that a patch of cortex sampled within a voxel has a
relatively homogenous profile of afferent and efferent projection targets. Also, a standard
fMRI voxel may capture on the order of several cortical columns and hundreds of
minicolumns, with the latter considered to act as a fundamental functional unit58,59, further
reducing the potential complexity of a voxel’s response profile. Despite limitations in the
spatial resolution of fMRI, it is currently the most useful methodology for noninvasively
examining both local and distributed cortical function. Thus, the question remains, how can
we reconcile the multi-functionality of brain areas?

While there has been a tendency in the neuroimaging literature to attribute a particular
cognitive mechanism to a singular brain region, this notion is increasingly becoming
outdated60. Findings of regional flexibility, such as in the IPS, suggest that a cognitive
construct (e.g. the abstract representation of numerosity) is not likely to take place in any
one region, but is rather a distributed process involving multiple regions2. A view developed
by Price and Friston more than a decade ago, the function of a region may be more
appropriately conceptualized by considering its diverse set of interactions and patterns of
coactivity across many cognitive states47. In this view, a brain region serves as a
computational unit that performs an operation contributing to a given function but, should
not be defined by the function itself60. While there are surely biological constraints on a
region’s so-called “operation-function”, it is abstract in the sense that its relation to behavior
is a product of context, i.e. the inputs and outputs to/from the region as defined by the
dynamic and distributed state of the system. This perspective combines the notions of
segregation and integration in the brain61, and highlights the futility of focusing on localized
processing without respect to inter-areal interactions. In the case of numerosity
representation, for example, recent work by Harvey et al. demonstrated the existence of
multiple topographic maps of numerosity preference in parietal, temporal, and occipital
areas62, suggesting a distributed encoding of quantity which may be differentially engaged
depending on particular behavioral demands. We propose that investigating distributed
patterns of regional activity and communication, rather than simply levels of local activity, is
a critical step forward to understanding the apparent flexibility of brain regions and how
they subserve complex cognitive function63.
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These insights provide motivation for a new “information” agenda in cognitive
neuroscience which employs alternative methodologies to assess distributed and integrated
brain function40,64. Methods such as multivariate pattern analysis (MVPA), which employ
learning algorithms to “decode” cognitive states from fMRI, have been important in driving
this agenda forward. MVPA results reveal there is more predictive information in the
patterns of activity across many voxels than in the level of activity at a singular location65.
Recent applications of these techniques, for instance, in studies of language and reading,
suggest that both semantic and syntactic processes are more distributed than previous
localization results have indicated66,67. We suggest that measurements of functional
connectivity (FC) and in particular, the application of network models to these data, are a
part of the same information agenda by providing complementary insights into the
functional integration of distributed information.

FC measures examine the statistical relationships between activity in two or more
locations in the brain68. FC is typically calculated as the correlation or coherence between
two vectors of neural data (e.g. voxel-wise fMRI time series, though similar analyses can be
performed with ECoG, EEG, or MEG data), with higher FC indicating greater coupling,
communication, or information transfer between regions. Statistical independence, i.e. low
FC, is interpreted as an absence of functional interaction. While correlated fMRI signals
may not indicate direct neural communication, e.g. due to possibility of two regions being
driven by a third source69, FC may be more appropriately considered as a composite of the
functional relationships along all anatomical paths between two regions70. Importantly,
evidence suggests a strong coupling between connectivity patterns measured via fMRI and
as measured from direct electrophysiological recordings71,72. In the context of numerical
cognition, a recent study of epilepsy patients implanted with intracranial electrodes showed
strong electrical coupling of neural population in vOTC and IPS regions specifically during
simple arithmetic compared to control tasks73. These findings provide support for
information transfer between components of the TCM, suggesting task-dependent coupling
may be observable via connectivity measures derived from fMRI during numerical
processing.

The application of FC measures in cognitive neuroscience has largely involved
investigation of connectivity between a priori regions of interest or from “active” voxel
clusters to the rest of the brain, e.g. as defined in univariate contrasts. This approach is
crucial for bridging the gap between localization findings and FC information, providing
results which may be more readily interpretable within current neurocognitive models such
as the TCM. Studies of FC during numerical cognition have followed this approach,
providing some significant insights which we review in subsequent sections. Importantly,
however, restricting FC analyses to/from singular regions is unnecessarily biased towards
the misconceptions of localized function outlined above. A more holistic approach is to



VOLUME 11 | 2019 | Page 23 Vanderbilt Reviews Neuroscience 

CANDIDATE REVIEWS

consider FC across many regions within network models and describe these networks in the
language of graph theory5,48. Graph theory unifies concepts of functional segregation and
integration in the brain and has the potential to provide novel, more parsimonious accounts
of cognitive function7. We now outline this methodology and its recent contributions to
cognitive neuroscience, and later consider its application in the field of numerical cognition.

Network Theory for Cognitive Neuroscience:
Concepts and Contributions
The mathematical study of networks, termed graph theory, has a long history spanning back
to at least the 18th century. The mathematician Euler is credited with the first graph
theoretical proof where he described the impossibility of traversing a path through the city
of Konigsberg which crossed each of its seven bridges once and only once74. The key
contribution was his abstract representation of the problem in terms of a mathematical
structure. In today’s terms, he had conceived of a graph in which the city’s land masses
served as fundamental units, or nodes, and the bridges as connections between units, or
edges (Fig. 1). The number of edges between nodes, i.e. the degree of the nodes, was key to
his solution and is a feature of a graph’s topology, i.e. its particular arrangement of
connections or organization. In the last several decades, new interests in describing complex
systems, from economies and societies to telecommunication links to protein-protein
interactions, have driven the development of graph theory-based methods for characterizing
such systems and spawned the field of network science74. Applications of network theory in
neuroscience have only recently become feasible thanks to methodological advancements in
measuring the nervous system and its connectivity. In particular, MRI provides an
unprecedented ability to non-invasively measure the structure and function of the living
brain with high anatomical specificity. MRI-based connectivity measurements can be
considered in the context of a larger endeavor in neuroscience to create comprehensive
diagrams of brains across multiple scales and modalities, i.e. to characterize connectomes75.
In this regard, network science holds particular promise as a parsimonious framework
through which brain networks of different spatiotemporal scales may be unified and, will
undoubtedly advance our understanding of nervous system complexity76.

Network approaches for understanding the functional topology of the brain during cognitive
tasks have received relatively little attention compared to their application in resting-state
FC data. Resting-state FC refers to correlations in spontaneous fluctuations in fMRI signals
in the absence of a specific task, i.e. while subjects are simply laying in a scanner. The
resting-state connectome is thought to reveal the intrinsic functional architecture of the

Functional Connectivity in Task Versus “Rest”
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brain and, strong overlap has been noted between connectivity maps observed during rest
(e.g. as defined via independent component analysis) and activation patterns derived from
task data, such as among motor, auditory, visual, and frontoparietal networks77–79. On the
other hand, topologies supporting higher-order cognitive functions may be seldom engaged
at rest. For example, the putative visual word form area (pVWFA) is a region near the
vOTC which is engaged during reading, forming a network with left SMG, AG, ITG, and IFG
regions80. During resting-state, however, pVWFA was shown to have almost no connectivity
to reading-related regions and instead demonstrated strong connectivity with the dorsal
attention network which includes IPS areas81. This suggests functional networks
dynamically reorganize to support cognition and highlights the necessity of studying task-
based FC70. A further limitation of resting-state fMRI is that ongoing activity during rest
reflects a potential myriad of cognitive states (e.g. mind-wandering, planning one’s day,
sleep, etc.) which are not controlled between subjects. These states, as revealed by self-
reports, have been shown to systematically alter FC patterns and thereby confound
interpretation of FC network properties and comparisons across individuals82. In other
words, while resting FC patterns may reveal generalized functional organization,
researchers should be cautious in interpreting individual differences from resting data. A
recent network-based analysis showed that differential connectivity patterns could be
observed between a sensorimotor task, movie-watching, and rest, and that these differences
interacted with age, suggesting that inducing the cognitive state of interest may be
particularly important for accurately characterizing functional network development83.
Another study found changes in global functional organization scaled with complexity in a
reasoning task, with significant alterations compared to rest84. In light of such findings, the
utility of resting-state fMRI for questions in cognitive neuroscience has been intensely
criticized85,86.

Methods for assessing FC during cognitive tasks are available and should instead be
preferred for modeling functional networks in cognitive neuroscience. One simple approach
is to look at connectivity during active periods of a traditional block paradigm87. It has been
pointed out that removal of coactivations effects may be desirable, since similar activation
profiles may not indicate interaction per se, and thereby suggest correlation over residual
time series after removing modeled task effects88–90. Other principled approaches for
estimating task-modulated FC, which can also be applied in event-related data, include
generalized psychophysiological interaction analysis91 and beta-series regression63,92.
Though originally developed for looking at task-related FC from pre-defined regions of
interest, these methods have recently been extended for whole-brain network analyses93,94.
These variants in measuring task-related FC may require subtle differences in interpretation
of the resulting networks, highlighting the importance of careful consideration in regards to
network construction95. Described in detail elsewhere, the choice of region parcellation and
treatment of negative FC values are also important methodological considerations for
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functional network analysis3,7,96. We now outline several examples of network metrics which
have been applied in cognitive neuroscience.

Global Efficiency
As described previously, the dichotomy of functional integration and segregation in the
brain has been a central topic of debate in cognitive neuroscience. In network theory, the
degree of integration across a network can be explicitly defined using the concept of shortest
path length (Fig. 1), which describes the minimum number of steps, or edges, that occur
between two nodes3. Global efficiency refers to the average inverse shortest path across all
pairs of nodes in the network, and has been suggested to describe the overall capacity of
information transfer between regions97. The interpretation that global efficiency in FC
networks measures information flow per se is complicated by the potential for indirect
anatomical connection between regions (see above). Nevertheless, this measure has been
applied in a growing number of studies and has revealed important insights into cognitive
function. It has been shown, for instance, that global efficiency in both functional98 and
white-matter structural networks correlate positively with IQ99 and these findings have been
taken to support an information efficiency hypothesis of intelligence100. Work using task-
based FC has shown efficiency within a large group of frontoparietal, visual, salience, and
subcortical regions increased with increasing reasoning complexity, and efficiency positively
correlated with accuracy on the task84. Another study looking at emotional and motivational
processing found increased efficiency in task-related networks in response to threat and
reward compared to safe and control trials, respectively101. Furthermore, MEG studies
employing n-back tasks have shown increased global efficiency with increasing cognitive
load and in higher performers, as well as impairment in schizophrenics102,103. Taken
together, global efficiency measures appear to track a large-scale, dynamic property of
cognition which relates to individual differences in behavior. A final point to note is that
global network properties are nonspecific in the sense that the same result may arise from
different underlying topologies. Combination with local metrics is therefore necessary for
more mechanistic interpretations7.

Modular Organization and Hubs
One principle of brain organization which has received considerable attention is modularity.
In the context of network theory, a module refers to a highly connected community of nodes
which demonstrate relatively weaker connectivity to the rest of the network104. Modular
structure (Fig. 1) is observed in nearly all complex systems. In the brain, this feature is
thought to have evolved to support resilience (i.e. since local perturbations are less likely to
disrupt the system) and to minimize the biological costs associated with wiring/maintaining
electrical conductions over long distances105. Modularity algorithms attempt to cluster or
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partition networks into non-overlapping communities, providing a data driven methodology
for assessing functional subnetworks in the brain. This information can be used to look for
organizational differences in modular structure across cognitive states as well as
within/between module interactions106. A recent study showed that, during an n-back task,
greater flexibility and integration among several frontal cortex-based modules related to
greater working memory performance and neuropsychological test scores107, suggesting a
potential domain-general mechanism for cognitive flexibility and executive control. Similar
results have demonstrated reorganization of frontoparietal communities across tasks108 and
suggested fluid intelligence is related to higher global connectivity of lPFC109. An interesting
application by Bassett et al. looked at longitudinal changes in modular organization as
subjects gradually learned simple visual-motor tapping sequences over six weeks. Results
demonstrated progressive segregation of the visual and motor modules over learning, and
that release of connectivity from regions involved in top-down cognitive control predicted
faster learning110. Other examples of modularity-based analyses have shown decreased
segregation between modules during remembered versus forgotten trials in an episodic
memory task111 and, during conscious versus unconscious awareness of a visual target94.

A defining feature of real-world, modular networks is the existence of hub nodes. These
nodes share many more connections than other nodes in the network, with edge counts
approximately following a power-law distribution112. Centrality measures are used to
describe a node’s importance in the network. For instance, degree centrality is a simple
count or sum of weights of a node’s edges. Other centrality measures are employed to
capture the overall importance of a node in the network, such as betweenness centrality
which quantifies the number of shortest paths involving a node3. In brain networks,
centrality metrics have identified a small group of highly connected hub regions, referred to
as the “rich-club,” which are thought to facilitate integration across modular communities
(Fig.1)113. Lesions to these connector hubs are particularly detrimental and result in
widespread deficits across multiple cognitive domains114. Some have suggested that
interactions among rich-club regions support a “global workspace” necessary for higher-
order cognition115. Centrality metrics have also recently been applied to study visual search
mechanisms. Higher centrality of regions within the frontoparietal network and lower
centrality of subcortical regions during task processing associated with higher
performance93. A study by Tomasi et al. employed a visual tracking task and found strong
deactivation of the precuneus, a rich-club hub and region commonly deactivated in task
paradigms116. Interestingly, the authors showed this was accompanied by widespread
reductions in global connectivity from visual, language, and prefrontal areas irrelevant to
the task, and that these reductions correlated with better task performance116. The authors
suggest hub node deactivations may have distributed effects on information transfer among
distant areas, and perhaps are crucial for reducing interference during specialized modular
processing. This study provides a salient example of how (de)activation and connectivity
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metrics are both dissociated and potentially complementary indices of brain function.
In summary, preliminary applications of complex network analyses in task-based

neuroimaging studies suggest that large-scale, dynamic interactions support cognitive
function and are observable at the global level as well as among regional communities. The
existence of hub nodes and rich-club organization provides a novel framework for
understanding regional roles within brain networks and may provide new insights for
interpreting localization results with respect to distributed processing. Importantly,
individual differences in network topologies are both functionally and behaviorally relevant.
Network theory thus presents new challenges and opportunities for cognitive neuroscience.
In the following section we outline some potential applications of these methods in
numerical cognition.

Complex Arithmetic and Functional Integration
The TCM details a core network of brain areas supporting number processing and
arithmetic in humans. Arsalidou et al. recently expanded this model (which we refer to as
the TCM+) to include additional regions, particularly multiple PFC areas, based on findings
of a meta-analysis of activation foci from studies involving number and calculation tasks
(Fig.1)30,32. This model suggests that complex mental calculation such as the performance of
multi-step arithmetic problems requires recruitment of nearly all regions of this system, e.g.
visual symbol processing, quantity representation, goal/subgoal creation and
implementation, monitoring of multiple items, etc. Recent findings suggest that increased
functional integration (i.e. higher global efficiency) is observed with increasing complexity
during reasoning tasks, particularly among frontoparietal and cingulo-opercular networks
such as are included in the TCM+84,117. Higher levels of integration among these systems
were shown to relate to performance. We speculate that complex arithmetic may also
demonstrate this property, such that higher global efficiency across TCM+ regions relates to
calculation ability. Interestingly, other findings may provide support for this hypothesis. For
instance, one study showed math-gifted students demonstrate stronger, more bilateral
activation of frontoparietal regions compared to controls while performing a fluid reasoning
task (Raven Progressive Matrices)118. Another demonstrated increased frontoparietal
connectivity during mental rotation in math-gifted adolescents compared to controls119. And
finally, a recent study found that professional mathematicians have stronger activation
across a widespread network largely corresponding to the TCM+ while listening to
meaningful (versus meaningless) math statements compared to control subjects of equal
academic standing120.

A Few Prospects for Network Analyses in
Numerical Cognition
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It is thought that simple arithmetic operations engage different functional systems, such
that addition and multiplication are more verbal-retrieval based whereas subtraction
engages quantity processing28. Recent work suggest comparisons of network topologies
during basic arithmetic tasks may provide further mechanistic insight into these differences.
For instance, a study by Park et al. found stronger connectivity from a right parietal seed to
left and right IPS during subtraction versus addition, with stronger connectivity relating to
faster reaction times121. Importantly, univariate activation levels were not predictive of
performance in this study. In a recent paper by Yang et al., dynamic causal modeling was
used to assess connectivity during subtraction and addition in a small set of regions
including bilateral IPS, bilateral caudate, and several regions in bilateral PFC122. Results
showed that subtraction involved increased connectivity across this system, particularly
among bilateral IPS, whereas addition was left-lateralized with weaker connectivity overall.
These findings suggest differential connectivity patterns underlie arithmetic operations.
Based on these results we may predict retrieval of rote-arithmetic facts involves a more
segregated network architecture compared to engagement of the IPS-mediated quantity
processing system. Simple assessment of degree distributions may reveal more bilateral
connections during subtraction and left-lateralization for addition, as well as verbal-fact
retrieval in general.

Differential Pathways for Basic Operations

Number Processing Network Development
A driving motivation for studying numerical cognition is the fact that numeracy, or one’s
ability to access and apply basic numerical and mathematical concepts, is critically
important for functioning in modern life123. A significant proportion of individuals (i.e. as
much as a fifth of adults) fail to achieve an adequate level of numeracy and there is growing
appreciation that poor numerical skills represent a significant burden on society124–126.
Despite a long tradition of empirical research in educational and cognitive psychology
looking at numeracy development, the persistent achievement gap in numerical skills
among the general population warrants investigation from new perspectives. In particular,
development of numeracy skills in early childhood is strongly related to future mathematical
abilities127–130. A mechanistic, neuroscientific understanding of numerical cognition and its
development has the potential to help characterize individual differences in achievement
and inform remediation practices.

Network analyses of functional architecture over development have revealed a transition
from strong short-range connections towards increased long-distance connections over
childhood131,132. This pattern is associated with enhanced segregation and local clustering of
regional communities still observable at 5 years old, with a shift to a more distributed and
integrated topology by late adolescence133,134. Additionally, while rich-club organization is
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observed in structural networks in young children, functional connectivity between rich-
club hubs undergoes a more protracted development135. These observations come from
resting-state FC studies, likely reflect general trends in brain maturation, but may say little
about functional topologies engaged during higher-order cognition. As an example, Vogel et
al. found no differences in the resting-state modular organization of reading-related regions
between children, adolescents, and adults136. Instead these regions are functionally
segregated into distinct networks early on and remain so over development.

Studies of functional activation during numerical processing have revealed that PFC
activity levels undergo significant change over development, involving a trajectory of
decreasing engagement of PFC from childhood to early adulthood during basic magnitude
and arithmetic processing, with concomitant increases in parietal activity137–140. This so-
called “frontal-to-parietal shift” is thought to reflect a decreasing reliance on domain-
general processing as parietal representations of number become more specialized and
efficient141. A subsequent meta-analysis of this literature found no evidence of PFC
involvement during number comparison in children, citing the fact that previously reported
PFC locations were highly variable across studies141, making the frontal-to-parietal shift a
controversial topic in the field142. However, recent results from a longitudinal study report
strong evidence for decreasing task-based connectivity between left lPFC and bilateral IPS
during an arithmetic task in 8-14 year olds, along with increased connectivity among
bilateral IPS and with vOTC143. Stronger task-based connectivity among bilateral IPS
correlated with math ability at all ages, and importantly, activity levels were unrelated to the
observed effects. This motivates revisiting the frontal-to-parietal shift in younger children
during comparison tasks with a focus on task-based connectivity networks, such as to assess
segregation of FPN or reductions in PFC centrality. Furthermore, these findings suggest
task-evoked network topologies may be more dynamic and behaviorally relevant than those
observed in resting-state data. Longitudinal studies employing task-based fMRI and
network theory are thus particularly well suited to reveal novel mechanisms of cognitive
development.
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Anxiety during abstinence from alcohol:
A systematic review of rodent and human 

evidence for the anterior insula’s role
in the abstinence network

Elizabeth A. Flook

Abstract
Alcohol Use Disorder (AUD) is a chronic, relapsing disease that impacts almost a third of
Americans. Despite effective treatments for attaining sobriety, the majority of patients
relapse within a year, making relapse a substantial barrier to long-term treatment success. A
major factor contributing to relapse is heightened negative affect that results from the
combination of abstinence-related increases in stress-reactivity and decreases in reward
sensitivity. Substantial research has contributed to the understanding of reward-related
changes in AUD. However, less is known about anxiety during abstinence, a critical
component of understanding addiction as anxiety during abstinence can trigger relapse.
Most of what we know about abstinence-related negative affect comes from rodent studies
which have identified key brain regions responsible for abstinence-related behaviors. This
abstinence network is composed of brain regions that make up the extended amygdala: the
nucleus accumbens (NAcc), the central nucleus of the amygdala (CeA), and the bed nucleus
of the stria terminalis (BNST). More recently, emerging evidence from rodent and human
studies suggests a fourth brain region, the anterior insula, might be part of the abstinence
network. Here, we review current rodent and human literature on the extended amygdala's
role in alcohol abstinence and anxiety, present evidence for the anterior insula's role in the
abstinence network, and provide future directions for research to further elucidate the
neural underpinnings of abstinence in humans. A better understanding of the abstinence
network is critical toward understanding and possibly preventing relapse in AUD.

Keywords: Abstinence, Addition, Insula, Anxiety, Amygdala
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Read more:
Flook E.A., Luchsinger J.R., Silveri M.M., Winder D.G., Benningfield M.M., & Blackford
J.U. Anxiety during abstinence from alcohol: A systematic review of rodent and human
evidence for the anterior insula's role in the abstinence network. Addict Biol. e12861 (2020).
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Commentary: Dimensionality in 
environmental adversity, mechanisms of 

emotional socialization, and children’s 
characteristics and cognitive growth –

a reflection on Miller at al. (2020)
Tin Q. Nguyen

Abstract
Disentangling the dimensionality in environmental adversity offers nuanced insights at both
theoretical and practical levels, such as the ways that disadvantaged socioeconomic
circumstances during childhood development may contribute to adolescent
psychopathology. Miller and colleagues (2020) provide evidence into how early deprivation
and threat may exacerbate later psychopathology. Yet, how certain factors in this early
environment differentially facilitate children’s cognitive and socioemotional growth may
modulate the severity of later psychopathology. In this commentary, we reflect on the
promising evidence offered by Miller and colleagues and extend additional considerations
regarding academic growth, cognitive abilities, and protective environmental factors.

Keywords: Development, Environment, Cognition, Psychopathology, Academic Growth
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Read more:
Nguyen, T. Q., & Cutting, L. E. (2020). Commentary: Dimensionality in environmental
adversity, mechanisms of emotional socialization, and children’s characteristics and cognitive
growth – a reflection on Miller et al. (2020). Journal of Child Psychology and Psychiatry,
https://doi.org/10.11111/jcpp.13260.
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Manganese deficiency in
Huntington’s Disease

JordynWilcox

Abstract
Huntington’s Disease (HD) is an autosomal dominant neurodegenerative disease resulting
from an expanded CAG repeat in the Huntingtin (HTT) gene translating to an expanded
poly-glutamine (polyQ) tract in the huntingtin protein (HTT). The hallmark
neuropathological sign is dysfunction and eventual death of striatal medium spiny neurons.
Symptoms typically develop mid-life and manifest as hyperkinetic involuntary movements,
psychiatric disturbances, and cognitive decline. An inverse correlation exists between age of
symptom onset and number of CAG repeats, but the high variability in this trend supports a
compelling role for additional genetic and environmental disease modifiers. A gene-
environment interaction between HD and the essential micronutrient manganese (Mn) has
been recently identified, such that mutant HTT confers a selective resistance to Mn toxicity.
Though toxic in excess, Mn is crucial for development and serves as an essential co-factor for
several enzymes regulating urea cycle metabolism, neurotransmitter synthesis, and
antioxidant status. There is accumulating evidence supporting a deficiency in bioavailable
Mn in HD. Certain HD phenotypes have also been rescued by Mn supplementation. The
mechanisms that underlie this HD-Mn interaction have not been fully elucidated. This
review discusses the current evidence for, and against, a role for Mn deficiency in the
presentation of HD pathophysiology. Research that aims to further understand the
mechanism of this gene-environment interaction will be a necessary and valuable tool for
modifying age at onset (AO) and disease progression in this currently incurable disease.

Keywords: Huntington’s Disease, HTT, Manganese, Deficiency, Age at Onset
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Huntington’s Disease (HD) is an autosomal dominant neurodegenerative disease resulting
from an expanded cytosine-adenine-guanine (CAG) repeat in the Huntingtin (HTT) gene.
The disease is fully penetrant when ≥40 CAG repeats are present in at least one allele of the
HTT gene, which translates to an expanded poly-glutamine (polyQ) tract near the N-
terminus of the mutant Huntingtin protein (mHTT)1,2. Changes in mood, cognitive decline,
and chorea are hallmark symptoms that typically manifest mid-life (< 50 years of age) with a
median survival of 18 years following symptom onset. There is no cure and current
treatment, such as tetrabenazine, focuses on alleviating symptoms with no effect on
progression of the disease3,4. HTT is ubiquitously expressed throughout all tissues and life
stages, but expression of mutant HTT (mHTT) primarily causes dysfunction and atrophy of
GABAergic medium spiny neurons (MSN) of the striatum through currently unknown
mechanisms5–7.

The precise function of wild type (WT) huntingtin protein (HTT) is uncertain. It is
essential for development, demonstrated by embryonic lethality observed in mice
homozygous null for Htt8, and broadly necessary for neural maintenance9,10. Its large size
(348 kDa) and the presence of several HEAT (Huntingtin, Elongation factor 3, protein
phosphatase 2A, and TOR1) repeats have deemed it a general scaffolding protein and a
“protein-protein interaction hub”9,11–13. Through its interactions with nearly 200
proteins12,14, HTT plays a role in vesicle trafficking and axonal transport15–17,
transcriptional regulation18–21, autophagy22–24, and cell survival8,21,25. Many of these
functions and protein-protein interactions, particularly those related to transcription
regulation and cell signaling, depend on the non-expanded polyQ tract (< 35 repeats)
present in WT HTT3,26,27. When mutated, the elongated polyQ tract not only interferes with
normal HTT function but also leads to the formation of toxic cytosolic and nuclear protein
aggregates13,17,28–30.

Though somewhat controversial, there is evidence to suggest that HD pathology is
caused by the combined loss of WT HTT function and toxic gain of function exerted by
mHTT aggregates2,7,12,31,32. This could, in part, explain why HD manifests as a
neurodegenerative disease with mid-life onset despite continuous HTT expression
throughout development. Reduced WT HTT function results in abnormal neuron
development, and could subsequently render these cells more vulnerable to mHTT aggregate
toxicity; neurodevelopment and neurodegeneration are not mutually exclusive33. For
example, striatal MSNs rely on brain-derived neurotrophic factor (BDNF) produced by
cortical neurons to be delivered via axonal transport, a process impaired by mHTT16.
Throughout the aging process, mHTT aggregates accumulate in all cell types but particularly
vulnerable striatal cells atrophy, contributing to signs and symptoms of the disease6,33,34. The
clinical symptoms of HD include cognitive, psychiatric, and motor impairments. Cognitive

Introduction
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deficits present as executive dysfunction, difficulty multi-tasking, memory loss, and
difficulty learning. Psychiatric disturbances include depression, apathy, suicidal ideation,
anxiety, irritability, and agitation. Motor impairments present differently depending on the
stage of the disease. Early on, chorea is typical, while in late-stage HD rigidity, dystonia, and
dyskinesia are prevalent. Cognitive and psychiatric symptoms often precede motor
symptoms, though this is often identified in hindsight. Manifest HD is defined by the point
in time when characteristic motor symptoms develop35.

Age at Onset: Genetic and Environmental 
Contributions
Age at onset (AO) is largely determined by the length of HTT CAG repeats, such that a
longer repeat length is associated with younger AO36–39. Interestingly, CAG repeat length is
also negatively correlated with AO in other polyQ diseases, including the spinocerebellar
ataxias40. Innate toxicity of expanded polyQ proteins has been demonstrated by the
development of neurodegenerative phenotypes from the insertion of a large CAG repeat into
an arbitrary mouse gene41. However, CAG repeat length only accounts for 70% of the total
variance in HD AO42. In patients with repeat lengths in the 40-50 range, AO can vary by
several decades between two individuals with the same number of CAG repeats. The
remarkable variability in AO and the anatomical selectivity of neuronal dysfunction despite
ubiquitous HTT expression suggest a pivotal role for environmental and genetic modifiers in
the manifestation and progression of HD43–45.

After accounting for expanded CAG repeat length, the remaining variance in AO is
attributable to other genes (~40%) and environmental factors (~60%)46. Variants of genes
coding for proteins involved in glutamatergic neurotransmission, energy metabolism, and
autophagy have been shown to delay or accelerate AO42,47–49. Interestingly, CAG repeat
length of the non-expanded allele has no influence on AO36,42. Environmental factors such as
cognitive and sensorimotor stimulation, physical exercise, and caloric restriction have been
identified as positive modulators that may delay AO50–53. Conversely, high caffeine intake
has been associated with earlier AO54.

Environmental exposures to transition metals also influence disease progression and
possibly AO. In mouse models of HD, neonatal (but not adult) iron supplementation
potentiates HD phenotypes55,56. Dysregulation of iron homeostasis in HD is well-
documented although not well-understood57. In addition to increased iron, elevations in
copper and zinc have been detected in post-mortem HD brains, but it is unknown if these
exposures influence AO58,59. In a screen for gene-environment interactions between HD and
neurotoxic metal exposures, a specific neuroprotective effect of mHTT against manganese
(Mn) toxicity was revealed60.
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Following this discovery, evidence from in vitro and in vivo HD models as well as patient
studies has accumulated in support of a bioavailable Mn deficiency in HD. This review
discusses the evidence for, and against, a role for Mn deficiency in the presentation of HD
pathophysiology. Of particular interest is the role that Mn deficiency may play during early
development in the progression of disease later in life, reinforcing the idea that
neurodevelopment and neurodegeneration are closely linked. Further understanding
the mechanisms of the HD-Mn interaction beyond what is examined in the present review
will be pivotal for modifying disease manifestation and progression, impacting the lives of
those afflicted by this disease.

Mn is particularly crucial for nervous system health as a cofactor for enzymes regulating
neurotransmitter metabolism, urea cycle metabolism, and antioxidant status. Brain Mn
levels exhibit regional enrichment in human caudate, putamen, and globus pallidus
suggesting these cells may have a greater requirement for Mn to function optimally61.
Adequate Mn is obtained from the diet, absorbed in the gastrointestinal tract, and excreted
via the hepatobiliary system. Whole grains, nuts, leafy greens, and legumes are excellent
sources of Mn62,63. Though essential, excessive Mn is a potent neurotoxin and causes a
Parkinsonian-like motor condition known as manganism. Mn intoxication usually occurs by
inhalation of Mn-containing dust and is more common among welders and miners64. It is
nevertheless crucial for cells to maintain proper Mn homeostasis using highly regulated
mechanisms to balance its essential role as a co-factor but also minimize toxicity, especially
during development61,62,64–66.

Mn is an Essential Micronutrient

Mn in Development
Developing infants and children require more Mn than adults65. During the rodent neonatal
period, brain Mn is regulated in a temporal and region-specific manner, suggesting a
distinct requirement throughout this developmental stage67. This critical period has been
referred to as the “brain growth spurt” and an especially vulnerable period to nutritional
manipulations68. Under normal dietary conditions, lifetime striatal Mn accumulation is
highest at postnatal day (P) 5 in rodents. Overall Mn concentrations continue to rise until
P17, and then sharply decline. Neonatal mice do not excrete Mn until P17, explaining the
high accumulation up to this point. Under conditions of excess Mn exposure, neonatal rats
are most sensitive to overall brain Mn accumulation from P5 to P22. Therefore Mn toxicity
among neonates can be a concern69. The temporal and regional regulation of Mn
concentrations during the early postnatal period imply a critical and sensitive role for Mn
during neural development. If Mn homeostasis is not properly maintained during this
period, there could be developmental consequences that impact disease onset later in life.
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Experimental Mn deficiency during development has not been implemented in humans.
However, epidemiological studies have observed that blood Mn levels in children show a
biphasic dose-response relationship with neurodevelopment. Low blood Mn concentrations,
which may or may not be indicative of brain Mn concentrations, were correlated with
diminished mental development70. At 12 months-of-age, children in the lowest and highest
quintile of blood Mn concentrations obtained the lowest scores on the Mental Development
Index71. This relationship between blood Mn levels and mental development did not persist
once the children were 24 months of age. It is unknown if low Mn levels detected in these
children at 12 months yielded long-lasting effects as they matured into adults. Nevertheless,
appropriate Mn homeostasis during the developmental period is essential to prevent
negative outcomes in adulthood. The potential for Mn dyshomeostasis during development
to contribute to HD phenotypes in adulthood is discussed in a later section of this review.

The genetic mutation in HD confers specific resistance to Mn toxicity60. This trait could
be beneficial under neurotoxic exposure scenarios; however, it concomitantly results in
decreased accumulation, potentially during a critical developmental period. It is currently
unknown if mHTT decreases brain Mn levels during neonatal development in vivo but
postmortem human brains as well as in vitro and adult in vivo models of HD exhibit distinct
alterations in Mn biology.

Several lines of evidence point towards a defect in Mn handling in HD, however, the
mechanisms are not well understood. This gap in knowledge can partially be attributed to
the fact that Mn transport and homeostasis are an active area of research. Few selective Mn
transporters have been identified, and how the body maintains appropriate Mn
concentrations without impacting levels of other divalent metals is not clear61. Upon
ingestion, Mn is absorbed through the gastrointestinal tract and enters the bloodstream
through an unknown mechanism. Mn crosses the blood brain barrier via active transport by
a variety of proteins. The major Mn uptake transporters are divalent metal cation
transporter 1 (DMT1) and transferrin (Tf), which transports trivalent Mn (Mn3+)62. DMT1
preferentially transports Mn, but also transports cadmium, iron, lead, cobalt, nickel, and
zinc72. Interestingly, there are no differences in either DMT1 mRNA expression in the blood
of HD patients compared to age-matched controls nor alterations in DMT1 protein levels in
HD cell models73,74. Cellular uptake of Mn3+ occurs through transferrin receptor (TfR)-
mediated endocytosis of Tf-bound Mn3+, which is subsequently reduced to Mn2+ by
ferrireductase in the endosome. Tf effectively transports Mn3+ but has a higher affinity for
trivalent iron (Fe3+)75. Decreased Tf levels have been reported in cell and mouse models of
HD, perhaps as a compensatory response to the increased iron accumulation that is

Mn and Huntington’s Disease
Mn Transport and Homeostasis



VOLUME 11 | 2019 | Page 45 Vanderbilt Reviews Neuroscience 

CANDIDATE REVIEWS

observed in HD58,73,76. Despite the shared transporter systems between Mn and Fe, one
study has shown hat a defect in Mn homeostasis was not due to alterations in the iron
transport system73.

Mn export is mediated by the selective efflux transporter SLC30A1077. This transporter is
highly expressed in brain and liver. In liver, it plays a role in the hepatobiliary excretion of
Mn. Mutations in SLC30A10 are associated with decreased Mn excretion and consequently
hypermanganesemia78,79. There are currently no published data reporting SLC30A10
expression in HD patients or HD models, but this would be interesting to measure given the
role of this efflux transporter in maintaining optimal cellular Mn levels. SLC30A10 may be
upregulated in brain or liver, resulting in decreased brain accumulation and increased
biliary excretion. While DMT1, Tf, and SLC30A10 are some of the major Mn transporters,
dozens of other proteins are involved in the complex regulation of cellular Mn
homeostasis61.

Mn Dyshomeostasis in HD
There is substantial evidence that Mn homeostasis is disrupted in HD. An in vitro model of
HD (immortalized mouse striatal line STHdhQ111/Q111 with 111 CAG repeats) shows
significantly decreased sensitivity to Mn toxicity measured by cell survival assays compared
to wild type (WT) cells of the same striatal origin (STHdhQ7/Q7)60. Resistance to toxicity
can likely be accounted for by an impairment in Mn accumulation following exposure in
these cells. Consistent with decreased accumulation, STHdhQ111/Q111 cells show a basal
deficit in Mn. An in vivo model of HD [FVB-Tg(YAC128Q) mice expressing full-length
human mHTT with 128 CAG repeats], also displays a striatal specific defect in Mn
accumulation following exposure compared to WT mice at 12 weeks of age60. YAC128Q mice
also exhibit a deficit in striatal bioavailable Mn, demonstrated by decreased ex vivo basal
activity of the Mn-dependent enzyme arginase II (Arg2) that was corrected under ex vivo
Mn-exposed conditions73,80. Post-mortem data indicate cortical Mn concentrations are also
reduced in HD patients58. Further, HD models show blunted responses to Mn exposure
compared to WT. In vivo (YAC128Q mice), mHTT suppresses Mn-induced decreases in
dopamine (DA) concentration and arginase II (Arg2) mRNA levels80,81. Mn-dependent
increases in S473-phosphorylated Akt (p-Akt), T308-pAkt, phospho-ATM(S1981), and
phospho-p53(S15) are significantly reduced in vitro (STHdhQ111/Q111 cells and HD human
neuroprogenitors60,82. These perturbations in Mn homeostasis impact many cellular
processes and likely contribute to HD pathophysiology.

Mn-Dependent and Mn-Responsive Processes are 
Disrupted in HD
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Mn is a necessary cofactor for many cellular processes impaired in HD, such as urea cycle
homeostasis, regulation and recycling of glutamate, redox status, and energy metabolism. At
least one specific Mn-dependent metalloprotein from each of these cellular functions is
altered in HD including arginase, glutamine synthetase (GS), Mn superoxide dismutase
(MnSOD), and pyruvate carboxylase, respectively62,83. Arginase and GS activities are
significantly altered in HD while reported changes in MnSOD or pyruvate carboxylase are
varied80,84,85. HD-related changes and the role of Mn in urea cycle homeostasis, glutamate
clearance and recycling, redox status, and energy metabolism will be discussed below.

The urea cycle is an important physiological process for removing toxic nitrogenous waste
that is generated from amino acid catabolism. Two of the enzymes in the partial urea cycle
found in the brain are Mn-dependent enzymes: arginase and agmatinase. Alternations in
arginase have been identified in HD. Arginase hydrolyzes arginine to ornithine and urea
with a specific catalytic requirement for Mn86,87. Enzymatic activity of arginase II (Arg2),
the mitochondrial specific isoform expressed in all tissues, is reduced with concomitant
elevation of select urea cycle metabolites (citrulline, arginine and ornithine) in the striatum
of prodromal YAC128Q mice; total striatal Arg2 protein levels become significantly reduced
in aged YAC128Q mice80,88–90. Urea cycle perturbations have also been documented in
postmortem human brain tissue and a prodromal HD sheep model (OVT73), presumably
due to changes in Arg2 activity but this has not been directly addressed in these studies91–95.
Urea cycle pathology has been directly linked to bioavailable Mn deficiency in YAC128Q
mice and a Mn deficient diet in WT rats was shown to reduce arginase activity and alter
levels of urea cycle metabolites80,96. A recent study demonstrated that three high dose
subcutaneous injections of Manganese II Chloride (MnCl2) over one week can reduce the
elevated levels of citrulline, arginine, and ornithine in 12-week-old YAC128Q mice to match
levels of WT vehicle-treated mice. This Mn supplementation paradigm also attenuated the
reduction in striatal Arg2 activity levels in HD mice with no negative impact observed in WT
mice80. These data suggest that a Mn-dependent HD phenotype at 12 weeks of age may be
rescued with Mn supplementation, supporting the theory that Mn deficiency is an integral
component of HD pathophysiology.

Urea Cycle Homeostasis

Regulation and Recycling of Glutamate
Under physiological concentrations (i.e., not in excess), Mn contributes to protection against
excitotoxicity by maintaining glutamate-glutamine homeostasis. Glutamine synthetase (GS)
is a predominantly astrocytic enzyme that preferentially requires Mn over magnesium (Mg)
to produce glutamine via a condensation reaction of glutamate and ammonia97–100. GS
activity is significantly reduced in the caudate, putamen, frontal and temporal cortices, and
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cerebellum of postmortem HD brains compared to control brains84,101,102. GS activity has not
yet been investigated in animal models of HD, but there are substantial disruptions in the
glutamate-glutamine cycle with an increase in glutamate toxicity in R6/2 HD model mice
(expressing exon 1 of human mHTT with 150 CAG repeats)103–105. The direct effect of Mn
exposure on GS expression and activity in WT or HD models has not been elucidated, but
the enzyme’s preferred requirement for Mn implies a bioavailable Mn deficit could lower
overall GS activity leading to glutamate toxicity phenotypes observed in HD.

Astrocytic glutamate transporter 1 (GLT-1; excitatory amino acid transporter 2, EAAT2)
also plays a major role in glutamate recycling by clearing glutamate from the synapse. GLT-1
is not Mn dependent, but is Mn-responsive. Glutamate uptake by both GLT-1 and glutamate
aspartate transporter (GLAST) is inhibited by high concentrations of Mn106. The proposed
mechanism for this effect is through a yin-yang repressor 1 (YY1) mediated decrease in
GLT-1 mRNA and protein107. Mn therefore exhibits contradictory roles on glutamate
regulation and recycling, as it is required for GS function but itself can induce neurotoxicity
from increased extracellular glutamate concentrations108,109.

Interestingly, reduced GLT-1 mRNA and protein has been reported in both HD models
and postmortem brain tissue, likely contributing to decreased glutamate buffering and
excitotoxicity110. Decreased GLT-1 expression is the opposite of the expected phenotype
based on the proposed role of Mn deficiency in HD, as high Mn levels lead to
downregulation of GLT-1. However, the precise interactions between Mn and GLT-1 in an
HD model have yet to be studied. Further, while GLT-1 is primarily astrocytic,
approximately 10% is neuronal. A recent study demonstrated that a neuronal GLT-1
knockout independent of the Htt mutation produced an HD pattern of transcriptional
dysregulation in mice111, suggesting that the mechanism of neuronal dysfunction in HD is
closely linked with glutamate regulation and Mn may produce differential responses in the
disease state.

Maintaining redox homeostasis, or the balance between oxidants and antioxidants, is crucial
to the health of a cell. Increased oxidative stress has been implicated in HD, although it is
not clear if this is a causative factor in the disease or the consequence of other dysfunctional
processes112,113. MnSOD, as the name implies, is a Mn-dependent enzyme that detoxifies
superoxide anions into hydrogen peroxide which is further reduced by catalase. MnSOD
knockdown (+/-) mice exhibit increased oxidative stress114. In mouse models of HD, MnSOD
activity is elevated in young mice compared to WT and significantly decreased in older
mice85. Further, Mn exposure can increase MnSOD activity115. Yet, the effect of Mn
exposure on MnSOD in the context of an HD model has not been explored. Mn itself can
increase oxidative stress116, but may benefit redox status in a Mn-deficient model e.g. HD.

Redox Status
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Pyruvate carboxylase (PC) is a Mn-dependent mitochondrial enzyme that forms
oxaloacetate by carboxylation of pyruvate. This is an important step for entrance into the
Krebs cycle and subsequent energy production. Reports of alterations in PC activity in HD
are inconsistent84. However, there is substantial evidence for overall perturbations in energy
and glucose metabolism in HD. In 1985, before the HTT gene had even been identified, it
was known that there is a greater prevalence of diabetes mellitus (type II) in HD patients
than age-matched controls117. Reduced glucose metabolism was subsequently reported in
the caudate of pre-symptomatic individuals at risk for HD in 1987118. Mouse models of HD
also develop type II diabetes at higher rates than WT counterparts119. Genes related to
glycolysis, the Krebs cycle, and glucose transport are differentially expressed in HD cell
models120. Even if a diagnosis for diabetes is not met, a defect in insulin secretion was
found in one group of HD patients compared to controls121.

Impairment in insulin production goes beyond simple glucose metabolism, as alterations
in the insulin-like growth factor 1 (IGF-1)/Akt pathway have been identified in both HD
animal models and HD patients122. The net result is a decrease in activated Akt in HD, which
normally serves a neuroprotective role via phosphorylation of HTT itself to inhibit HTT-
induced cell death123. Treatment with insulin or IGF-1 attenuate disease phenotypes in cell
and animal models of HD by rescuing the neuroprotective effects of the Akt pathway and
restoring regular energy metabolism124–126.

Interestingly, the IGF-1/Akt pathway is Mn-responsive. Mn exposure upregulates IGF-1
expression and increases Akt signaling127,128. Mn itself has an insulin mimetic effect and
protects against diet induced diabetes115,129. The interactions between HD, Akt signaling and
Mn suggest that Mn supplementation could serve as a potential treatment for certain HD
phenotypes.

Given that a variety of food sources contain plentiful Mn, deficiency in humans is rare63,64.
However, Mn deficiency imposed in experimental conditions induces many of the same
phenotypes characteristic of HD. It is not surprising that the Mn-dependent and Mn-
responsive pathways altered in HD discussed above are also affected by a Mn-deficient diet.
Rats placed on a Mn-deficient diet showed decreased liver arginase activity, although
elevations in arginine were not detected and the effect on the neuronal urea cycle was not
examined in this study96. Glutamate recycling and clearance has not been directly
investigated in a Mn-deficient state, but low blood Mn levels have been detected in
individuals with epilepsy compared to healthy controls, suggesting an association between

Energy Metabolism

Dietary Mn Deficiency Recapitulates Select
Molecular HD Phenotypes
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dysregulation of the glutamatergic system and low Mn concentrations130. Impaired
antioxidant defenses have also been reported in Mn-deficient conditions131. A Mn-deficient
diet also impairs insulin production and decreases IGF-1 signaling in rats132. Cholesterol
metabolism, which is perturbed in HD, is also impacted by Mn-deficiency131,133. Finally, Mn
deficiency in rats beginning in utero and continuing through adulthood produced changes in
liver mitochondria structure at 9 months of age134; mitochondrial dynamics are altered in
HD and contribute to the pathophysiology of the disease135,136.

Despite the overlap between HD phenotypes and those of Mn-deficiency, additional
consequences arise from inadequate Mn that are not observed phenotypes in HD. For
example, skeletal bone growth abnormalities, osteoporosis, decreased fertility and irregular
estrous cycles can occur without sufficient Mn137. However, the overall consistency between
Mn deficiency and molecular HD phenotypes strongly support a role for Mn in the
pathogenesis of HD. Insufficient Mn during development may also contribute to behavioral
symptoms in adulthood.

Mn requirements during development exceed those in adulthood65. Nutrient deficiency
during the critical developmental period known as the “brain growth spurt” can have
profound consequences on behavioral outcomes later in life68,70. Severe in utero Mn
deficiency can lead to ataxia following birth. However, this incoordination is primarily
associated with an improperly developed otolith and vestibular system dysfunction138.
Nevertheless, this is an example of how early Mn deficiency can negatively impact the
development of a system associated with movement and coordination. Interestingly, mice
placed on a Mn-deficient diet beginning at 4-5 weeks of age for 90 days did not develop
changes in strength, motor activity and motor coordination, or irritability despite a
significant decrease in brain Mn levels139. The lack of behavioral impairments found in this
study suggests that inadequate Mn at younger ages (< 4 weeks in mice) may play a more
critical role in the generation of motor phenotypes.

Conditional expression of mHTT in mice from embryogenesis up to P21 recapitulates
analogous motor phenotypes to mice expressing mHTT throughout life. These conditional-
mHTT mice were not as severely impaired on the RotaRod at 3 months of age, but by 9
months of age they displayed the same magnitude of motor coordination deficits as mice
that expressed mHTT continuously140. These conditional-mHTT mice also exhibited striatal
degeneration by 9 months of age. This study exemplifies and further supports the idea that
neurodevelopment and neurodegeneration are not mutually exclusive.

A Role for Developmental Mn Deficiency in the 
Manifestation of Behavioral HD Phenotypes?
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Due to the vital role that Mn plays in health and development, early Mn-deficiency may
contribute to formation of molecular and behavioral HD phenotypes. Expression of mHTT
in the mouse up to the first 3 weeks of life was sufficient to induce motor impairments in
adulthood140. Perhaps mHTT impacts Mn homeostasis earlier than previously examined,
and the changes in Mn during development allows for or exacerbates HD phenotypes that
present later in life.

The relationship between optimal Mn levels, or the balance between sufficient and toxic
levels, follows a biphasic inverted U-shape70. Too little Mn results in decreased enzymatic
function and behavioral impairments, while excess Mn produces the same outcome. The

A Role for Developmental Mn Deficiency in the 
Manifestation of Behavioral HD Phenotypes?

Figure 1. The relationship between Mn deficiency and toxicity can be represented as an inverted U-
shape. The proposed effect of developmental brain Mn, from levels of deficiency to toxicity, on 

enzymatic function and behavior & cognition in individuals without (blueline) or with Huntington’s 
Disease (HD; red line) is plotted. Brain Mn levels that are optimal in unaffected individuals are not 
sufficient for normal behavior and optimal enzymatic function in HD. Additionally, the detrimental 

effect of excess Mn is shifted in HD. Mn supplementation beginning in early development could 
increase available Mn stores in the brain to delay symptom onset and allow for appropriate enzymatic 

function and behavioral outcomes.
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concentration of Mn that is optimal for a healthy individual may not be sufficient for an
individual with HD (Figure 1). Furthermore, a higher level of Mn that may cause
detrimental effects in a healthy individual may be the optimal Mn concentration in HD. Mn
supplementation during the developmental period may delay symptom onset and act as an
important disease modifier for HD. Additional studies that assess the effects of Mn
supplementation on HD phenotypes will help advance our understanding of the interaction
between Mn biology and HD pathophysiology.

Huntingtin’s Disease is a devastating neurodegenerative genetic disorder with midlife onset,
despite continuous expression of the mHTT from embryogenesis until death. Several genetic
and environmental modifiers have been previously identified that may either accelerate or
delay AO and disease progression. Evidence is accumulating in recent years supporting the
theory that Mn may be an important environmental modifier of HD. Particularly, a striatal
bioavailable Mn deficit is observed in HD. Exposure to Mn has rescued some Mn-dependent
phenotypes in HD, such as perturbations of the urea cycle. However, whether Mn has the
ability to rescue or prevent additional phenotypes, particularly those related to behavioral
symptoms, has yet to be explored.

The mechanistic relationships between Mn and HD are also not currently well defined. It
is unknown if mHTT directly leads to Mn deficiency, or if mHTT acts on another pathway
that as a consequence produces a Mn deficiency. Further research investigating these exact
mechanisms is challenging as there are few specific Mn transporters identified. Progression
in the Mn transport field will be necessary to better understand the interactions between Mn
deficiency and HD pathology. Future studies that examine the efficacy of intervening in
early postnatal development with Mn supplementation on delaying HD symptom onset and
conversely the extent to which severe Mn-deficiency during development exacerbates HD
symptoms will benefit the field greatly.

Conclusion
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Cell-type heterogeneity
of the rodent BNST

Kellie M. Williford

Abstract
Chronic stress exposure is associated with a number of maladaptive psychological disorders.
One major region responsible for mediating stress- and anxiety-related disorders is the Bed
Nucleus of the Stria Terminalis (BNST). The BNST is known to have extensive
heterogeneity among cell types, and several approaches have been used in order to classify
these cells into functionally relevant categories. Here, I will review two of the major
categories used to classify these neurons (peptide- and electrophysiologically-based), and
discuss their merits and shortcomings in determining functionally distinct classes of cells in
mediating stress- and anxiety-like behaviors.

Keywords: BNST, Stress, Anxiety, Electrophysiology, Amygdala
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Chronic stress exposure can lead to numerous psychological disorders such as anxiety,
depression, and PTSD1–3. It is also heavily implicated in addiction, with stress being one of
the most cited causes of drug relapse4,5. The extended amygdala, including the Central
Nucleus of the Amygdala (CeA) and its primary output region, the Bed Nucleus of the Stria
Terminalis (BNST), play a central role in mediating stress and anxiety-like behaviors6–10.
Specifically, the CeA and the BNST are thought to mediate short-term fear-like responses
and longer-term anxiety-like responses, respectively7,8,11,12. The BNST contains a large
amount of cell-type heterogeneity13–16. Evidence suggests that these various cell-types have
distinct roles in mediating anxiety-like behaviors, and as such, there is much interest in
systematically identifying and classifying these neurons into functional categories.

Initial attempts to classify cell-types focused on anatomical subdivisions within the
region. There is some inconsistency regarding the exact number of subdivisions within the
BNST, with some identifying as many as fifteen distinct subdivisions13,17. However, it is
generally accepted that the region can be broadly divided into anterior and posterior BNST.
The majority of work investigating the role of the BNST in anxiety-like responses has been
conducted on cells within the anterior BNST. This region can be further divided into
anteroventral (BNST-AV) and dorsal (dBNST), the latter of which contains medial and
lateral subdivisions (BNST-AM and BNST-AL)13,17 (Figure 1).

Introduction

However, the functions of
cells within even the smallest
anatomical division are not
homogeneous. Thus, other
classification systems are
necessary to better characterize
the various functional groups
within this complex region. A
number of methods have been
used to identify a characteristic
that can reliably predict the
function of a given cell. In this
review, I will focus on two such
methods that have been used,
discussing the subtypes that
have been identified and their
respective functional relevance
in the context of anxiety-like
behavior.
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anxiogenic output10. The advent of CRF-driven Cre lines has enabled the functional
investigation of CRF cells specifically, and it has been shown that the expression of a Gi-
coupled DREADDs (Designer Receptor Exclusively Activated by Designer Drugs) in
BNSTCRF cells is also anxiolytic, further supporting the role of BNSTCRF cells in promoting
anxiety-like behavior29.

It has long been known that there is a population of neurons within the BNST that express
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)30,31. These cells are
concentrated in BNSTCRF-rich regions, but there is little to no overlap in the expression of
these two peptides31–34. Early studies using global knockouts of PACAP and/or the PAC1
receptor found that, similarly to CRF, PACAP increases anxiety-like behaviors35–38. Within
the BNST specifically, there is an increase in both terminal expression and BNSTPACAP cell
number following a stressor, also paralleling the increase seen in CRF expression39.
However, BNSTPACAP neurons may be more tuned to regulating responses to chronic
stress specifically, as this increase is seen after 7 days of chronic restraint stress, but not after
a single session of restraint40.

There is evidence that actions of BNSTPACAP neurons are at least in part sex-dependent.
Following chronic variable stress, subthreshold infusions of PACAP into the BNST were able
to enhance anxiety-like startle responses and plasma corticosterone levels in male, but not
female rats41. Interestingly, a polymorphism in the PAC1 receptor gene, ADCYAP1R1, is
associated with increased susceptibility to PTSD and alcohol use disorder specifically in
women42,43. Together, these studies suggest that BNSTPACAP neurons represent an
additional pathway for anxiogenic output of the BNST that is distinct from that of BNSTCRF
neurons.

Pituitary Adenylate Cyclase-Activating Polypeptide

Protein Kinase C Delta
The majority of work regarding the role of Protein Kinase C delta (PKCδ) in the extended
amygdala has been conducted in the CeA. Within this region, CeAPKCδ neurons and
CeACRF neurons are distinct cell populations that work in opposition to decrease or
increase fear-like responses, respectively11. Recent work from our lab has found cells
expressing mRNA for CRF (BNSTCrh) and cells expressing mRNA for PKCδ (BNSTPrkcd)
are also largely distinct populations28. It is possible that BNSTPKCδ cells act to
counterbalance the anxiogenic output of the BNSTCRF cells, paralleling their opposing roles
in the CeA, though further studies are necessary to test this hypothesis.

As with PACAP, the regulation of PKCδ expression in the BNST is also sex-dependent.
Our lab has shown that, following acute restraint stress, there is an increase in the number
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of cells that co-express CRF and PKCδ mRNA (BNSTCrh/Prkcd) specifically in female
mice, and there is evidence that this is the emergence of Prkcd in BNSTCrh cells, rather than
Crh in BNSTPrkcd cells28. The fact that it is only a subset of CRF cells which begin
expressing PKCδ suggests that there may be functional heterogeneity within BNSTCRF cells
– something that characterization based on the expression of a single peptide alone is
insufficient to capture. The function of this co-expressing population remains unknown, but
it is possible they play a role in the heightened anxiety-like responses seen in females44,45.

Work shows that there are a number of other peptide-expressing populations of cells within
the BNST, including those that express Neuropeptide Y (NPY), Substance P (SP),
Neurotensin (NT), Enkephalin (ENK), Galanin (GAL), Vasopressin (VP), and
Cholecyctokinin (CCK)13–15. However, little work has investigated the function of these
populations, with the majority of studies focusing on the signaling role of the peptide
itself. For instance, in contrast to the actions of CRF, NPY has been shown to have anxiolytic
effects46,47, which are mediated at least in part through its actions at NPY receptors (YRs) in
the BNST19,48. It has also been shown that BNSTNPY neurons and BNSTSP neurons are
distinct populations, but the function of either cell type remains to be determined49,50.
Studies on the expression of GAL and VP have found that these are largely overlapping
populations51. Both are sexually dimorphic, with reduced expression in female rodents, and
their expression levels can be regulated by the presence of testosterone52,53. A number of
studies have implicated these populations in social- and reproduction-related behaviors, but
any role BNSTGAL and BNSTVP neurons may play in stress- and anxiety-like behaviors
remains largely unknown54.

Finally, recent work found that blocking NT receptors in the Oval Nucleus of the BNST
has anxiolytic effects. Postsynaptic depolarization of BNSTNT neurons induced release of
NT and CRF, suggesting that at least a subset of BNSTNT neurons coexpress CRF, and that
together these work to increase anxiogenic output of the BNST55.

Other Neuropeptides

Protein Kinase C Delta
Electrophysiological characterization is a common method that has been used to classify
neurons in a number of brain regions including cortical areas, the striatum, and the
amygdala56–61. Knowledge of the physiological properties of cell types can provide insight
into their functional role, and characterized synaptic responses can enable cells to be
identified in-vivo to understand activity in awake and behaving animals. However, relative
to anatomical or chemogenic characterizations in the BNST, and relative to physiological
characterization in other brain regions, few studies have investigated electrophysiological
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categorization of cell types within the BNST, with a large concentration of work coming
from a small handful of laboratories.

Early attempts at parsing physiological distinctions found subregion-specific differences
between the dorsal and ventral delineations of the BNST (dBNST and vBNST)62.
Specifically, Egli and Winder found that vBNST neurons on average had a faster τ value than
those in the dBNST, reflecting a decrease in membrane resistance and/or capacitance.
Additionally, the dBNST was under tonic GABAergic tone, which could be alleviated by the
application of the GABAA receptor antagonist picrotoxin.

There were also differences found in the proportion of cells displaying particular
characteristics. In the vBNST, 75% of cells displayed a low-threshold Ca-mediated spiking
(LTS) following a depolarizing step, compared to 23% in the dBNST. The dBNST had the
largest proportion of cells showing inward rectification (33%) and/or displaying a
depolarizing sag after the injection of hyperpolarizing current (49%), compared to 18% and
16% in the vBNST, respectively. They also investigated cells displaying an intersection of
these properties. In the vBNST and dBNST, respectively, 8% and 13% of cells showed both
LTS and a depolarizing sag, and 4% and 20% showed inward rectification and a depolarizing
sag. 8% showed LTS and inward rectification in the vBNST, with no cells found in the
dBNST. In each region, one cell displayed all three characteristics (Findings of Egli and
Winder 2003 summarized in Table 1)62.

The majority of physiological classification of cell types within a subregion has been done
within the anterolateral BNST (BNST-AL), which contains the oval nucleus, the
juxtacapsular nucleus, and the anterolateral nucleus17. Rainnie and colleagues classified
neurons within the rat BNST-AL into three categories: Type I, Type II, and Type III63
(Figure 2a). Since this initial characterization, these cell types have also been identified in
the anteromedial and anteroventral BNST (BNST-AM and BNST-AV), as well as in the
BNST-AL of mice, though their prevalence is region- and species-specific21,64,65. While the
amount of physiological classification within the BNST is beginning to increase, much work
is still needed to connect these cell types to their respective roles in stress- and anxiety-like
behaviors.



VOLUME 11 | 2019 | Page 64 Vanderbilt Reviews Neuroscience 

CANDIDATE REVIEWS

Type I neurons are typically characterized by a prominent depolarization sag following a
hyperpolarizing step (which is likely mediated by Ih current) and the absence of LTS or
burst firing63,66–68. Additionally, they show a regular firing rate (and as such, have also been
termed Regular Spiking Cells) but show spike frequency adaptation after prolonged
depolarization64.

Type I cells make up approximately one quarter of cells within the rat BNST-AL, -AM,
and –AV, though this number in the BNST-AL has varied from 11% to 30% between
studies63–65,68,69. They are ventrally concentrated in the BNST-AV, but evenly distributed
within the other two regions. However, there are differences in the proportion of cells
displaying a large depolarization sag, with the higher concentration in BNST-AL (~80%)
followed by BNST-AM and –AV with ~60% and ~35%, respectively64. Though they make up
a substantial portion of cells in the rat, Type I cells are much less prevalent in the mouse,
making up approximately half of the proportion seen in rat BNST21,65. Additionally, mouse
Type I neurons display a significantly smaller Ih compared to rat, making them more
difficult to distinguish from Type III cells65.

Type I

Type II neurons are characterized by a more pronounced depolarization sag in response to
hyperpolarization, which is followed by rebound spiking mediated by IT current, and
generally show prevalent LTS63. The majority of these neurons also display burst firing,
leading to the alternate name of Low-Threshold Bursting (LTB) cells64. However, the
presence of bursting is highly variable within Type II neurons, with some displaying only
single spikes at depolarizations larger than -70mV, and others exclusively responding with
single spikes64,65. While most still include these neurons in the Type II classification, one
group separated these cells into their own division termed Type O, which resemble Type II
but show regular, oscillatory firing after hyperpolarization and single spikes after
depolarization64,68.

Type II neurons are the most prevalent cell type within the BNST-AL(40-66%), BNST-
AM (68%), and BNST–AV (63%) of rats63–65,68,69. They are evenly distributed throughout
these regions, but show several differences in characteristics between regions. As with Type
I, Type II cells with a large depolarization sag are more prevalent in the BNST-AL (~90%)
than BNST-AM (~62%) or BNST-AV (~50%)64. Consistent with variable bursting properties,
analysis also reveals a significantly reduced bursting rate and number of spikes per burst in
the BNST-AL, while the spikes per burst are significantly increased in the BNST-AV64. There
are also significant species differences, with Type II cells again being less prevalent and less
easily distinguished in mice than in their rat counterparts. They display less-pronounced
LTS, thus resembling Type I cells, and despite being the most prevalent cell type in rats,

Type II



VOLUME 11 | 2019 | Page 65 Vanderbilt Reviews Neuroscience 

CANDIDATE REVIEWS

make up only 22% of the mouse BNST-AL65. It is possible that this cell type is even less
prevalent in other subregions of the BNST, based on the finding by Egli and Winder that
13% of neurons in the dBNST displayed both LTS and a depolarization sag62. These
characteristics are reminiscent of a Type II categorization, though a further characterization
would be necessary to confirm their cell-type identity63. In the vBNST, on the other hand,
only 8% of cells shared these properties, following the pattern of prevalence between
subregions of the rat BNST62,64.

Type III
The defining feature of Type III neurons is the presence of fast inward rectification without
rebound firing following hyperpolarizing current (indicating the presence of inwardly
rectifying potassium channels (IK(IR))), and little to no depolarization sag63. Type III cells
are less common than the first two cell types in the rat BNST, comprising 16% to 29%, 8%,
and 6% of neurons in the BNST-AL, -AM, and –AV, respectively63–65,68,69. However, they are
the most prevalent cell type in the mouse BNST, making up 54% of cells. Type III neurons
show uniform (though low) distribution in the BNST-AM and –AV, but are concentrated in
the juxtacapsular and oval regions of the rat BNST-AL64.

Other Physiological Classifications
Rodrigues-Sierra et. al. describe two other cell types in addition to the three described by
Rainnie and colleagues. The first is a group of Late Firing (LF) cells that are characterized
by a more negative resting potential, an extended latency to fire following depolarization,
spike frequency acceleration, and a sharp increase in the rising phase of the voltage in
response to increasing depolarizations64. These cells were only seen in the BNST-AL, and
made up only 4% of the population. Due to the fact that these cells also display fast inward
rectification, it is possible that they could be grouped in with Type III neurons65. Further
studies will reveal whether LF cells hold up as a distinct classification. An additional cell-
type that has been identified is the Spontaneous Activity (SA) group, which is located
exclusively within the BNST-AV64. They are a minority of the cells, making up only 8% of the
population. Yet, they are distinct from other BNST neurons in that they show high regular
spontaneous activity at rest, and unlike the other types, show no Ih or IT mediated current.

Though these cell-type classifications can fully describe neurons seen within the rat
BNST, there are a number of “other” cells within the mouse BNST that cannot be classified
as such. Daniel et. al. found that 10% of neurons in the mouse BNST-AL did not fit within
the above cell-types, and this number increases to 25% of neurons in primate BNST65. In
fact, mouse and primate neurons were surprisingly found to share more in common in
terms of physiological classification than either species did with rats (Summarized in
Figure 2b and Table 2).
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Other Physiological Classifications

Though more work is beginning to emerge regarding physiological cell-type characterization
within the BNST, there is still a striking lack of research into the functional differences that
these cell types may hold. One recent study found that, in addition to non-cell-type specific
effects, opiate withdrawal leads to exclusive changes in the properties of Type III cells70. For
example, Type III cells have high rheobase and inward rectification at baseline, but both
values are significantly reduced during withdrawal. They also showed an increase in
membrane resistance, resting membrane potential, and excitability specifically in Type III
cells. While it is still unclear how these cell-type specific alterations in opiate withdrawal
related to behavioral output, this study shows that there may be some functional relevance
to these physiological categories.

Functional Relevance
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Part of the paucity of functional data is likely due to a lack of intersectional research
bringing physiological characterizations together with other methods of classification such
as peptide expression data. In rats, it has been shown that the majority of Type III neurons
also express CRF71. However, in mice, the majority of CRF neurons do not fit into any of the
three cell types, suggesting that there is likely significant heterogeneity within the
established peptide classifications of cells21,65. Overall, lack of similarity in
electrophysiological classifications between species, coupled with poor functional relevance
of the cell types, casts doubt on the utility of the existing classification scheme.

It is clear that there exists significant heterogeneity within the BNST, and that this
heterogeneity contributes to the complex role of the BNST in mediating stress- and anxiety-
like behaviors. However, developing a classification system that sufficiently captures and
divides cells into functionally relevant groups will require considerably more research.
Initial studies were able to sub-divide the BNST into several anatomical regions, but even
within these regions, there are a number of functionally distinct cell types, as evidenced by
the fact that BNSTCRF, BNSTPACAP, and BNSTPKCδ are all present in the Oval Nucleus,
but each represent distinct populations.

Classification of BNST neurons based on the expression of peptides or proteins has
shown promise in distinguishing functional classes. BNSTCRF and BNSTPACAP
populations do not overlap, but both increase anxiety-like responses following a stressor.
BNSTPKCδ neurons also show very little overlap with BNSTCRF neurons at baseline, but
based on work in the CeA, may be anxiolytic in nature. Despite work done on the signaling
role of other peptides in stress-related behaviors, and the presence of these peptide-
expressing cell types in the BNST, little work has been done to determine the functional
significance of these populations. Further, considerably more work is needed to understand
the electrophysiological profile of BNST neurons, as current attempts are limited in their
application across species and functional relevance based on type alone.

However, it is likely that there is still heterogeneity even within these peptide- and
protein-based divisions. Only a subset of cells expressing Crh begin co-expressing Prkcd,
and CRF cells have been found that can be classified into all three electrophysiological types,
as well as many others that do not fit into any defined type at all. This suggests that
characterization based on the expression of a single peptide or protein will be insufficient to
capture the functional heterogeneity of cells within the BNST. Rather, it will likely be
necessary to begin multiple types of classification systems. It is possible that
electrophysiological profiling will prove useful in dissecting out subtypes of peptide-
expressing neurons. Also, in addition to the peptides and proteins discussed here, there is a

Conclusions
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large body of work grouping cells based on their expression of various receptors. Single-cell
transcriptome analysis may help shed light on the complexity of expression profiles and
enable a more holistic grouping of cells. Finally, drawing on work describing the
connectivity of cells types based on input and output projections will be critical in
understanding the function of these cells. By furthering our understanding of the complex
cellular subtypes in the BNST, we will be better positioned to develop selective targets in
order to improve our treatment of stress- and anxiety-related disorders.
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‘Mapping’ between symbolic and nonsymbolic 
representations of numerosity:

A developmental cognitive neuroscience model
Darren J. Yeo

Abstract
How do we know that there are about 30 people in a room, or pick out a hundred buttons
without counting? It has been suggested that numerals such as number words and Arabic
numerals are ‘mapped’ onto a mental ‘number line’ comprising representations of
approximate magnitudes. This ‘mapping’ enables us to estimate systematically. While
developmental models focus on how children learn to associate numerals with exemplars of
nonsymbolic quantities, neuroscientific models focus on whether the same neurons respond
to both “5” and an array of 5 items as a product of associative learning. Cognitive models,
however, focus on how we transcode between symbolic and nonsymbolic quantities during
estimation. All of these processes and products are referred to as ‘mapping’. Besides the
broad use of ‘mapping’, each disciplinary perspective alone is also inadequate for making a
decisive evaluation of the ‘mapping’ hypothesis. Here, we propose a developmental cognitive
neuroscience model that integrates extant ‘mapping’ models from different disciplines. The
proposed model demonstrates that estimation tasks do not directly measure the mental
number line or the shared neural mappings, but a composite of multiple processes and
products. Importantly, the model provides more precise nomenclature for the processes and
products related to estimation, and novel predictions for further investigations of the
‘mapping’ hypothesis.

Keywords: Numerals, Transcoding, Learning, Mapping, Estimation
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In recent years, there has been an increase in attention given to how we comprehend
numerals such as spoken number words and Arabic numerals, and how these skills related
to math competence1–3. A dominant hypothesis for how we are able to comprehend and use
numerals is that we possess innate mental representations of approximate numerical
magnitudes on a continuum or ‘number line’ (e.g., an intuitive sense of ‘sixness’ as being
distinct from ‘fourness’ and’ eightness’), and that over the course of associative learning,
numerals are ‘mapped’ onto this mental number line4–10. This mental number line thus
provides the basis of numerical meanings for numerals.

‘Mapping’ in relation to numerals have often been mentioned, but it has remained a
broadly abstract concept across disciplines. ‘Mapping’ is used in developmental models to
refer to the process of learning the associations between numerals and nonsymbolic
quantities (e.g., a visual array of items). In neuroscientific models, ‘mapping’ refers to the
same neuron being tuned to nonsymbolic quantities and their corresponding numerals as a
result of learning that they both represent an abstract number concept (e.g., ‘threeness’ of
three dots and numeral “3”). In cognitive models, ‘mapping’ refers to the transcoding of
nonsymbolic quantities or numerals to mental representations of numerosity, or
transcoding of mental representations to symbolic or nonsymbolic estimates. Hence, it has
been used both as a verb (process) and a noun (product) in empirical studies and
reviews4,11,12 investigating or evaluating the ‘mapping’ hypothesis. Despite each discipline
having an incomplete understanding of what the ‘mapping’ hypothesis entails, researchers
are already moving forward with investigating how ‘mapping’ may support math
competence13,14,23,24,15–22, often focusing on different models and tasks. In this review, we
integrate extant ‘mapping’ models from different disciplines, and propose a unifying
developmental cognitive neuroscience model (hereafter, the Transcoding-Learning-
Mapping model). The goal of this model is to provide a foundational mechanistic framework
with precise nomenclature for the processes and products related to ‘mapping’, so that we
can have a shared understanding as we further investigate and evaluate the ‘mapping’
hypothesis as a whole, and its alternatives.

Introduction

We represent numerosities mentally using two core distinct systems that we possess since
infancy25,26 – an object-tracking system (OTS)27,28, and an approximate number system
(ANS)8,10. The OTS and ANS are subserved by distinct neural mechanisms within the
posterior parietal cortices5,26,29,30. The OTS allows us to represent up to 4 discrete items in
parallel (also known as “subitizing”, “object file”, or “parallel individuation”)31–35. It is
suggested to be supported by a capacity-limited visuo-spatial working memory system that

Mental Representation of Numerosity
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allows us to hold a visuo-spatial mental representation of attended items (see Figure
1(a))5,36,37. By individuating the items in a set and binding item-specific features such as
shape and color in working memory38,39, the OTS suppresses any representation of the set
size26–28. The ANS, on the other hand, represents the set size approximately, but does not
represent individual items26. It can take over from the OTS to represent numerosities less
than 4 as a set approximately when attentional demands impairs the OTS’s ability to
individuate (e.g., closely spaced)26,40. In this sense, the OTS and ANS are mutually exclusive.
As shown in Figure 1(a), the ANS comprises analog mental representations of approximate
numerosities on a logarithmically compressed continuum26,27,41,42. Regardless of whether
numerical stimuli are symbolic or nonsymbolic, activation of the ANS representations
manifests in behaviors that (1) obey Weber’s law: more errors and slower responses in
distinguishing a pair of numerosities that are numerically closer (e.g., 4 vs. 5 and 4 vs. 9) or
have a ratio approaching 1 (e.g., 1 vs. 2 [ratio = .5] and 8 vs. 9 [ratio = .89]) (hereafter,
distance and ratio effects)43–45; (2) show scalar variability during estimation: greater
variability in estimates as numerosity increases46,47.

The ANS mental representations are thought to arise from the population coding of
“numerosity-selective neurons” primarily in the posterior parietal cortices, but can also
found in the prefrontal cortices6,8,41,48–50. Numerosity-selective neurons are tuned
approximately to a preferred numerosity8,51. For instance, a neuron selective for numerosity
3 will, on average (across stimulus presentations or trials), respond optimally to 3 objects,
but less to 2 or 4, and even less to 1 or 5. Response on a single trial, however, relies on
population coding rather than single-neuron coding49. Hence, 3 objects will excite most
neurons selective for numerosity 3, and few that are selective for 2 and 4 (see Figure 1(b)).
As proportionally more neurons that are selective for numerosity 3 are active, a mental
representation of ‘threeness’ emerges49. Evidential support for the existence of such
numerosity-selective neurons have been gathered with single-cell recordings in numerically
trained52–58 and numerically naïve monkeys59, with neuronal and behavioral modeling in
humans using functional magnetic resonance imaging (fMRI)60,61,70,62–69, and with
simulations using computational modeling51,71. These mental representations have also been
shown to be logarithmically compressed using neurophysiological methods in monkeys52,72.
Recently, using ultra-high field (7 Tesla) fMRI, numerosity-selective neuronal populations
have been shown to be logarithmically compressed spatially in the posterior parietal cortices
with more neurons coding for smaller numerosities than larger ones (see Figure 1(b))61.
This avoids an exponential increase in neuronal resources as numerosity increases73.

The Transcoding-Learning-Mapping (TLM) Model
To behaviorally assess whether numerals are ‘mapped’ on a fuzzy mental number line via
prior associations with exemplars of nonsymbolic quantities, we can ask if an individual can
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systematically assign numerals to given sets of items (hereafter, numerosity perception
task), or conversely, produce sets of items that correspond to given numerals (hereafter,
numerosity production task). In this review, we will use extant cognitive models of
numerosity estimation6,74–77 to anchor our description of the proposed model. To guide our
description, we employ Marr's (1982)78 levels of analysis: Given the computational goal of
transcoding between numerals and nonsymbolic quantities in an estimation task, what are
the processing algorithms, and how can the algorithms be implemented neurobiologically?

The TLM model comprises five temporally ordered components at both developmental
and task levels: (1) how nonsymbolic quantities are transcoded into mental representations
of numerosity, (2) how some numerals can be associated with these mental representations,
(3) what neural mappings result from learning, (4) how numerals are transcoded into
mental representations after learning, and (5) how mental representations are transcoded
into symbolic and nonsymbolic estimates.

Nonsymbolic Stimulus-to-Representation
Transcoding (Component 1)
Computational models suggest that an ANS mental representation is activated by
nonsymbolic quantities through a hierarchy of three computational stages – object location
coding, summation coding, and numerosity-selective coding (Figure 1(c))6,51,71. Firstly,
visual input is segmented into discrete objects with a fixed number of active neurons
allocated to create a shape- and size-independent code, resulting in an “object location
map”51,71,79,80. Although this object location coding is not specific to numerosity, it is
sensitive to numerosity as the number of locations increases with the number of objects.
This map likely supports visuo-spatial working memory and the OTS81–83. Next, these maps
provide input to “summation neurons” in the superior parietal cortex, which would show a
monotonic increase in their activity as numerosity increases51,57,71,84–87. The summation
neurons in turn provide input to numerosity-selective neurons. In humans, these three
stages occur along an occipito-parietal processing gradient extending from the inferior
occipital gyri to the superior parietal lobule86.

While the processing stages described suffice for a single judgment of numerosity in
real-world contexts, additional mechanisms come into play in laboratory studies in which
participants have to make a series of numerosity judgments. When the numerosity of
nonsymbolic stimuli is varied across experimental trials, some non-numerical continuous
magnitudes, such as surface area, convex hull, density, or perimeter, would co-vary with
numerosity, and it is unclear whether and when participants use non-numerical cues to
make their judgments88–90. For instance, a common method to control for such confounds
is to maintain a constant total surface area across some stimuli (such that numerosity is
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Figure 1. (a) Cognitive and neural bases of numerical meanings of nonsymbolic and symbolic numerical 
stimuli. In this schematic, mental activations (tuning functions) for larger numerosities are averaged within 
decade boundaries as shown by the wider distributions. (1) Nonsymbolic stimuli are transcoded to mental 

representations. (2) Some associations among numerals, nonsymbolic quantities, and mental 
representations are learned idiosyncratically. (3) Associative learning establishes symbolic signposts (red 
outlines). The tuning function for the learned numeral is also sharpened (yellow to blue tuning functions; 

see (b) for a neuronal-level depiction). The signposts in turn constrain the development of an idiosyncratic 
mapping grid to enable transcoding of numerals and numerosities that we do not have prior associative 

experience with. (4a) Numerals with established signposts may be transcoded directly to mental 
representations by retrieval. (4b) Numerals without established signposts undergo a linear-to-logarithmic 
transformation guided by the mapping grid during transcoding. (b) Squares depict neurons selective for a 

particular numerosity. Some neurons respond to nonsymbolic or symbolic input only, and some to both. (c) 
Computational stages involved in numerosity-selective encoding of nonsymbolic and symbolic stimuli: 

Sensory input is normalized for shape, size, and location rendering an object location map. Activity on the 
object location map is summed up. Summed activity is proportional to numerosity. Numerosity-selective 
neurons that are tuned to a preferred numerosity (e.g., 3) will be activated maximally. Activation of these 

neurons decreases with increasing numerical distance from its preferred numerosity. Symbolic input 
bypasses summation coding.
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correlated with size of the items), and maintain the item size across some stimuli (such that
numerosity is positively correlated with total surface area)91. Thus, on some trials,
participants may use surface area as a cue, and on other trials, they may need to inhibit
surface area. Leibovich and Ansari (2016)11 argue that when children and adults learn to
associate a series of numerals with nonsymbolic quantities (e.g., using number charts), they
need to first disentangle the numerical and non-numerical magnitudes when attending to
numerosity. Cognitive control is therefore a crucial factor to consider when nonsymbolic
stimuli are used in real-world learning and experimental contexts11. The impact of
confounding non-numerical magnitudes is sometimes observed during estimation tasks17,21,
but not always75,92, depending on methodological considerations such as numerosity range,
task, and the extent of control of the stimulus non-numerical properties. Nonetheless, the
integrity of transcoding nonsymbolic quantities to mental representations is crucial for the
‘mapping’ hypothesis because laboratory tasks involving nonsymbolic stimuli are unable to
provide a pure and direct measure of the mental representations of individual numerosities
or the ANS as a whole11,93.

In sum, transcoding of nonsymbolic stimuli to mental representations may have a
numerosity-specific processing pathway. At the task level, complete independence from
non-numerical magnitude processing is impossible, and inhibitory control is necessarily
involved11. However, it is important to note that Leibovich and Ansari's (2016)11 concern
does not undermine the fact that in real-world contexts, children and adults can attend to
numerosity, and can ultimately learn the associations between numerosities and numerals if
they are motivated to. Hence, the nature of formed ‘mappings’ is orthogonal to how they are
formed.

Associative Learning (Component 2)
Children go through a protracted period of about a year from 2.5-3.5 years of age to learn
the meaning of “one” (vs. “some”), followed by “two” (“one” and “two” vs. “some), then
“three”, and finally “four” before they understand that the last number word during
counting represents the total number of items in a set for all other numbers within their
counting range94,95. Contemporary models implicate both the OTS and ANS in children’s
acquisition of the meanings of “one” through “four”41,42,96. In Spelke's (2017)42 model,
whenever a child sees three items and hear the word “three”, the word is associated with the
OTS representation of three individual items held in visual working memory. The word
“three” can then replace the active maintenance of the representation of three individual
items in visual working memory, freeing up the OTS, which allows the ANS to come online
to represent approximate ‘threeness’ of the set and be associated with “three”42. In other
words, number words are crucial in linking the mutually exclusive OTS and ANS42. With
repeated exposure, children then correlate the word “three” with both an exact
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representation of three individual items and an approximate representation of ‘threeness’
(Figure 1; Component 2)41,42.

Numerals beyond “four” can also be learned by association with nonsymbolic quantities,
but given the attentional limits of the OTS, only the ANS can support the associative
learning of large numerals (e.g., see Figure 1 for “thirty”)6,41,42,96. It is, of course, impossible
for us to form associations between every number word and a nonsymbolic quantity.
However, it is likely that we can learn some large numerals by associative learning76,97.
Although associative learning for large numerals may be largely idiosyncratic76,97–99, there
are some universal regularities. For instance, certain large numerals are frequently used in
spoken and written communication across languages and cultures100. Dehaene and Mehler
(1992)100 observed that the frequency use of numerals decreases with increasing
numerosity, even for numerals 1 to 9, but the frequency of numerals such as 10, 12, 15, 20,
50, and 100 (‘round’ numbers) are significantly higher than their neighboring numerosities.
The elevated frequency of ‘round’ numbers suggests that we may have more associative
experience with them (e.g., eggs come in a dozen, small items are often sold in multiples of
10) such that we come to have an approximate grasp of the quantities the round numbers
represent100. Alternatively, the ANS may provide psychological constraints that allow us to
better grasp and use these round numbers as points of references100. Moreover, Izard and
Dehaene (2008)74 observed that when adults were asked to estimate arrays containing 9 to
100 dots, they tended to assign as many as 40% of their estimates to numbers below 10 and
the decade numbers (10, 20, 30, etc.).

Large numerals learned by associations with approximate quantities have also been
shown to be constrained by the ANS. Several studies that trained adults to associate large
approximate quantities (10–90) with artificial symbols have observed canonical distance or
ratio effects in a numeral comparison task with the learned symbols101–105. This suggests
that the acquired symbols are possibly linked with the mental representations of the ANS,
which in turn influences learners’ usage of these artificial numerals.

Taken together, associative learning is a key mechanism for numerals 1 to 4, and may
underlie the learning of some large numerals as well, especially round numbers. In the TLM
model, numerals learned via associations are then linked with the mental representations of
the ANS to establish symbolic ‘signposts’ or reference points along the mental number line.

Established Symbolic ‘Signposts’ for ‘Mapping Grid’
(Component 3)
The symbolic signposts can be conceptualized as a common set of neurons tuned
preferentially to a nonsymbolic quantity and its associated numeral as a result of Hebbian
learning. As numerals are represented as exact rather than approximate numerosities
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during associative learning, the tuning functions of numerosity-selective neuronal
populations to numerals gradually become sharpened (see Figure 1(a); yellow and blue
tuning functions for numerosity 3)71. This sharpening of the tuning functions may be
supported by feedback from categorical-coding neuronal populations in the prefrontal
cortex106–109, and by local inhibitory interneurons that are responsible for crafting the
numerosity-selectivity of the neurons even before numeral learning49,108. As a result, a
subset of the initial pool of numerosity-selective neurons that respond more reliably to 3
objects would respond to “three” as well (i.e., a symbolic signpost or shared neural mapping;
see Figure 1(b))4,5,49,58. Such sharpening of the tuning functions for numerals tend to be
observed only in the left intraparietal sulcus, possibly due to the left-lateralization for exact
and categorical representations5,67,110, or to maturation and experience with symbolic
knowledge such as language70,111. Notably, the acquisition of numeral knowledge and
higher-order math skills may reciprocally sharpen the tuning functions for nonsymbolic
input, resulting in better overall acuity of the ANS4,5,21,63,112–116. This possibility has been
supported by the finding of neurons that code for both symbolic and nonsymbolic inputs
after monkeys have been trained to associate Arabic digits 1-4 with their corresponding
nonsymbolic quantities58,117. While there are format-independent coding neurons, human
fMRI studies110,118 and monkey single-cell recordings58 have found distinct neuronal
populations coding for one format or the other. Hence, our model proposes that there are
also numerosity-selective neuronal populations that code for numerals only (see Figure
1(b)). It is possible that these numerosity-selective neurons specific to numerals may code
for both spoken number words and Arabic numerals69. Some of these may be asemantic and
may not respond to numerosity per se. This is because preschoolers first learn to associate
spoken number words with nonsymbolic quantities, followed by number words with Arabic
digits, and finally digits with nonsymbolic quantities19,119–121. This developmental trajectory
with number words mediating the links between digits and nonsymbolic quantities19,119
suggest that when the verbal labels for digits are first learned, children do not immediately
associate digits with any numerical meaning. However, it is possible that there are separate
neurons coding for either symbolic format122,123.

Next, our model proposes that these symbolic signposts may constrain the location
along the mental number line that a numeral activates (see Figure 1(a), Component 3; red
sections). The ordinal structure of the mental number line allows for an idiosyncratic
symbolic ‘mapping grid’ to be established74. This mapping grid, which retains the
logarithmic scale of the ANS74, then allows us to systematically transcode between numerals
or nonsymbolic quantities even for those we do not have any prior associative experience
with. Firstly, the existence of such an ordinally structured symbolic mapping grid is
suggested by evidence that a single instance of calibration (e.g., showing 30 dots and
labeling it as “30”) tend to lead participants to modify their subsequent estimates not only
locally for the calibrated numerosity (30), but for all other numerosities
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tested74,76,97–99,124,125. Hence, this local-to-global calibration suggests that mappings between
numerals and nonsymbolic quantities are highly interdependent. Using a similar calibration
paradigm, Yeo and colleagues (submitted for publication)98 found that while adults modify
most of their estimates for large numerosities, some large numerosities appeared unaffected
by calibration within each participant resulting in discontinuities in the effect of calibration
in majority of the participants. The findings suggest the possibility of interspersed symbolic
signposts for large numerosities that might have been established through associative
learning. Secondly, estimates tend to show scalar variability, a behavioral signature of the
ANS21,74. Nonetheless, calibration studies provide strong evidence that the established
mapping grid is not fixed and is highly malleable in both children97,99,126,127 and
adults74,76,98,124,125,128–130.

Taken together, symbolic signposts can be established along the mental number line,
whose ordinal structure allows for the development of an idiosyncratic, but malleable,
symbolic mapping grid. This mapping grid supports transcoding of numbers that we may
not have prior experience with. Indeed, the role of ordinal relations between numerals has
been argued as an alternative to the ‘mapping’ hypothesis12. We propose that such ordinal
relations alone do not suffice in explaining the canonical behavioral signatures of the ANS
often observed with numerals, or that the transcoding between numerals and nonsymbolic
quantities is highly constrained (e.g., not estimating 100 items as “10,000”). We also
hypothesize that some neuronal populations that are format-independent58,131 may underlie
the linking of the symbolic mapping grid and the ANS. Neuroimaging experiments
investigating such a shared neural mapping between symbolic and nonsymbolic formats
have presented mixed results67,110,132–137. The TLM model seeks to reconcile these mixed
findings in the next few sections.

Symbolic Stimulus-to-Representation Transcoding
(Component 4)
Spoken number words are hypothesized to be first processed by left-hemispheric perisylvian
language regions extending to the temporoparietal junction77,138,139. Arabic numerals, on the
other hand, have recently been shown to be processed by a region in the inferior temporal
gyrus (ITG) that is distinct from regions involved in processing other symbol categories
such as letters (putative “number form area”77)140,141. However, the specific computations
that the number form area performs are still unknown142,143. For number phrases (e.g.,
“twenty-eight”), the left inferior frontal gyrus and inferior parietal lobule are additionally
recruited for syntactic processing, particularly in merging the constituent elements into
whole magnitudes144. It is likely that similar mechanisms may subserve the place-value
processing of multi-digit numerals (e.g., “28”)145, which may not rely on verbal
representations146. Subsequently, both spoken number words and Arabic numerals are
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hypothesized to be transcoded to mental representations via numerosity-selective coding in
the left intraparietal sulcus (IPS)64,65,69,70,85, bypassing the summation coding stage
necessary for nonsymbolic stimuli85,147 (Figure 1(c)).

In the TLM model, the transcoding process from numeral to mental representation
differs significantly depending on whether a presented numeral has an established signpost.
It should be noted that a signpost can be established on an ad-hoc basis, even just after a
single instance of learning74 (e.g., calibrating participants to a reference numeral-
nonsymbolic quantity association prior to a task). For numerals with such established
signposts, the mental representations may be directly activated (Figure 1(a), Component
4(a)). For numerals that do not have established signposts, they are likely to undergo a
linear-to-logarithmic transformation during transcoding (Figure 1(a), Component
4(b))75,148. This is because, in a standard laboratory task, multiple numerals are presented,
and are first represented on an objective linear number line (e.g., 5, 6 and 7 are equally
spaced), which differs from the logarithmic scale of the ANS.

As shown in Figure 1(a), the linear-to-logarithmic transformation (Component 4(b))
can account for a tendency to spontaneously overestimate in numerosity production
tasks75,148. It is also likely that the implementation of this linear-to-logarithmic
transformation between representations may explain why 2.5-year-olds typically take about
a full year to learn the meanings of “one” through “four”149. Children and even highly
numerate adults have been shown to represent symbolic numerosities approximately on
both linear and logarithmic scales, depending on their familiarity with the number
range126,127,129,130,150–153. This suggests that we can flexibly switch between scales depending
on our numeral experience and task demands. How such transformations are implemented
neurobiologically is yet unknown.

There is some neuroimaging evidence to support the retrieval pathway that is driven by
prior associations (Figure 1(a); Component 4(a)). Using an fMRI-adaptation paradigm,
Piazza and colleagues (2007)67 sought to investigate whether numerals and nonsymbolic
quantities activate a common population of numerosity-selective neurons in adults. The
authors first had participants learn to associate 17 to 20 randomly arranged dots with
“approximately 20” and 47 to 50 dots with “approximately 50”. This calibration was done to
account for participants’ tendency to underestimate large numerosities, possibly due to the
linear-to-logarithmic transformation. The authors then adapted participants’ neural
responses to either dot arrays or numerals, using small (17-19) and large (47-49)
numerosities. Participants were told to “pay attention to the quantity conveyed by the
stimuli” (p. 303). After adaptation, they presented a new or deviant numerosity (20 or 50),
which could be in the same format (e.g., “17”, “19”, “18”, …“50”) or a different format (e.g.,
“18”, “17”, “19”, …fifty dots). Numerosity-selective neuronal populations were predicted to
be more sensitive to a large numerosity change than a small numerosity change, and would
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then recover from adaptation to a large numerosity change with an increase in activation. If
both adaptation and recovery from adaptation was irrespective of the deviant stimulus’
format, that suggested the presence of some neurons coding for a format-independent
representation of numerosity. Indeed, the authors found such format-independent
numerosity-selective neuronal population in multiple brain regions, including the bilateral
IPS and frontal regions. The critical aspect of this study in relation to the TLM model is that
numerals and nonsymbolic quantities can activate a common population of numerosity-
selective neurons, especially when there is prior associative learning. When there is no
prior associative learning, however, the TLM model predicts that a linear-to-logarithmic
transcoding of numerals would result in a mismatch in the locations of the mental number
line activated by nonsymbolic quantities and their corresponding veridical numerals (see
Figure 1(a); “Thirty” may activate a representation of a larger numerosity than an array of
30 dots would). There is indeed evidence that adaptation to nonsymbolic quantities such as
that in the study by Piazza and colleagues (2007)67 is due to the perceived numerosities
rather than veridical numerosities154. Hence, it is crucial for future experiments
investigating a shared neural mapping between stimulus formats to consider whether the
veridical numerosity of nonsymbolic stimuli matches the perceived numerosity in each
participant. In fact, Liu, Schunn, Fiez, and Libertus (2018)137 recently used
electroencephalography (EEG) to provide support for this methodological consideration. In
their study, adult participants passively viewed during EEG recording a series of dot arrays
superimposed with one- and two-digit Arabic numerals that were either matched in terms
of numerosity (“36” and 36 dots) or mismatched (“36” and 24 dots). Importantly, they also
had participants complete a separate numerosity perception task to obtain participants’
idiosyncratic perceived numerosities. No significant differences in the event-related
potentials (ERPs) between the matched and mismatch conditions were found when the
veridical numerosities of the dot arrays were used. However, using the idiosyncratic
perceived numerosities revealed a significant difference in the ERPs between the matched
and mismatched conditions. Their findings suggest that future neuroimaging studies can
minimize the discrepancy in the activated locations on the mental number line by carefully
matching a perceived dot array (e.g., 50 dots) to a numeral (e.g., “40”)137. Alternatively,
future studies should calibrate participants to associate numerals with nonsymbolic
quantities prior to a task67.

In summary, numerals may undergo a linear-to-logarithmic transformation unless there
is prior associative experience. The linear-to-logarithmic transformation may lead to a
mismatch in activation locations on the mental number line by veridical and perceived
numerosities, which could partly account for the absence of evidence of a shared neural
mapping between numerals and nonsymbolic quantities.
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A series of fMRI110,118,132–135 and magnetoencephalography (MEG)136 studies have used
multi-voxel pattern analytic approaches such as representational similarity analyses (RSA)
and decoding to investigate a shared neural mapping between nonsymbolic quantities and
numerals. In an RSA, significant correlations between the fine-scaled spatial activation
patterns evoked by dot arrays and their corresponding digits are indicative of a shared
neural mapping. In a decoding analysis, a classifier is trained to distinguish the activation
patterns between different dot arrays and different digits. The classification accuracy of the
trained classifier on an independent set of data is then measured. Successful generalization
in classifying digits from information decoded from dot arrays, and vice versa, is indicative
of a shared neural mapping. The evidence thus far has been mixed. Here, we put forth some
methodological considerations that could account for an absence of evidence in these
studies.

Firstly, all of these studies other than Piazza and colleagues' (2007)67 have focused
exclusively on numerosities 1-9 without much justification. One possibility is that there are
presumed established mappings due to their more frequent use compared to multi-digit
numerals100. However, there is ample evidence that estimation of numerosities 5-9 tend to
be highly error-prone32,33,155. Hence, it may not be justified to expect participants to
consistently associate 7 dots with “7”, much less to have a shared neural mapping for 7 dots
and “7” without prior learning. We hypothesize that calibration via associative learning may
be necessary even for single digits. Alternatively, instead of random dot patterns that were
used in these studies reporting an absence of evidence, canonical dice dot patterns could be
used as they are easily recognizable33,156. Indeed, although fMRI studies have failed to
decode or find significant representational similarity across formats using random dot
patterns110,132,133,135, Teichmann and colleagues (2018)136 have recently found significant
representational similarity and have successfully decoded across formats with canonical
dice dot patterns using MEG. Nonetheless, it is important to note that canonical dice dot
patterns may be perceived symbolically, as standing for a number (e.g., Roman numeral III).
Future studies can test these hypotheses.

Secondly, what participants are told to do with the stimuli may be crucial. Bulthé and
colleagues (2014, 2015)132,133 had participants compare each digit or dot array (e.g., 1, 2, 4,
8) to a fixed reference quantity (e.g., 5). Using decoding, a shared neural mapping between
formats were not observed. It is important to note that the mental representations measured
with fMRI’s temporal resolution may not be of the estimation stage per se, but also of the
comparison stage50. It is likely that the estimation stage more directly reflects an access of
the mental number line than the comparison stage50. To dissociate these stages in a
numerosity comparison paradigm, Eger and colleagues (2009)110 used a delayed

Absence of Evidence for Shared Neural Mapping and 
Alternative Explanations
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match-to-sample design, in which they introduce a delay between a sample stimulus (e.g., 8
dots) and the comparison of a match stimulus (e.g., “2”) with the sample. Only the mental
representations of the sample stimuli were analyzed. Also using decoding, the authors found
partial support for a shared neural mapping. Specifically, while the classifier trained with
digits successfully predicted the numerosity of a dot set, the classifier trained with dot sets
was unsuccessful in predicting the numerical representation of digits. This asymmetric
generalization across formats was also observed by Piazza and colleagues (2007)67, and were
interpreted to indicate a more precise tuning function for numerals than for nonsymbolic
quantities71. This in turn leads to poorer generalization from numerals to nonsymbolic
quantities than the converse. Interestingly, Lyons and colleagues (2015)135 also used a
delayed match-to-sample paradigm in which participants were told to indicate whether the
sample and match stimuli were numerically equal or different, but failed to find significant
representational similarity between formats. The null finding could be due to the use of the
same format for both sample and match stimuli within each trial. This might influence
participants’ strategy particularly for digits, such as using verbal or shape matching, as the
canonical behavioral distance effect was not found for digits157.

Representation-to-Estimate Transcoding
(Component 5)
An activated mental representation may finally be transcoded to a nonsymbolic estimate. In
numerosity production tasks, participants are typically required to select from a series of dot
arrays (e.g., by rotating an analog dial) one array that corresponds to a given numeral. If
numeral “thirty” has previously been associated with an array of 30 dots, and has an
established signpost, the mental representation for 30s will be activated via retrieval, which
can then be transcoded to a calibrated nonsymbolic estimate (Figure 2; Component 5(a)
blue tuning function). If, however, no prior association has been established for “thirty”, a
mental representation of a larger numerosity will be activated due to the linear-to-
logarithmic transformation. This is then transcoded to a spontaneous nonsymbolic
estimate, leading to a typical overestimation (Figure 2; Component 5(a), green tuning
function)75,158. Importantly, the response selection process inevitably involves iterative
nonsymbolic stimulus-to-representation transcoding (i.e., Component 1), possibly until a
nonsymbolic array activates a mental representation that matches the initial representation
activated by the numeral47,159,160. Inhibitory control may thus play a critical role during this
transcoding process11,93.

When transcoding an activated mental representation to a symbolic estimate, an
individual is confronted with two unique challenges (Figure 2; Component 5(b)). Firstly,
the individual has to choose from multiple response bins from the mapping grid (e.g., 30-39
vs. 20-29 and 40-49) and sample an integer from the chosen bin. To overcome this,
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inhibitory control may be crucial to suppress the noise from the signal. Secondly, a
logarithmic-to-linear transformation of the established mapping grid is necessary during a
task that requires multiple symbolic estimates to be made74,75,159. As proposed by Izard and
Dehaene (2008)74, the established mapping grid itself is not directly used to generate an
estimate, but undergoes a spontaneous idiosyncratic affine transformation (i.e., compressed
or stretched and/or shifted). This transformation is likely to be common in numerate
participants as they may be motivated to ensure that their estimates would make sense
linearly or proportionally with their prior estimates. For instance, if an array of 30 dots was
assigned “20”, an array of 90 dots would need to be around “60” and not “120”. This may
involve knowledge of analogical reasoning76,97,99. Addition and subtraction are also possible
strategies. Nonetheless, numerosities 1-4 and other strongly established symbolic signposts
for larger numerals may be less resistant76,97–99. The logarithmic-to-linear transformation of
the remaining segment of the mapping grid results in a spontaneously rescaled mapping
grid (see Figure 2). In the presence of an external calibration, a calibrated mapping grid
results from another iteration of affine transformation74. This transformation from the
spontaneous mapping grid to calibrated mapping grid has found to be moderated by
calculation competence98 and analogical reasoning99. The importance of such advanced
skills in supporting the logarithmic-to-linear transformation is consistent with a
developmental lag in which children tend to be less successful in transcoding approximate
quantities to verbal number words (logarithmic-to-linear) than the reverse (linear-to-
logarithmic)17,159,161. Finally, the hypothesis that the calibrated and spontaneous mapping
grids are constrained versions of the established mapping grid has received support with
evidence of a high reliability (r > .7) between participants’ spontaneous and calibrated
estimates across various estimation metrics74,98.

In summary, transcoding from a mental representation to either nonsymbolic or
symbolic estimate necessarily involves inhibitory control. Any numerosity perception or
production task should thus statistically account for inhibitory control when individual
differences are examined20,162–164. Moreover, transcoding to a symbolic estimate may involve
advanced reasoning skills (e.g., analogical and mathematical) to better support the
logarithmic-to-linear transformation. The ability to dissociate the spontaneous and
calibrated mapping grids from the ANS is also consistent with the hypothesis that over
development, numerals may become more estranged from the ANS as we become more
reliant on the syntax of numerals (e.g., place value of the base-10 system) 12,131,165–167. With
this final section, it should be clear that estimation is not a trivial process, but a multifaceted
process that we have only just begun to unravel.
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Figure 2. Transcoding of activated mental representations to nonsymbolic and symbolic estimates. (5a) 
Resulting nonsymbolic estimate depends on the activation location on the mental number line. (5b) The 

established mapping grid can be rescaled spontaneously or with an external calibration to generate linear-
like estimates.

In this review, we draw from the developmental, cognitive, and neuroscience literature to
integrate extant models of how meanings of numerals are learned and accessed. This
unifying Translation-Learning-Mapping (TLM) model distinguishes transcoding,
associative learning and shared neural mappings, so as to provide a more precise
nomenclature of the processes and products related to the ‘mapping’ hypothesis. The model
is certainly not without limitations. Firstly, it is limited to estimation. To comprehend that
“98” is one more than “97” does not rely on approximate representations in the model, but
on language168. The symbolic mapping grid alone may however aid computational
estimation (e.g., estimating tip amounts). Secondly, as the ANS has an upper bound169–171,
the mapping grid ought to have one too, but what it might be has yet to be defined.
Nonetheless, the TLM model clearly shows that estimation tasks do not directly measure the
ANS or the access to the sparse shared neural mappings, but a composite of multiple
domain-specific and domain-general (e.g., inhibitory control) processes. Hence, the jury is
still out on whether the ‘mapping’ hypothesis is fully supported until we gather more
evidence pertaining to the several hypotheses put forth by the TLM model.

Concluding Remarks
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