
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tmph20

Molecular Physics
An International Journal at the Interface Between Chemistry and
Physics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tmph20

Towards molecular simulations that are
transparent, reproducible, usable by others, and
extensible (TRUE)

Matthew W. Thompson , Justin B. Gilmer , Ray A. Matsumoto , Co D. Quach ,
Parashara Shamaprasad , Alexander H. Yang , Christopher R. Iacovella , Clare
McCabe & Peter T. Cummings

To cite this article: Matthew W. Thompson , Justin B. Gilmer , Ray A. Matsumoto , Co D. Quach ,
Parashara Shamaprasad , Alexander H. Yang , Christopher R. Iacovella , Clare McCabe &
Peter T. Cummings (2020) Towards molecular simulations that are transparent, reproducible,
usable by others, and extensible (TRUE), Molecular Physics, 118:9-10, e1742938, DOI:
10.1080/00268976.2020.1742938

To link to this article:  https://doi.org/10.1080/00268976.2020.1742938

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

View supplementary material 

Published online: 08 Apr 2020. Submit your article to this journal 

Article views: 1105 View related articles 

View Crossmark data Citing articles: 2 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tmph20
https://www.tandfonline.com/loi/tmph20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00268976.2020.1742938
https://doi.org/10.1080/00268976.2020.1742938
https://www.tandfonline.com/doi/suppl/10.1080/00268976.2020.1742938
https://www.tandfonline.com/doi/suppl/10.1080/00268976.2020.1742938
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00268976.2020.1742938
https://www.tandfonline.com/doi/mlt/10.1080/00268976.2020.1742938
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2020.1742938&domain=pdf&date_stamp=2020-04-08
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2020.1742938&domain=pdf&date_stamp=2020-04-08
https://www.tandfonline.com/doi/citedby/10.1080/00268976.2020.1742938#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00268976.2020.1742938#tabModule


MOLECULAR PHYSICS
2020, VOL. 118, NOS. 9–10, e1742938 (18 pages)
https://doi.org/10.1080/00268976.2020.1742938

MOLECULAR PHYSICS LECTURE

Towards molecular simulations that are transparent, reproducible, usable by
others, and extensible (TRUE)∗

MatthewW. Thompsona,b, Justin B. Gilmera,b, Ray A. Matsumotoa,b, Co D. Quacha,b, Parashara Shamaprasada,b,
Alexander H. Yanga,b, Christopher R. Iacovellaa,b, Clare McCabea,b and Peter T. Cummingsa,b

aDepartment of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; bMultiscale Modeling and Simulation
Center, Vanderbilt University, Nashville, TN, USA

ABSTRACT
Systems composed of soft matter (e.g. liquids, polymers, foams, gels, colloids, and most biological
materials) areubiquitous in science andengineering, butmolecular simulationsof such systemspose
particular computational challenges, requiring time and/or ensemble-averaged data to be collected
over long simulation trajectories for property evaluation. Performing a molecular simulation of a
soft matter system involves multiple steps, which have traditionally been performed by researchers
in a ‘bespoke’ fashion, resulting in many published soft matter simulations not being reproducible
based on the information provided in the publications. To address the issue of reproducibility and to
provide tools for computational screening, we have been developing the open-source Molecular
Simulation and Design Framework (MoSDeF) software suite. In this paper, we propose a set of
principles to create Transparent, Reproducible, Usable by others, and Extensible (TRUE) molecular
simulations. MoSDeF facilitates the publication and dissemination of TRUE simulations by automat-
ing many of the critical steps in molecular simulation, thus enhancing their reproducibilitya. We
provide several examples of TRUE molecular simulations: All of the steps involved in creating, run-
ningandextractingproperties fromthe simulations aredistributedonopen-sourceplatforms (within
MoSDeF and on GitHub), thus meeting the definition of TRUE simulations.

ARTICLE HISTORY
Received 3 March 2020
Accepted 5 March 2020

KEYWORDS
Molecular dynamics; Monte
Carlo simulation;
reproducibility; open-source

1. Introduction

Reproducibility in scientific research has become a
prominent issue, to the extent that some have opined
that science has a ‘reproducibility crisis’ [1]. Along with
the rest of the scientific community, computational sci-
entists are grappling with the central question: How can
a computational study be performed and published in
such a way that it can be replicated by others? This
has become increasingly important as researchers seek
to harness the ever expanding computational power to
perform large-scale computational screening of mate-
rials [2–8] inspired by the materials genome initiative

CONTACT Peter T. Cummings peter.cummings@vanderbilt.edu Department of Chemical and Biomolecular Engineering, Vanderbilt University,
Nashville, TN, USA; Multiscale Modeling and Simulation Center, Vanderbilt University, Nashville, TN, USA
∗The content of this paper reflects that presented in theMolecular Physics lecture by Peter Cummings at the 2019 Thermodynamics conference in Punta Umbría,
Huelva, Spain, June 26-28, 2019

Supplemental data for this article can be accessed here. https://doi.org/10.1080/00268976.2020.1742938

(MGI) [9], where reproducibility issues commonly faced
in small-scale studies will only be compounded as the
number of simulations grow by orders of magnitude.

Addressing the issues of reproducibility in soft matter
simulation is particularly challenging, given the com-
plexity of the simulation inputs and workflows. Here, we
define soft matter as anything easily deformed at room
temperature, e.g. liquids, polymers, foams, gels, colloids,
andmost biologicalmaterials. Figure 1 shows a schematic
of the general multi-step workflow for performing atom-
istic simulations of soft matter systems, proceeding
from system ‘chemistry’ (chemical composition and state

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-
nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in anymedium, provided the original work is properly cited, and is not altered, transformed, or built upon
in any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2020.1742938&domain=pdf&date_stamp=2020-06-15
mailto:peter.cummings@vanderbilt.edu
https://doi.org/10.1080/00268976.2020.1742938
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 M. W. THOMPSON ET AL.

Figure 1. Schematic of the typical process required to compute
properties of soft matter systems from system ‘chemistry’, which
refers to chemical composition and state (including temperature,
pressure andcomposition), starting fromtheneed toeither gather
or derive force field parameters to model the system. For coarse-
grained (CG) simulations, theCG forcefields areoftenderived from
atomistic simulations.

conditions such as phases(s), temperature, pressure, and
composition) to ‘properties’ (e.g. structural, thermody-
namic and transport properties, phase equilibria, and
dielectric properties). In such systems, the differences in
potential energy between distant configurations are on
the same order as the thermal motion, requiring time
and/or ensemble-averaged data to be collected over long
simulation trajectories for property evaluation. The equi-
libration procedures and system sizes considered may
strongly influence the resulting measured properties,
since one must consider both the local conformations
of the underlying components, along with any meso-
scopic structuring present in the system. To capture suf-
ficiently large length and time scales, soft matter simu-
lations are typically performed using methods such as
molecular dynamics (MD) or Monte Carlo (MC) that
employ empirical force fields to model the interactions
between atoms and molecules; the appropriate force field
parameters must be identified before the simulation can
be performed.

Some commonly available force fields, such as the
Optimized Potentials for Liquid System (OPLS) [10] and
the General Amber Force Field (GAFF) [11] contain
thousands of possible parameters that are differentiated
by their chemical context (e.g. the element a given inter-
action site represents, the number and identity of bonded
neighbours, the local environment of bonded neigh-
bours, the type of system, etc.). Selecting the appropriate
force field parameters for a particular use case is often
non-trivial. Workflows may also involve the optimisa-
tion of specific parameters, such as partial charges, or
require separate procedures to develop novel force fields,
such as coarse-grained (CG) models, before a simula-
tion can be performed. Furthermore, due to the com-
plex nature of the underlying constituents (e.g. highly

branched polymers), setup of an initial system configura-
tionmay be challenging and require additional relaxation
procedures to ensure system stability [12].

As such, soft matter simulations typically require
multi-step workflows with many inputs. The various
steps are often accomplished by separate pieces of syntac-
tically and/or semantically incompatible software tools
that may require translators or ad hoc modifications to
facilitate interoperability. These tools, and especially the
‘glue’ code that facilitates interoperability, are typically
neither publicly available nor version-controlled. The lat-
ter is particularly important for long-term reproducibil-
ity, since to repeat a particular calculation may require
using versions of the relevant codes used when the work
was originally published, which could be a number of
years ago.

The above complexities often make it difficult for
researchers themselves to fully capture and preserve the
procedures used to perform a simulation, let alone clearly
disseminate these to the rest of the community. A typical
soft matter simulation publication provides an overview
of themethods and procedures used but falls significantly
short of including the necessary information to unam-
biguously reproduce the published work. This informa-
tion includes, but is not limited to, citations to the sources
of force field(s) used, the numeric parameters of the
force field(s) used, how the force field parameters were
assigned to the system, constants and options provided
in the underlying algorithms, and the exact choices used
in constructing the initial configuration of the system. It
is important to recognise that the results from a simula-
tion can depend on the minute details [13]. These details
include, but are not limited to, the random seed used to
generate a distribution, the specific force field parameters
and how they were used, the exact procedures employed
to equilibrate a system, etc. For example, small variations
in force fields (e.g. changes in distances at which inter-
actions are truncated, different partial charges, the spe-
cific method for handling long-ranged interactions, etc.)
can change some predicted properties quite significantly
[13–15]. The minute details may also be inherent to the
software used to perform the simulations, and thus the
use of ‘in-house’ or commercial (i.e. closed-source) soft-
ware stymies reproducibility. If the source code cannot
be viewed, the underlying algorithms and inputs can-
not be examined, the quality of the code and whether it
has undergone proper validation is unknown, and errors
cannot be identified. As an example, a long-standing dis-
agreement related to phase transitions in supercooled
water was only recently settled after the source code
of the in-house software used to perform the calcula-
tions was shared. The differences in observed transitions
were attributed to a subtle error in how velocities were



MOLECULAR PHYSICS 3

assigned when initialising the many short MD simu-
lations in the hybrid MD/MC workflows [16,17]. The
use of open-source simulation engines therefore clearly
enhances reproducibility, as the underlying source code
can be examined (note, the use of open-source simula-
tion engines is now routine for MD studies, but often
these engines and other open-source codes are modified
to implement new force field parameters or functional
forms, andMC studies still commonly use in-house soft-
ware). However, it is atypical for input scripts and data
files for open-source simulation engines to be included as
part of a publication and thus reproducibility still largely
depends on the thoroughness of the description of the
methods and model in the text. Furthermore, the algo-
rithms and specific choices used to generate a data file,
which may influence the results and their validity (e.g.
how a force field was applied), are lost if the software
and/or procedures used to generate the data file are not
made available. Evenwhen using open-source simulation
engines, researchers still routinely use in-house software
for other steps in the process, i.e. generation of initial con-
figurations, selection of force field parameters, and analy-
sis. Furthermore, if a workflow relies upon manipulation
or modification of individual pieces of software by a user
(e.g. initialising a system using software with a graphical
user interface, GUI [18]), or human-modification of files,
it is often difficult to capture and convey the exact proce-
dures in such a manner that they can be reproduced by
another researcher.

Fortuitously, several researchers have proposed gen-
eral guidelines for increasing reproducibility in computa-
tional research, which can be used to infer best practices
for soft matter simulation. Donoho et al. [19] propose
that all details of computations – code and data – should
bemade ‘conveniently available’ to other researchers; they
also provide arguments in favour of the creation and
use of community developed software libraries and the
use of scripting. Others [20,21] have proposed succinct
‘rules’ as keys to reproducible computational research,
including version control, replacement of manual input
with scripts, and public access to these scripts, input files,
and resulting data. It was also noted that computational
frameworks that integrate different tools within a com-
mon environment naturally satisfy many of these rules.
One of the most vocal proponents of reproducibility in
computational science [22,23] has gone as far as assert-
ing that GUIs are the ‘enemy of reproducibility’. GUIs
hide details and require human interaction and manip-
ulation in contrast to scripts, which fully reveal the way
in which calculations are performed. A classic example is
Excel spreadsheets, where the relationship between cal-
culation cells and data is normally hidden, and the order
of calculation is not obvious, nor necessarily controllable.

In 2010, Harvard University economists Reinhart and
Rogoff published a highly cited and influential paper on
the role of debt in limiting growth in national economies
[24]. The study, based on data manipulated within an
Excel spreadsheet, was often cited by politicians favour-
ing austerity policies in the wake of the 2008 financial cri-
sis while public economic policy was being formed. Sub-
sequently, Herndon et al. [25] found that the spreadsheet
contained errors in formulae that dramatically changed
the conclusions.

Determining how these guidelines for reproducibility
should be – and/or can be – implemented in soft mat-
ter simulation is in itself a challenge. For example, simply
providing code is not effective if that code is poorly writ-
ten or not well documented and has subtle issues, such as
dependencies within a code (e.g. use of external libraries,
especially if they are proprietary/non-free or difficult to
obtain/install). These issuesmay create barriers to proper
compilation/installation and hence hamper reproducibil-
ity. Similarly, providing a raw data file without defining
the structure of it, and/or without appropriate metadata,
does little to aid in reproducibility. Since journals largely
do not provide mechanisms for sharing code, scripts,
and/or data (aside from supplemental material), it is also
not clear how such information should best be shared.

As such, in order to implement best practices, we
assert that the development of new tools and standards
will be required, in order to facilitate necessary changes
to the way in which simulators perform and publish their
research. However, development of new tools does little
to improve reproducibility if those tools are not used; to
be widely adopted by the community, they must provide
additional value to researchers, e.g. minimising errors,
reducing development time, preventing knowledge loss,
providing novel functionality, etc.

For almost a decade now, we have been developing
a robust Python-based, open-source integrated software
framework for performing simulations of soft matter sys-
tems with the goal of implementing best practices and
enabling reproducibility. This framework, known as the
Molecular Simulation andDesign Framework (MoSDeF)
[26], was developed initially at Vanderbilt University, in
collaboration with computer scientists in the Institute
for Software Integrated Systems [27], to facilitate screen-
ing studies of monolayer lubrication using MD meth-
ods. MoSDeF provides a core foundation and includes
tools for programmatic system construction (mBuild)
[28,29], tools for encoding force field usage rules and
their application (Foyer) [30–32], and has recently inte-
grated the signac framework [33,34], developed at the
University of Michigan as a means of improved data
and workflow management. The MoSDeF toolkit has
been used in various published results [7,8,28,32,35,36]



4 M. W. THOMPSON ET AL.

and ongoing research projects, with the primary MoS-
DeF tools having each been downloaded over 18,000
times from Anaconda Cloud [37] since February 2017.
Despite being initially developed for monolayer lubrica-
tion, the underlying tools can be and have been applied to
soft matter systems in general, and the modular, object-
oriented design naturally allows for intuitive extension.
CurrentMoSDeF activities are expanding the capabilities
related to:

• Initializing system configurations by providing a plu-
gin architecture for community contributions

• Providing initialisation routines for a wide variety of
common systems

• Developing an improved backend that will support an
increased number of force field types and simulation
engines, including open-source MC software

• Developingmodules that implementmethods for par-
tial charge assignment

• Including improved support and libraries for coarse-
grained models

• Developing modules that allow for reproducible
derivation of coarse-grained and atomistic force fields

• Developing workflows for free energy methods and
phase equilibria

• Specifically identifying and implementing best prac-
tices within the various modules/workflows that
improve reproducibility.

Through theMoSDeF integrated framework, the exact
procedures used to set up and perform simulation work-
flows and associated metadata (i.e. the provenance) can
be scripted, encapsulated, version-controlled, preserved,
and later reproduced by other researchers. This allows
molecular simulation studies to be conducted and pub-
lished in a manner that is TRUE: Transparent, Repro-
ducible, Usable by others, and Extensible.

The remainder of this paper is organised as follows. In
Section 2, we briefly review MoSDeF an its capabilities.
In Section 3, we consider four examples of TRUE molec-
ular simulations in diverse application areas. Finally, in
Section 4, we summarise our conclusions and prospects
for future development of MoSDeF.

2. Overview of MoSDeF

2.1. MoSDeF tools and capabilities

MoSDeF is a set of an open-source Python libraries,
designed to facilitate the construction and parameter-
isation of systems for molecular simulation. MoSDeF
includes routines to output syntactically correct con-
figuration files in formats used by common simulation

engines, currently supporting GROMACS [38–40],
LAMMPS [41], HOOMD-blue [42,43], and Cassandra
[44], as well as other common file formats (e.g. MOL2,
PDB) through integration with the open-source ParmEd
[45] parameter editing package. Each library (i.e. Python
module) in MoSDeF is designed such that it can be
used as a standalone package, in combination with other
libraries within MoSDeF, or with other libraries devel-
oped and used by the community. This composabili-
ty/modularity is an essential design feature in terms of
the robust development of MoSDeF, allowing the frame-
work to bemoremodifiable, testable, extensible, and have
fewer bugs than monolithic approaches [13]. MoSDeF
is implemented using concepts from the computer sci-
ence/software engineering field ofmodel integrated com-
puting (MIC) [46,47], a systems engineering approach,
pioneered at the Institute for Software Integrated Sys-
tems (ISIS) at Vanderbilt, that emphasises the creation
of domain-specific modelling languages that capture the
features of the individual components of a given process,
at the appropriate level of abstraction. By using concepts
from MIC, MoSDeF can easily be abstracted and is able
to capture the relationships that exist between data and
processes regardless of the level of abstraction, essential
for ensuring that system initialisation scripts are trans-
parent and usable by others. MoSDeF follows a modern
open-source development model with special emphasis
on effective code sharing, accepting external feedback,
and bug reporting.

• All modules and workflows developed for MoSDeF
build upon the scientific Python stack, thus enabling
transparency, promoting code reuse, lowering barri-
ers to entry for new users, and promoting further
community driven, open-source development.

• GitHub is used for hosting MoSDeF’s version-
controlled software development, deployment, and
documentation/tutorials, using a pull request (i.e.
fork-pull) model that allows for code review and auto-
mated testing, helping ensure proper standards have
been followed and allows for automated testing of
software and software artifacts.

• Automated builds and testing of the software are
hosted on Travis CI [48] and also on Microsoft’s
Azure Pipelines [49] to ensure that proposed modi-
fications to the code do not break the current perfor-
mance and the CodeCov [50] tool is used to ensure
that modifications to the code are covered by unit
tests.

• All software developed as part of the MoSDeF project
are open-source, with the standard MIT license [51]
that allows free use, reuse, modifications, as well as
commercialisation.



MOLECULAR PHYSICS 5

• Slack [52] is used to facilitate effective collaborative
communication and software development across a
wide geographic area [53].

By developing software in amodular, extensible, open-
source manner, using freely available tools designed
for collaborative code development (e.g. git, GitHub,
and Slack), we are creating a long-term community-
developed effort, similar to the success seen by other
tools in the community (e.g. GROMACS [38–40], VMD
[54], LAMMPS [41], HOOMD-blue [42,43], etc.). This
has become especially important as the group of MoS-
DeF developers has expanded beyond Vanderbilt Uni-
versity. A recent U.S. National Science Foundation grant
[55] has provided support for leading molecular simu-
lation research groups from Vanderbilt, the universities
of Michigan, Notre Dame, Delaware, Houston and Min-
nesota, along with Boise State University and Wayne
State University to further improve and increase sup-
port of MoSDeF as described below. This group spans
a broad range of expertise, and an equally broad range
of scientific applications, open-source simulation codes
(HOOMD-blue [42,43], Cassandra [44], GOMC [56,57]
and CP2K [58]), workflow and data management soft-
ware [33,34,59] and algorithms and analysis tools; com-
puter scientists from ISIS are also involved in the col-
laboration, helping to ensure the use of best practices
and provide novel insight into algorithmic and software
development. In combination, this collaboration is work-
ing to dramatically expand the capabilities of MoSDeF
and thus facilitate researchers in the area of molecular
simulation to be able to publish TRUE simulations.

Here, we briefly describe the two key tools used in
the current version of MoSDeF, focussing on the specific
aspects of the tools that help to enable TRUE simulations.

2.1.1. mBuild
The mBuild Python library [28,29] is a general purpose
tool for constructing system configurations in a program-
matic (i.e. scriptable) fashion. While tools exist in the
community for system construction [60–62], they tend
to be system specific (e.g. bilayer construction), often
employ GUIs which may hamper reproducibility [22]
and may be limiting for workflows that require automa-
tion, andmost are designed around the concept that com-
ponents of the system can be described by self-contained
templates (e.g. where a system can be constructed by
simply duplicating a template that describes a molecule).
Such existing tools have typically not been designed to
work for systems where bonds are added between differ-
ent components (e.g. polymer grafted surfaces) or for sys-
tems where one component is semi-infinite (e.g. a silica
substrate that is periodic in-plane) andmost do not allow

programmatic variation of specific structural/chemical
aspects (e.g. the length of a polymer, the polymer repeat
unit, size of a substrate, etc.); mBuild was designed
specifically to provide this missing functionality.

Rather than providing a tool to perform initialisa-
tion that only applies to a specific family of systems
(e.g. monolayers), mBuild provides a library of func-
tions that users can combine, extend, and add to, in
order to construct specific systems of interest. mBuild
allows users to hierarchically construct complex systems
from smaller, interchangeable pieces that can be con-
nected, through the use of the concept of generative,
or procedural, modelling [28]. This is achieved through
mBuild’s underlying Compound data structure, which
is a general purpose ‘container’ that can describe effec-
tively anything within the system: an atom, a coarse-
grained bead, a collection of atoms, a molecule, a col-
lection of Compounds, or operations (e.g. a Compound
that includes a routine to perform polymerisation).
To join Compounds (e.g. attachment of a Compound
that defines a polymer to a Compound that defines a
surface), Compounds can include Ports that define
both the location and orientation of a possible connec-
tion. In mBuild, a user (or algorithm) defines which
Ports on two Compounds should be connected and the
underlying routines in the software automatically per-
forms the appropriate translations and orientations of the
Compounds (see Klein et al. [28] for more details). This
creates a new (composite) Compound that contains both
of the original Compounds, now appropriately oriented
and positioned in space, with an explicit bond between
them; since Compounds are general data structures,
the same operations (rotation, translation, connecting
of Ports, etc.) that were performed on the underlying
Compounds can be performed on this new composite
Compound. The mBuild library can be used to cre-
ate systems from ‘scratch’ whereby a user implements all
the relevant code to define the building blocks and how
they should be connected, or by using and/or extend-
ing the various ‘recipes’ included in mBuild. mBuild
includes (but is not limited to) ‘recipes’ for initialising
polymers, tilings (e.g. duplicating a unit cell, including
bonding information), patterning (disk, sphere, random,
etc.), lattices either from a Crystallographic Informa-
tion File (CIF), their Bravais lattice parameters, or the
vectors describing the prism, box filling (via integration
with PACKMOL [63]), monolayers and brushes on flat,
curved, and spherical surfaces, and bilayers and lamellar
structures.

As an example, Figure 2 shows a schematic and asso-
ciated code for the construction of an alkane grafted
silica surface. In this code, a custom Compound class is
defined for a CH2 moiety alongside a Compound from



6 M. W. THOMPSON ET AL.

Figure 2. Python script that uses mBuild to define a class for a –CH2– group, create a polymer composed of multiple –CH2– groups,
and connects copies of this polymer to a surface. Note for simplicity, the terminal CH3 group is not shown.

the mBuild library that defines a crystalline silica sur-
face; a ‘recipe’ included in mBuild that performs poly-
merisation (Polymer) is used to connect copies of the
CH2 moieties; the Monolayer ‘recipe’, also included
in mBuild, is used to perform the functionalization of
the silica surface with the polymer, returning a single
composite Compound of the functionalised surface (for
readability, the terminal groups are ignored in this exam-
ple). This example also highlights how system construc-
tion can be programmatically varied, e.g. the Polymer
class takes as input the number of repeat units (in this
case, set to 18). Similarly, the size of the substrate can
be toggled in the Monolayer class, where tile_x
and tile_y define the number of times the substrate
is duplicated in the respective dimension. The number
of chains attached to the surface can also be modified

via the number passed to the Random2DPattern class
(here set to 25). Because Compounds are general con-
tainers, changes to, e.g. the length of the polymer, do
not require changes to the rest of the script, namely the
Monolayer class. Similarly, characteristics such as the
repeat unit passed to the Polymer class can be read-
ily changed without need to change other aspects of the
script. As a result, by using the mBuild library, complex
system initialisation and variation/extension can often
be accomplished without the need to write significant
amounts of code. As this example shows, by using con-
cepts fromMIC, construction of systems in mBuild can
be readily abstracted (i.e. the level of complexity reduced)
to the level most appropriate to describe (i.e. model)
the system, without making system construction a ‘black
box’. Since mBuild is an open-source, freely available



MOLECULAR PHYSICS 7

Python library, scripts that unambiguously define all the
steps needed to initialise a systemcanbe easily shared and
disseminated with publications, with all code easily inter-
rogated, allowing system construction to be reproduced
and improving transparency; mBuild has additionally
been architected so that users can contribute custom
‘recipes’ for system initialisation via a plug-in environ-
ment, further allowing such routines to be easily shared,
utilised and extended by others.

2.1.2. Foyer
The Foyer library [30] is a tool for applying force fields
to molecular systems (i.e. atom-typing). Foyer provides
a standardised approach to defining chemical context
(i.e. atom-typing rules) [31,64] along with the associated
force field parameters. While there are freely available
tools to aid in atom-typing [65–69], these are typically
specific to a particular force field or simulator, and/or
capture the atom-typing and parametrization in a hier-
archy (either through specific placement in a parameter
file read by the code or as nested if/else statements within
the source code). Foyer does not encode usage rules
into the source code, instead defining usage rules and
parameters in an XML file that is an extension of the
OpenMM [70] force field file format. The Foyer soft-
ware itself is used to interpret and apply the rules and thus
the software is not limited to use with only a single force
field type. By separating the usage rules from the source
code, changes or extensions to force field parameter-
s/rules does not require changes to the code itself. Force
field usage rules are encoded using a combination of a

SMARTS-based [71] annotation scheme, which defines
the molecular environment (i.e. chemical context) asso-
ciated with a given parameter, and overrides that
define rule precedence (i.e. which atom type to choose
when multiple rules can apply to an interaction site).
The use of overrides avoids the need to define rule
precedence via the order of the rules within a file (See
[64] for more details). As an example, Listing 1 shows
the contents of an XML file that contains parameters and
usage rules from the OPLS force field for linear alkanes.
We note that Foyer allows user-defined input (by pre-
pending with an underscore), allowing SMARTS to be
used for non-elemental interaction sites (e.g. an inter-
action site that represents a coarse-grained bead or an
united atom interaction site). As such, the exact param-
eters and their usage can be readily captured and dis-
seminated along with a simulation and/or publication.
This provides an improved way to disseminate custom
force field parameter sets and/or novel force field param-
eters (e.g. see Ref. [32]) that reduces ambiguity, as the
format used by Foyer to encode the usage rules and
parameters is both human and machine readable; thus
parameterisation rules provided in a publication can be
automatically tested for accuracy and completeness. To
further enhance reproducibility, the XML force field files
additionally include a doi tag for the source of the
parameters (see Listing 1); upon successful atom-typing,
Foyer outputs a BibTeX file of references with the rel-
evant DOIs, significantly improving the transparency as
to the origin of parameters used in a simulation and
therefore reproducibility.

Listing 1 OpenMM formatted XML file for linear alkanes using the OPLS force field [10
<ForceField>

<AtomTypes>
<Type name="opls_135" class="CT" element="C" mass="12.01100" def="[C;X4](C)(H)(H)H"
desc="alkane CH3" doi="10.1021/ja9621760"/>
<Type name="opls_136" class="CT" element="C" mass="12.01100" def="[C;X4](C)(C)(H)H"
desc="alkane CH2" doi="10.1021/ja9621760"/>
<Type name="opls_140" class="HC" element="H" mass="1.00800" def="H[C;X4]"
desc="alkane H" doi="10.1021/ja9621760"/>

</AtomTypes>
<HarmonicBondForce>

<Bond class1="CT" class2="CT" length="0.1529" k="224262.4"/>
<Bond class1="CT" class2="HC" length="0.1090" k="284512.0"/>

</HarmonicBondForce>
<HarmonicAngleForce>

<Angle class1="CT" class2="CT" class3="CT" angle="1.966986067" k="488.273"/>
<Angle class1="CT" class2="CT" class3="HC" angle="1.932079482" k="313.800"/>
<Angle class1="HC" class2="CT" class3="HC" angle="1.881464934" k="276.144"/>

</HarmonicAngleForce>
<RBTorsionForce>

<Proper class1="CT" class2="CT" class3="CT" class4="CT" c0="2.9288" c1="-1.4644"
c2="0.2092" c3="-1.6736" c4="0.0" c5="0.0"/>
<Proper class1="CT" class2="CT" class3="CT" class4="HC" c0="0.6276" c1="1.8828"
c2="0.0" c3="-2.5104" c4="0.0" c5="0.0"/>
<Proper class1="HC" class2="CT" class3="CT" class4="HC" c0="0.6276" c1="1.8828"
c2="0.0" c3="-2.5104" c4="0.0" c5="0.0"/>

</RBTorsionForce>
<NonbondedForce coulomb14scale="0.5" lj14scale="0.5">

<Atom type="opls_135" charge="-0.18" sigma="0.35" epsilon="0.276144"/>
<Atom type="opls_136" charge="-0.12" sigma="0.35" epsilon="0.276144"/>
<Atom type="opls_140" charge="0.06" sigma="0.25" epsilon="0.12552"/>

</NonbondedForce>
</ForceField>



8 M. W. THOMPSON ET AL.

2.2. Other community tools

Here we briefly highlight other simulation tools and
efforts with a considerable focus on reproducibility and
transparency, several with similar and/or complementary
functionality toMoSDeF.Wedonot include discussion of
commercial tools, as the need to purchase software places
a fundamental roadblock in terms of reproducibility.

The Atomic Simulation Environment (ASE) [72] is a
Python toolkit that provides wrappers to various pro-
grammes/libraries allowing atomistic simulations to be
setup, run and analysed within a single script. Support
is provided for numerous electronic structure codes and
several MD simulation engines; however, as ASE is pri-
marily focussed on hard matter systems it does not cur-
rently support robust tools for initialisation of complex
soft matter systems or atom-typing.
Pysimm [73,74], is an open-source Python toolkit

for soft matter systems providing routines for system
setup and wrappers that support LAMMPS MD [61]
and Cassandra MC [44] engines, allowing a simulation
workflow to be encoded in a Python script. Of partic-
ular note, pysimm includes routines that simplify the
process for performing complex workflows such as sim-
ulated growth/crosslinking of polymers [75]. We note
that since both ASE and pysimm are also developed as
Python libraries, there is a natural level of interoperabil-
ity between these tools andMoSDeF. Hoobas is another
open-source molecular building package that facilitates
the construction of polymers for molecular dynamics
simulation [76,77]. indigox is an open-source pack-
age that utilises the CherryPicker algorithm to help
parametrise molecules based on fragments of previously-
parametrised molecules [78]. Open Babel is a library
of cheminformatics functions that support constructing
molecular models, SMARTS-matching, and basic molec-
ular dynamics functions with basic molecular mechanics
force fields [79,80]. OpenKIM is a multifaceted toolkit
providing a portal for storage of interatomic models
and their associated data, and an application program-
ming interface (API) created such that models can work
seamlessly (and correctly) between different simulation
engines; we note this API is designed to ensure param-
eters are defined correctly, not to perform atom-typing
or to encode usage rules and does not provide tools for
system initialisation or workflow management. To date,
OpenKIM has largely focussed on atomic systems (i.e.
a system is defined solely by its atoms, and ‘bonds’ are
an outcome of atomic positions), whereas most soft-
matter force fields include both non-bonded and bonded
parameters and assign different parameters to atoms
based on the bonds. The Open Force Field consortium
[81–83] has developed a variety of open-source tools

that utilise chemical perception via SMIRKS (<https://
www.daylight.com/dayhtml/doc/theory/theory.smirks.
html> ) patterns to identify atom types and other force
field parameters pertinent to each atom in a chemi-
cal system, similar to Foyer’s underlying methodology.
WebFF is an ongoing NIST-project aimed at developing
an infrastructure for modelling soft materials and curat-
ing force field data for traceable data provenance [84].
BioSimSpace provides an API that allows users to
mix-and-match various molecular modelling tools, facil-
itating the use of complex workflows involving molec-
ular dynamics, metadynamics, various water models,
various force fields, free energy methods, and various
simulation engines [85]. signac is a Python library
that provides basic components required to create a
well-defined and collectively accessible data space and
enables data access and modification through a homo-
geneous data interface that is agnostic to the data source.
signac-flow is an extension of the signac frame-
work [34], which aids in the management of highly com-
plex data spaces. signac-flow allows submission to
high performance computing (HPC) scheduling systems,
including both PBS and SLURM. Since signac-flow
captures the entire workflow definition and execution,
it can be used to facilitate reproducible workflows.
mBuild and Foyer have been used in combina-
tion with signac-flow in several past and on-going
research projects by the authors [7,8]. FireWorks is
another workflowmanager that supports dynamic work-
flows using MongoDB [86,87].

3. TRUEmolecular simulations

We have defined TRUE molecular simulations as ones
that are transparent, reproducible, usable by others and
extensible. In this section, we provide some examples of
TRUE simulations utilising the capabilities of MoSDeF.
Fully detailed instructions for installingMoSDeF and the
related tools needed to run each example are contained
within the Supporting Information. But first we define
what we mean by these terms in the context of molecular
simulation.

A simulation is transparent when all the information
needed to exactly follow the steps undertaken by the orig-
inal author(s) (such as all scripts used to set up the sys-
tem, details of force field implementation, all input files
to the simulation engines, any other needed input files)
are visible to anyone in the community. This requires
the sharing of this information in a version-controlled
persistent open-source repository, such as GitHub. This
information, in and of itself, may only be useful to a true
expert; however, few simulations published today meet

https://www.daylight.com/dayhtml/doc/theory/theory.smirks.html


MOLECULAR PHYSICS 9

even this standard. A transparent simulation is repro-
ducible when sufficient information (in supplementary
information and/or documentation) is provided so that
future researchers interested in duplicating the work can
construct and run the reported simulation. From this
point of view, a self-contained workflow - such as a
Jupyter notebook, or a virtual machine - is highly desir-
able. As defined here, reproducibility does not require a
high level of expertise - for example, the calculation could
be reproduced by a student in a class, a newcomer to sim-
ulation, etc. In particular, Jupyter notebooks provide a
convenient, high-level representation of a script that inte-
grates with other common Python tools and can be con-
verted directly into a Python script using nbconvert.
Two caveats about reproducibility must be borne in
mind. First, we note that in molecular simulation, repro-
ducibility is unlikely to be exact, in the following sense:
TwoMD simulations, when run on different architecture
machines, will not generate the same trajectory due to
differences in the handling of floating point operations.
As in any nonlinear dynamical system, small differences
between trajectories (due to different rounding errors)
grow exponentially large over time. Even when run on
the same computer, two simulations may not give the
exact same trajectory. This is because of parallelised com-
puting, in which parts of the calculation are done by
separate processors and then gathered (added together)
in an order that is not predictable due to fluctuations in
message passing times. The problem is exacerbated even
more in MC simulations, where a difference in random
number seed will generate a different sequence of ran-
dom numbers on the same machine with the same ran-
dom number generator. On different machines, trying to
achieve reproducibility in MC simulations at the level of
configurations on different machines requires using the
same random number generator with reproducible arith-
metic (IEEE standard-compliant) with the same seed;
additionally, the same issue with parallelisation noted
for MD simulations also applies [88]. However, we do
not expect reproducibility at the level of individual sim-
ulation trajectories; what we expect is statistical repro-
ducibility in the averages of the properties calculated
over the course of the simulation. Second, many simula-
tions that are reported in the literature require prodigious
amounts of computational resources, such as millions of
hours on a leadership-class supercomputer. In this case,
having available all of the codes means that reproducibil-
ity is limited to those having available to them similar lev-
els of computing resources. In this case, we propose that
researchers may also elect to make available a simplified
version of the reported calculation accessible to those that
have limited computational resources (for example, using
a much smaller system size and shorter simulation times

or a single physiochemical statepoint instead of many).
Such scaled-down versions could also have considerable
pedagogical value.

We define a transparent, reproducible simulation to
be usable by others when a future researcher can utilise
the available files and documentation to reproduce the
calculation and make use of the data generated - for
example, to analyse the trajectory/trajectories for dif-
ferent properties. This requires a level of documenta-
tion that includes information about where output files
are located in the data space created by reproducing
the simulation, and how these files might be analysed
in different ways. Finally, a transparent, reproducible,
usable-by-others simulation is extensible if the docu-
mentation is sufficiently detailed that a future researcher
could change characteristics of the simulation - such as
changing molecular species, state conditions, simulation
engine, properties calculated, etc.

By adhering to the principles of TRUE simulations,
researchers will enable their work to be utilised in ways
that have not been hitherto possible. In particular, it will
create resources that lower the barrier to entry into the
field of molecular simulation, as well as allow researchers
to distribute their research in a more useful fashion.
Using MoSDeF is not necessary to create TRUE sim-
ulations, but as the examples below illustrate, MoSDeF
makes it considerably easier to distribute TRUE sim-
ulations by automating and standardising many of the
steps, thusminimising the documentation needed to cre-
ate a TRUE simulation. Also, the open-source nature of
MoSDeF offers the ability for researchers to make contri-
butions to the code base in the form of methods, recipes,
force fields, etc.

3.1. Ethane VLE using TraPPE

Onepopular application ofmolecular simulation involves
the use of Monte Carlo (MC) methods, often employ-
ing extended ensembles in techniques such as Gibbs
Ensemble Monte Carlo (GEMC) or grand canonical
Monte Carlo (GCMC), to simulate vapour-liquid equilib-
ria (VLE) properties. Briefly, GEMC involves simulating
two distinct simulation boxes (which generally have dif-
ferent densities and compositions) and performing MC
moves to perturb both systems to balance the chem-
ical potentials and pressures between the two simula-
tion boxes [89,90], thus reaching phase equilibrium. This
involves particle displacements within boxes, particle
exchanges across boxes, and box volume changes [89,90].
GCMC methods, on the other hand, involve simulating
a single simulation box, but performing MC moves to
insert or delete particles from a reservoir [91]. Addition-
ally, more complex MC moves have been proposed to



10 M. W. THOMPSON ET AL.

Figure 3. Two boxes of ethane constructed in mBuild. Liquid
phase (left) and vapour phase (right) are simulated simultane-
ously in GEMC.

accelerate equilibration for systems containing complex
molecules, including configurational bias Monte Carlo
(CBMC) methods [92]. The transferable potentials for
phase equilibria (TraPPE) force field has been designed
for conducting simulations for phase equilibria [93,94].
Here, we present a TRUE workflow that examines ethane
vapour-liquid coexistence at a single thermodynamic
statepoint. This workflow utilises mBuild [28,29] to
initialise two simulation boxes of ethane (vapor and
liquid phases), Foyer [30,64] to apply the TraPPE-
United Atom (TraPPE-UA) force field [93], and GOMC
[56,57,95] to perform a GEMC simulation. mBuild is

used to pack ethane into two different simulation boxes
according to the vapour and liquid densities at 236K
(Figure 3).
Foyer is used to systematically apply TraPPE force

field parameters. GOMC (version 2.40) is used to per-
form the GEMC simulation at 236K, with simulation
parameters consistent with the TraPPE implementation
[93,94]: Lorentz-Berthelot combining rules, fixed bonds,
1.4 nm Lennard-Jones cutoffs, analytical tail corrections,
and Ewald summations for electrostatic interactions.
The resultant analysis validates the vapour pressure,
vapour density, and liquid density at 236K against
published reference data (Figure 4) [93,94]. A link to
this GitHub repository can be found in the Support-
ing Information. All Python dependencies related to
building, simulating, and analysing are openly available
and well-documented, and routines are built on top of
these dependencies that expose chemistry and statepoint
variables.

This workflow is transparent and reproducible, as
this workflow and relevant software packages are open-
source and available on GitHub [29,30,57,96]. Fur-
thermore, the workflow is usable by others, as the
logged quantities can be analysed for other proper-
ties beyond vapour pressure and densities. Lastly, this
workflow is extensible, as there is a pattern and clear
room to implement other state points, molecules, force
fields, or simulation engines in addition to implement-
ing workflow managers to facilitate large-scale screening
studies.

Figure 4. Vapor pressure (left), vapour density (middle), and liquid density (right) plots for ethane at 236 K, using GEMC in GOMC with
the TraPPE force field.



MOLECULAR PHYSICS 11

3.2. Graphene slit pore

Graphene has been extensively researched as an electrode
material for energy storage applications [97–99] in recent
years mainly due to its high surface area [97,98,100].
Furthermore, the interactions between graphene pores
and fluid molecules were studied with MD simula-
tions through the use of slit pore models [101,102].
Here we demonstrate a TRUE simulation workflow for
a graphene slit pore solvated with aqueous NaCl. This
TRUE graphene simulation was performed with the
use of mBuild [28,29], Foyer [30,64], GROMACS
[38–40,103–105], and MDTraj [106]. Pore-Builder
[107], an mBuild ‘recipe’, was also used to initialise the
graphene sheets contained in the system.

In this specific system, a graphene slit pore filled
with aqueous NaCl, was initialised with mBuild.
mBuild Compounds of the specific molecules were
initialised with the mbuild.load() function using
MOL2 files. Once the molecule Compounds were ini-
tialised, the GraphenePoreSolvent class within
Pore-Builder was utilised. This specific class makes
use of the mbuild.Lattice class and the mbuild.
solvate function to build a graphene slit pore system
solvated with fluid specified by the user. In this system,
the graphene slit pore was built with three sheets on each
side, and a pore width of 1.5 nm. Additionally, the length
of the graphene sheet in the x direction was set to 5 nm
and the length of the graphene sheet in the z direction
was set to 4 nm. The bulk region of fluid was set to 6 nm
on each side of the slit pore. 5200 waters and 400 Na and
Cl ions were solvated into the system. A snapshot of the
system is shown in Figure 5.

Once the graphene slit pore system was initialised
as an mBuild compound, it was atom-typed and
parametrised with Foyer. Three force fields were used
in this system, with their information stored in three
separate XML files: GAFF [11], SPC/E [108], and the
force field of Joung and Cheatham (JC) [109]. GAFF
describes the interactions between the graphene atoms,
SPC/E describes the water interactions, and JC describes
the Na and Cl interactions. Each force field uses 12-6
Lennard-Jones interactions, point charges, and harmonic
bonds and angles.

Figure 5. A snapshot of the graphene slit pore system contain-
ing graphene carbon (cyan), water (red for oxygen and white for
hydrogen), sodium ions (blue) and chlorine ions (green).

The simulation was run with GROMACS 2018.5.
Steepest descent energy minimisation was first per-
formed for 1000 steps to remove any energetic clashes
from the initial configuration. Afterwards, a series of
two MD simulations were performed with the follow-
ing parameters: cutoffs of 1.4 nm for Coulombic and van
derWaals interactions, a temperature of 300K controlled
with the v-rescale thermostat with a time constant of
0.1 ps, particle mesh Ewald to handle long-range electro-
statics, and a timestep of 1 fs. Additionally, the graphene
atoms were frozen in place. A GROMACS NDX file was
created with a Water_and_ions group so that the
thermostat could be applied to the fluids; no thermo-
stat is applied to the graphene, as the graphene is kept
rigid. First NVT equilibration was performed to further
relax the system of any unfavourable configurations for
100,000 steps. Afterwards, NVT samplingwas performed
for 2,500,000 steps. In the sampling run, all bonds were
constrained using the LINCS [110] algorithm.

Once the sampling simulation was performed, the
number density profile of each fluid type is calculated
with the use of MDTraj and plottedwithMatplotlib.
The results are shown in Figure 6. From these results,
we observe that the water molecules are mainly struc-
tured near the pore walls at 1.2 and 2.0 nm. Additionally,
there are two smaller peaks around 1.4 and 1.8 nm indi-
cating structuring of water in the middle of the pore. The
Na ions are structured in the middle of the pore around
1.6 nm and the the Cl ions are structured to each side of
theNa ions, at around 1.5 and 1.7 nm. If the graphenewas
positively or negatively charged, we would expect differ-
ent structure behaviour of the ions. This simulation can
be extended to further understand the effect of various
parameters on the fluid structure within the pore. For
example, the user can easily specify a different pore width
to study how this impacts the structure of water and ions.
Thisworkflow is encapsulated in a Jupyter notebook, pro-
viding the user access to modify any of these high-level
parameters.

The workflow for simulating a graphene slit pore sat-
isfies the conditions to be a TRUE simulation. First, this
workflow is transparent as all scripts, input files, and
force field information are available for anyone to view
[111]. Next, this workflow is reproducible as the exact
steps to set up and run the simulation are contained
within a Jupyter notebook. Barring differences in com-
puter architectures and parallelisation schemes, a user
running this Jupyter notebook should be able to repro-
duce the number density profiles from the reference sim-
ulation. Additionally, the trajectories are kept within the
workflow directory, allowing users to analyse properties
other than number density. Finally, the functions and
classes used to initialise the graphene slit pore system



12 M. W. THOMPSON ET AL.

Figure 6. Number density profiles across the width of the pore
for water, Na, and Cl.

are sufficiently documented so that a user may change
characteristics of the simulation if they wish. For exam-
ple, a user can extend this workflow to study additional
aqueous solutions.

3.3. Lipid bilayers

MD is a common technique used to perform simulation
of biological systems. An example TRUE biological sim-
ulation workflow is demonstrated in thetrue_lipids
repository on GitHub [112]. This workflow focuses on
simulating lipids found in the outermost layer of the skin,
the stratum corneum (SC). The SC, which is primar-
ily composed of ceramides (CER), cholesterol (CHOL),
and free fatty acids (FFA) [113], essentially controls the
barrier function of the skin [114]. In this workflow
a hydrated pre-assembled bilayer configuration of skin
lipids was initialised, simulated, and analysed in a well-
documented and reproducible fashion.
mBuild was used to initialise the system configu-

ration, specifically utilising the Bilayer [115] recipe.
A simplified model system containing only CER N-
hydroxysphingosine (NS) C24:0, CHOL, and FFA C24:0
was chosen for this example; however a more complex
mixture could be easily built by the Bilayer recipe. For
each leaflet of the bilayer, 36 lipids were randomly placed
on a 6 × 6 lattice and rotated about the bilayer normal
axis. The latticewas set up and spaced such that the lateral
area occupied by each lipid was equal to the target and
as designated by the area_per_lipid parameter. In
addition, the lipidswere rotated about a randomly chosen
axis parallel to the bilayer by the tunable tilt_angle
parameter. Finally, 20 waters per lipid were added to
each of the two ends of the simulation box at a den-
sity of 1 g/cm3. The full system contains 72 lipids and
2880 water molecules. While many of the steps involved

Figure 7. Simulation snapshot of lipid bilayer containing CER N-
hydroxysphingosine C24:0 (CER NS), cholesterol and lignoceric
acid. The CER NS and FFA tails are shown in silver, cholesterol in
yellow, and the headgroup oxygen, nitrogen and hydrogen atoms
in red, blue and white respectively.

in setting up the initial configuration involve random
number generators, exact reproducibility on the same
machine was enforced by the initialisation of a random
seed.

Simulations were conducted using the GROMACS
2018.5 [38–40,103–105] MD engine, using a modified
CHARMM36 force field [116,117] with a 1 fs timestep.
The system was first energy-minimised using the steep-
est descent algorithm for 20,000 steps in order to remove
high energy atomic contacts. Temperature fluctuations
were stabilised by running a 500 ps NVT simulation
using the Berendsen thermostat [118] at 305K with a
time constant of 1 ps. Next, the volume fluctuations were
stabilisedwith a 10 nsNPT simulation at 305K and 1 atm.
This step and all others hereinafter in this section were in
the NPT ensemble and use the Nosé-Hoover thermostat
[119] with a time constant of 1 ps and the Parinello-
Rahman barostat [120] with a time constant of 10 ps and
a compressibility of 4.5 × 10−5 bar−1. Still at 1 atm, the
system was linearly annealed to 340K over 5 ns, held at
340K for 15 ns, linearly cooled to 305K over 5 ns, and
held at 305K for 25 ns in order to accelerate equilibra-
tion of the rotational orientation of the lipids. Finally, the
system was run for 20 ns at 305K and 1 atm, saving coor-
dinates to a trajectory file every 10 ps. The final snapshot
of the system is shown in Figure 7. More details on the
simulation parameters can be found in the Supporting
Information.

The trajectory from the final step was analysed using
MDTraj [106]. Neutron scattering is a popular tool
to experimentally obtain structural information of lipid
lamella. A neutron scattering length density (NSLD) pro-
file was calculated for this simulated system along the
bilayer normal axis in Figure 8.

It is apparent from these profiles that the 24-carbon
fatty acid tail of the CER and the 24-carbon FFA tail
interdigitate, as indicated by the high density peak in the
centre of the profile. One can also observe that the 16-
carbon sphingosine tail of the CER and CHOL do not



MOLECULAR PHYSICS 13

Figure 8. Simulated NSLD profiles for specifically deuterated
lipid tails.

interdigitate, and are not present in the middle of the
bilayer as there is a low-density trough in their deuter-
ation profiles. The scattering length densities at the outer
edges of the bilayer suggest that the CHOL headgroup is
located closer to the centre of the bilayer compared to that
of other lipids. In addition to the NSLD profiles, an area
per lipid of 32.90Å2, a tail tilt angle 10.8◦, a nematic order
parameter of 0.9414 and a bilayer height of 48.13Å were
calculated in the workflow.

All of these values and plots can be reproduced by
executing the workflow. Furthermore, by extending the
workflow to screen over the parameter space, one could
identify trends in the calculated values. The Bilayer
recipe is highly modular allowing the user to easily create
reproducible bilayer structures containing different lipid
types, system sizes, compositions, or water content using
an intuitive Python script.

3.4. Friction reduction via thin film coatings

Thin film coatings can be used to modify the surface
properties of different systems [121]. One potential appli-
cation of these coatings is to improve tribological proper-
ties of surfaces at the micro and nanoscale [36,121,122].
In this example, we present a TRUE simulation of a
thin film coated system, which is based on an in-depth
study by Summers et al. [36]. Specifically, we built a
system of two 50 × 50Å rectangular silica surfaces, par-
allel to one another. Each surface was coated with 100,
17-carbon long, alkylsilane chains, all of which were
terminated with a methyl group. Surface oxygens not
functionalised with chains were backfilled with hydro-
gen caps to emulate protonated hydrolysis. These systems
were created with mBuild [28,29], and atom-typed,
parametrised with Foyer [30,64] using OPLS-aa [10]

Figure 9. Thin film coated surfaces model.

force field parameters. A visualisation of the described
system is presented in Figure 9.

The system was simulated with LAMMPS [123] and
GROMACS [38–40,103–105]. MD simulations were run
under the canonical ensemble (NVT) and a Nosé-
Hoover thermostat maintaining the temperature at 298K
[119]. Long-range electrostatics were calculated using
the particle-particle particle-mesh (PPPM) algorithm
[124]. The rRESPA time step algorithm was utilised
with 0.25 fs, 0.5 fs, 0.5 fs, and 1.0 fs timesteps for bonds,
angles, dihedrals, and non-bonded interactions, respec-
tively [125]. The simulation started with energy min-
imisation with LAMMPS for 10,000 steps, followed by
another 50,000 stepswithGROMACS to bring themono-
layers to a more relaxed state. This process continued
with NVT equilibration by GROMACS to bring the sys-
tem to a desired stable state for 1,000,000 steps. The
workflow proceeded to use GROMACS to compress the
systemby pulling the top surfaces along the z axis to come



14 M. W. THOMPSON ET AL.

Figure 10. Steady state nematic order of the thin film coated on top and bottom surfaces.

into contact with the bottom surface. In the next step,
the top surface was sheared against the bottom surface
by imposing a force to pull it along the z axis at the rate of
0.01 nm/ps. The production runwas designed to simulate
for 5,000,000 steps, which would be equivalent to 10 ns of
shearing. From theGROMACS output file, the properties
of the system can be calculated. The steady-state produc-
tion period used for final data analysis was determined
using the automatic equilibration detection method pro-
vided by pymbar [126,127]. By using a defined method
to determine the steady-state cutoff, the consistency of
the data analysis process can be ensured, holding to the
first two criteria of TRUE, transparent and reproducible.
The calculated nematic order of three example runs were
determined and are presented in Figure 10.

This example focuses on showcasing the extensibil-
ity of TRUE, emphasising the ability to modify and
expand the project beyond the original study and param-
eters of interest. This goal can be achieved by applying
Object-Oriented Programming (OOP) design principles,
in combination with open-source libraries. Encapsulat-
ing frequently used code into classes and functions helps
improve the reusability of codes and make it easier to
create novel systems, just by changing and adding new
variables. By pairing MoSDeF suite libraries, mBuild
[28,29] and Foyer [30,64], with other open-source
libraries, such as signac and signac-flow, part
of the signac framework [33,128], the extensibility
could be made even more manageable and achievable.
Most importantly, all building blocks of the project have
to be properly documented, either as comments in the
code or in a separate manual. These practices can help
projects expand effectively. For instance, in this exam-
ple, although the arguments and variables were defined
such that the surfaces were filled with 100, 17-carbon
long, alkylsilane chains, each then capped with a methyl
group, many unique systems can be created by alter-
ing the chain density, backbone chain length, backbone
chemistries, terminal groups, and others as need arises.
The latter part of the example shows how we can expand

the project from the original system by varying backbone
chain lengths. For the sake of demonstration, we only
show the first few steps of the workflow, starting with set-
ting up the workspace using signac [33,128], building
corresponding systems with mBuild [28,29], and atom-
typing, parametrising with Foyer [30,64]. Other steps
of the simulation can be added analogously. We imple-
mentsignac-flow [33,128] as the workflowmanager.
These tools will become vital when needing to run a com-
plete workflow and managing thousands of systems. All
scripts and files needed to run the above example are
located in a GitHub repository [129]. Users can inter-
face with this example through the Jupyter notebook
located within the repository. By providing properly doc-
umented codes and scripts used to set up the system,
using open-source libraries to perform simulation and
data analysis, the first three criteria of TRUE are also
satisfied. This example workflow is Transparent, Repro-
ducible, Usable by others, and Extensible, or concisely,
a TRUE simulation.

4. Conclusions

In this paper, we have outlined some of the key issues
related to reproducibility in molecular simulations of
soft matter. We have also discussed many practices that
computational scientists could implement in efforts to
result in more reproducible science, such as using scripts
instead of manual input, using open-source software
tools, and using version control and modern software
development practices when developing software. In this
paper, we assert three central claims:

• The goal in computational molecular science should
be simulations that are TRUE: Transparent, Repro-
ducible, Usable by others, and Extensible.

• Scientific results reported in the literature that depend
on molecular simulations should adhere to the above
characteristics.



MOLECULAR PHYSICS 15

• Use of the Molecular Simulation and Design Frame-
work (MoSDeF) is one way to enable TRUE simula-
tions.

To demonstrate the third claim, we revisit some ‘ten
rules’ papers [20–22] that provide succinct instructions
for practicing reproducible science and demonstrate how
the above example workflows utiliseMoSDeF to this end.
A common recommendation in these discussions is that
every step in a workflow should be automated and free
of manual input, i.e. scriptable. MoSDeF, in its current
state, is a set of Python libraries designed specifically to
address this. In a single Python script (or Jupyter note-
book), each step of a molecular simulation workflow
(generation of particle coordinates, application of a force
field, running of a molecular simulation, and analysis
of the results) can be specified and run. The objective
of measuring physical properties from some chemical
input can be achieved with one call to an executable
(although the simulation may take some hours or days
to run). In order for these scripts, which include many
imports to other Python libraries, to produce identical
(or sufficiently identical) results some years in the future,
the underlying libraries must be version-controlled. The
core MoSDeF packages (mBuild and Foyer) undergo
regular releases, tagged with semantic version numbers,
every few weeks or months as they are developed. Other
packages, such as simulation engines, the packages in
the signac framework, and underlying scientific Python
packages, are also version-controlled and undergo reg-
ular releases. Specifying the version of each software
package used in a simulation workflow is not necessarily
sufficient to ensure reproducible science, but it is a sig-
nificant improvement over the use of ad hoc or in-house
scripts that often lack version control, proper testing,
or releases. Similarly, it has been argued that the use of
community-developed software libraries, and the exten-
sion of such libraries, further promotes reproducibility as
compared to closed-source, in-house development [19].
MoSDeF is a set of open-source that interface with other
open-source, community-developed libraries and soft-
ware tools.

Additionally, MoSDeF makes use of virtually no GUIs
- or, more specifically, no GUIs that hide the details of
a simulations protocol from the user. Some molecular
visualisation tools (NGLview, py3DMol, VMD, ovito,
fresnel) can be used in conjunctionwithMoSDeF, but
these are only tools to visualise systems and do not hide
workflow details or replace steps in a workflow.

Finally, we would like to discuss an additional bene-
fit of shifting toward more reproducible computational
studies: the facilitation of large-scale screening of physio-
chemical space. Continuous improvements in computer

hardware and recent advancements in machine learning
methodologies have driven interest in studying large data
sets, typically many orders of magnitude larger than typ-
ically seen in the literature. Provided that each step in
a workflow can be automated - in other words, script-
able with no manual input - a single simulation can be
repeated with different physical inputs (e.g. at different
thermodynamic statepoints orwith different chemistries)
by only modifying the input parameters. For example,
consider some system at temperature and pressure (T,P)

for which we care about some physical property A. One
can run a simulation at (T1,P1) and get property A1
but later decide we want to look at some other temper-
ature and/or pressure. One could manually move some
files around and get property A2 from statepoint (T2,P2)
without prohibitive trouble, but doing this once is a plau-
sible source of human error and repeating this process
many times is not feasible. Screening over N statepoints
in a reproducible manner necessitates that running a
workflow at a single statepoint is reproducible. We hope
the practices outlined in this paper and the use of MoS-
DeF can enable reproducible computational science at
each scale.

Acknowledgements

We acknowledge key contributions to MoSDeF by former
group members Christoph Klein (myriad.com) and Andrew
Z. Summers (enthought.com) and by ISIS staff Peter Volgesi,
Umesh Timalsina, and Janos Sallai.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The development ofMoSDef, as reported in this paper, was pri-
marily supported by the National Science Foundation (NSF)
through grant Division of Advancedo Cyberinfrastructure
(OAC) OAC-1835874 “Software for Building a Community-
Based Molecular Modeling Capability Around the Molecular
Simulation Design Framework (MoSDeF).” Earlier develop-
ments leading to MoSDeF were supported by previous NSF
grants Division of Chemical, Bioengineering, Environmen-
tal, and Transport Systems (CBET) CBET-1028374 “Cyber-
Enabled Design of Functional Nanomaterials,” OAC-1047828
“Development of an Integrated Molecular Design Environ-
ment for Lubrication Systems (iMoDELS)” and OAC-1535150
“Development of a Software Framework for Formalizing Force-
field Atom-Typing for Molecular Simulation.” The develop-
ment of code within MoSDeF specifically relevant to energy
storage systems and the example described in Section 3.2 were
supported as part of the Fluid Interface Reactions, Structures
and Transport (FIRST) Center, an Energy Frontier Research
Center funded by the U.S. Department of Energy, Office of Sci-
ence, Office of Basic Energy Sciences. The development of code
within MoSDeF specifically relevant to self-assembling lipid



16 M. W. THOMPSON ET AL.

systems and the example described in Section 3.3 were sup-
ported by National Institute of Arthritis and Musculoskeletal
and Skin Diseases grant R01AR072679 “Insights into Skin Bar-
rier Function: In Silico and Experimental Studies of Healthy
and Diseased Stratum Corneum Lipid Models.”

References

[1] M. Baker, Nature 533 (7604), 452–454 (2016).
[2] E.B. Tadmor, R.S. Elliott, S.R. Phillpot and S.B. Sin-

nott, Curr. Opin. Solid State Mater. Sci. 17 (6), 298–304
(2013).

[3] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and
K.A. Persson, APL Mater. 1 (1), 11002 (2013).

[4] C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser,
J.T. Hupp and R.Q. Snurr, Nat. Chem. 4 (2), 83–89
(2012).

[5] J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C.
Amador-Bedolla, R.S. Sanchez-Carrera, A. Gold-Parker,
L. Vogt, A.M. Brockway and A. Aspuru-Guzik, J. Phys.
Chem. Lett. 2 (17), 2241–2251 (2011).

[6] M.A.F. Afzal, M. Haghighatlari, S.P. Ganesh, C. Cheng
and J. Hachmann, J. Phys. Chem. C 123 (23), 14610–
14618 (2019).

[7] M.W. Thompson, R. Matsumoto, R.L. Sacci, N.C.
Sanders and P.T. Cummings, J. Phys. Chem. B123 (6),
1340–1347 (2019).

[8] R.A. Matsumoto, M.W. Thompson and P.T. Cummings,
J. Phys. Chem. B 123, 9944 (2019). <https://doi.org/10.
1021/acs.jpcb.9b08509> .

[9] OSTP, Materials Genome Initiative for Global Competi-
tiveness, 2011.

[10] W.L. Jorgensen, D.S. Maxwell and J. Tirado-Rives, J. Am.
Chem. Soc. 118 (45), 11225–11236 (1996).

[11] J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman and
D.A. Case, J. Comput. Chem. 25 (9), 1157–1174 (2004).

[12] S. Jo, T. Kim and W. Im, PLoS ONE 2 (9), e880 (2007).
[13] M. Schappals, A. Mecklenfeld, L. Kröger, V. Botan, A.

Köster, S. Stephan, E.J. García, G. Rutkai, G. Raabe, P.
Klein, K. Leonhard, C.W. Glass, J. Lenhard, J. Vrabec and
H. Hasse, J. Chem. Theory Comput. 13 (9), 4270–4280
(2017).

[14] B. Chen, J.I. Siepmann, S. Karaborni and M.L. Klein, J.
Phys. Chem. B 107 (44), 12320–12323 (2003).

[15] F.M.S. Silva Fernandes, F.F.M. Freitas and R.P.S. Fartaria,
J. Phys. Chem. B 108 (26), 9251–9255 (2004).

[16] J.C. Palmer, A. Haji-Akbari, R.S. Singh, F. Martelli,
R. Car, A.Z. Panagiotopoulos and P.G. Debenedetti, J.
Chem. Phys. 148 (13), 137101 (2018).

[17] A.G. Smart, TheWarOver SupercooledWater American
Institute of Physics, August 2018. <https://physicsto
day.scitation.org/do/10.1063/PT.6.1.20180822a/full> .

[18] S. Jo, T. Kim, V.G. Iyer and W. Im, J. Comput. Chem. 29
(11), 1859–1865 (2008).

[19] D.L. Donoho, A. Maleki, I.U. Rahman, M. Shahram and
V. Stodden, Comput. Sci. Eng. 11 (1), 8–18 (2009).

[20] G.K. Sandve, A. Nekrutenko, J. Taylor and E. Hovig,
PLoS Comput. Biol. 9 (10), e1003285 (2013).

[21] A. Elofsson, B. Hess, E. Lindahl, A. Onufriev, D. van der
Spoel and A. Wallqvist, PLoS Comput. Biol. 15 (1), 2–5
(2019).

[22] L.A. Barba, Science 354 (6308), 142–142 (2016).
[23] L.A. Barba, Lorena A. Barba Blog. <http://lorenabarba.

com/category/blog/> .
[24] C.M. Reinhart and K.S. Rogoff, Am. Econ. Rev. 100 (2),

573–578 (2010).
[25] T. Herndon, M. Ash and R. Pollin, Cambridge J. Econ.

38 (2), 257–279 (2014).
[26] MoSDeF Web Site. <http://www.mosdef.org> .
[27] Institute for Software Integrated Systems. <https://

www.isis.vanderbilt.edu/> .
[28] C. Klein, J. Sallai, T.J. Jones, C.R. Iacovella, C. McCabe

and P.T. Cummings, in Foundations of Molecular Mod-
eling and Simulation. Molecular Modeling and Simula-
tion (Applications and Perspectives), edited by Randall Q.
Snurr, Claire S. Adjiman and David A. Kofke (Springer,
Singapore, 2016), pp. 79–92.

[29] mBuild Github Repository. <https://github.com/mos
def-hub/mbuild> .

[30] FoyerGithubRepository. <https://github.com/mosdef-
hub/foyer> .

[31] C.R. Iacovella, J. Sallai, C. Klein and T. Ma, Idea Paper:
Development of a Software Framework for Formalizing,
2016.

[32] J.E. Black, G.M.C. Silva, C. Klein, C.R. Iacovella, P. Mor-
gado, L.F.G. Martins, E.J.M. Filipe and C. McCabe, J.
Phys. Chem. B 121 (27), 6588–6600 (2017).

[33] C.S. Adorf, P.M. Dodd, V. Ramasubramani and S.C.
Glotzer, Comput. Mater. Sci. 146, 220–229 (2018).

[34] Signac Documentation. <https://signac.readthedocs.
io/en/latest/> .

[35] A.Z. Summers, C.R. Iacovella, P.T. Cummings and C.
McCabe, Langmuir 33 (42), 11270–11280 (2017).

[36] A.Z. Summers, J.B. Gilmer, C.R. Iacovella, P.T. Cum-
mings, and C. McCabe, J. Chem. Theory Comput. 16,
1779–1793 (2020. PMID: 32004433. DOI:10.1021/acs.
jctc.9b01183.

[37] MoSDeF-Anaconda Cloud. <https://anaconda.org/
mosdef/> .

[38] B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, J.
Chem. Theory Comput. 4 (3), 435–447 (2008).

[39] H.J.C. Berendsen, D. van der Spoel and R. van Drunen,
Comput. Phys. Commun. 91 (1), 43–56 (1995).

[40] M.J. Abraham, T. Murtola, R. Schulz, S. Páall, J.C. Smith,
B. Hess and E. Lindah, SoftwareX1-2, 19–25 (2015).

[41] S. Plimpton, J. Comput. Phys. 117 (1), 1–19 (1995).
[42] J.A. Anderson and A. Travesset, Comput. Sci. Eng. 227

(10), 5342–5349 (2008).
[43] HOOMD-blue (2017). <http://glotzerlab.engin.umich.

edu/hoomd-blue> .
[44] J.K. Shah, E. Marin-Rimoldi, R.G. Mullen, B.P. Keene, S.

Khan, A.S. Paluch, N. Rai, L.L. Romanielo, T.W. Rosch,
B. Yoo and E.J. Maginn, J. Comput. Chem. 38 (19),
1727–1739 (2017).

[45] ParmEd – ParmEd Documentation (February 2018).
<http://parmed.github.io/ParmEd/html/index.html> .

[46] J. Sztipanovits and G. Karsai, Computer 30 (4), 110–111
(1997).

[47] C.R. Iacovella, G. Varga, J. Sallai, S. Mukherjee, A.
Ledeczi and P.T. Cummings, Theor. Chem. Acc. 132 (1),
1315 (2013).

[48] Travis CI: A Hosted Continuous Integration Service.
<http://travis-ci.org> .

https://doi.org/10.1021/acs.jpcb.9b08509
https://physicstoday.scitation.org/do/10.1063/PT.6.1.20180822a/full
http://lorenabarba.com/category/blog/
http://www.mosdef.org
https://www.isis.vanderbilt.edu/
https://github.com/mosdef-hub/mbuild
https://github.com/mosdef-hub/foyer
https://signac.readthedocs.io/en/latest/
https://doi.org/10.1021/acs.jctc.9b01183
https://anaconda.org/mosdef/
http://glotzerlab.engin.umich.edu/hoomd-blue
http://parmed.github.io/ParmEd/html/index.html
http://travis-ci.org


MOLECULAR PHYSICS 17

[49] Azure Pipelines Landing Page. <https://azure.micro
soft.com/en-us/services/devops/pipelines/> .

[50] CodeCov Landing Page. <https://codecov.io/> .
[51] Coveralls Landing Page. <https://coveralls.io> .
[52] Slack Virtual Shared Workplace Tool. <https://slack.

com> .
[53] M. Davenport, Chem. Eng. News 94 (29), 23–24

(2016).
[54] W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph.

14 (1), 33–38 (1996).
[55] Collaborative Research: NSCI Framework: Software

for Building a Community-Based Molecular Modeling
Capability Around the Molecular Simulation Design
Framework (MoSDeF). <https://www.nsf.gov/award
search/showAward?AWD_ID= 1835874> .

[56] GPU-Optimized Monte Carlo (GOMC) Home Page
(April 2018). <http://gomc.eng.wayne.edu/> .

[57] GOMC, GPU-OptimizedMonte Carlo (GOMC) Github
Repository (April 2018). <https://github.com/GOMC-
WSU/GOMC> .

[58] CP2K Open Source Molecular Dynamics (April 2018).
<https://www.cp2k.org/> .

[59] Signac-flow Webpage. <http://signac-flow.readthe
docs.io> .

[60] R. Salomon-Ferrer, D.A. Case and R.C. Walker, Wiley
Interdiscip. Rev. Comput. Mol. Sci. 3 (2), 198–210
(2013).

[61] S. Plimpton, M. Jones and P. Crozier, Pizza.py Toolkit
Sandia National Laboratories (February 2006). <http://
pizza.sandia.gov/> .

[62] A.I. Jewett, Z. Zhuang and J.E. Shea, Biophys. J. 104 (2),
169a (2013).

[63] L. Martínez, R. Andrade, E.G. Birgin and J.M. Martínez,
J. Comput. Chem. 30 (13), 2157–2164 (2009).

[64] C. Klein, A.Z. Summers, M.W. Thompson, J.B. Gilmer,
C. McCabe, P.T. Cummings, J. Sallai and C.R. Iacovella,
Comput. Mater. Sci. 167, 215–227 (2019).

[65] J. Wang, W. Wang, P.A. Kollman and D.A. Case, J. Mol.
Graph. Model. 25 (2), 247–260 (2006).

[66] K. Vanommeslaeghe and A.D. MacKerell, Jr., J. Chem.
Inf. Model. 52 (12), 3144–3154 (2012).

[67] A.K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P.C.
Nair, C. Oostenbrink and A.E. Mark, J. Chem. Theory
Comput. 7 (12), 4026–4037 (2011).

[68] A.A.S.T. Ribeiro, B.A.C. Horta and R.B. de Alencastro, J.
Braz. Chem. Soc. 19 (7), 1433–1435 (2008).

[69] B.L. Eggimann, A.J. Sunnarborg, H.D. Stern, A.P. Bliss
and J.I. Siepmann,Mol. Simul. 40 (1–3), 101–105 (2014).

[70] SimTK: OpenMM: Project Home (February 2018).
<https://simtk.org/projects/openmm> .

[71] Daylight Theory: SMARTS –A Language for Describing
Molecular Patterns (August 2017). <http://www.day
light.com/dayhtml/doc/theory/theory.smarts.html> .

[72] A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist,
I.E. Castelli, R. Christensen, M. Dułak, J. Friis, M.N.
Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jen-
nings, P. Bjerre Jensen, J. Kermode, J.R. Kitchin, E. Leon-
hard Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J.
BergmannMaronsson, T.Maxson, T.Olsen, L. Pastewka,
A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M.
Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen,M.Wal-
ter, Z. Zeng andK.W. Jacobsen, J. Phys.: Condens.Matter
29 (27), 273002 (2017).

[73] M.E. Fortunato and C.M. Colina, SoftwareX 6, 7–12
(2017).

[74] M.E. Fortunato and C.M. Colina, pysimm. <https://git
hub.com/polysimtools/pysimm> .

[75] L.J. Abbott, K.E. Hart and C.M. Colina, Theor. Chem.
Acc. 132 (3), 1334 (2013).

[76] M. Girard, A. Ehlen, A. Shakya, T. Bereau and M.O. de
la Cruz, Comput. Mater. Sci. 167 (May), 25–33 (2019).

[77] Hoobas Github Repository. <https://bitbucket.org/N
Uaztec/hoobas/src/master/> .

[78] Indigox Github Repository. <https://github.com/alli
son-group/indigox> .

[79] N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Van-
dermeersch and G.R. Hutchison, J. Cheminform. 3 (10),
1–14 (2011).

[80] Open Babel Github Repository. <https://github.com/
openbabel> .

[81] D.L. Mobley, C.C. Bannan, A. Rizzi, C.I. Bayly, J.D.
Chodera, V.T. Lim, N.M. Lim, K.A. Beauchamp, D.R.
Slochower, M.R. Shirts, M.K. Gilson and P.K. Eastman,
J. Chem. Theory Comput. 14 (11), 6076–6092 (2018).

[82] C. Zanette, C.C. Bannan, C.I. Bayly, J. Fass, K. Michael,
M.R. Shirts, J.D. Chodera and D.L. Mobley, J. Chem.
Theory Comput. 15, 402–423 (2019).

[83] D.L.Mobley, open-forcefield-group/smirff99Frosst: Ver-
sion 1.0.1 Zenodo (September 2016). <https://doi.org/
10.5281/zenodo.154235> .

[84] WebFF Github Repository. <https://github.com/us
nistgov/WebFF-Documentation> .

[85] L.O. Hedges, A.S.J.S. Mey, C.A. Laughton, F.L. Gerva-
sio, A.J. Mulholland, C.J. Woods and J. Michel, J. Open
Source Softw. 4 (43), 1831 (2019).

[86] A. Jain, S.P. Ong, W. Chen, B. Medasani, X. Qu, M.
Kocher, M. Brafman, G. Petretto, G.M. Rignanese, G.
Hautier, D. Gunter andK.A. Persson, Concurr. Comput.:
Practice Exp. 27 (17), 5037–5059 (2015), CPE-14-
0307.R2.

[87] FireWorks Github Repository. <https://github.com/
materialsproject/fireworks> .

[88] C.L. Phillips, J.A. Anderson and S.C. Glotzer, J. Comput.
Phys.230 (19), 7191–7201 (2011).

[89] A.Z. Panagiotopoulos, N. Quirke, M. Stapleton and D.J.
Tildesley, Mol. Phys. 63 (4), 527–545 (1988).

[90] A.Z. Panagiotopoulos, Mol. Phys. 61 (4), 813–826
(1987).

[91] D.J. Adams, Mol. Phys. 29 (1), 307–311 (1975).
[92] J. Ilja Siepmann and D. Frenkel, Mol. Phys. 75 (1), 59–70

(1992).
[93] M.G. Martin and J.I. Siepmann, J. Phys. Chem. B 102

(14), 2569–2577 (1998).
[94] M.S. Shah, J.I. Siepmann and M. Tsapatsis, AIChE J. 63

(11), 5098–5110 (2017).
[95] Y. Nejahi, M. Soroush Barhaghi, J. Mick, B. Jackman, K.

Rushaidat, Y. Li, L. Schwiebert and J. Potoff, SoftwareX
9, 20–27 (2019).

[96] MoSDeF TraPPE Github Repository. <https://github.
com/ahy3nz/mosdef_trappe> .

[97] C. Fu, Y. Kuang, Z. Huang, X. Wang, Y. Yin, J. Chen
and H. Zhou, J. Solid State Electrochem. 15 (11–12),
2581–2585 (2011).

[98] C. Zhan, C. Lian, Y. Zhang, M.W. Thompson, Y. Xie,
J. Wu, P.R. Kent, P.T. Cummings, D. en Jiang and D.J.
Wesolowski, Adv. Sci. 4, 1700059 (2017).

https://azure.microsoft.com/en-us/services/devops/pipelines/
https://codecov.io/
https://coveralls.io
https://slack.com
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1835874
http://gomc.eng.wayne.edu/
https://github.com/GOMC-WSU/GOMC
https://www.cp2k.org/
http://signac-flow.readthedocs.io
http://pizza.sandia.gov/
https://simtk.org/projects/openmm
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://github.com/polysimtools/pysimm
https://bitbucket.org/NUaztec/hoobas/src/master/
https://github.com/allison-group/indigox
https://github.com/openbabel
https://doi.org/10.5281/zenodo.154235
https://github.com/usnistgov/WebFF-Documentation
https://github.com/materialsproject/fireworks
https://github.com/ahy3nz/mosdef_trappe


18 M. W. THOMPSON ET AL.

[99] Y. Zhang, B. Dyatkin and P.T. Cummings, J. Phys. Chem.
C 123 (20), 12583–12591 (2019).

[100] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov,
T.J. Booth and S. Roth, Nature 446 (7131), 60–63 (2007).

[101] S.M. Mahurin, E. Mamontov, M.W. Thompson, P.
Zhang, C.H. Turner, P.T. Cummings and S. Dai, Appl.
Phys. Lett. 109 (14), 143111 (2016).

[102] G. Feng and P.T. Cummings, J. Phys. Chem. Lett. 2 (22),
2859–2864 (2011).

[103] E. Lindahl, B. Hess and D. van der Spoel, J. Mol. Model.
7 (8), 306–317 (2001).

[104] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E.
Mark and H.J. Berendsen, J. Comput. Chem. 26 (16),
1701–1718 (2005).

[105] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R.
Apostolov, M.R. Shirts, J.C. Smith, P.M. Kasson, D. van
der Spoel, B. Hess and E. Lindahl, Bioinformatics 29 (7),
845–854 (2013).

[106] R.T. McGibbon, K.A. Beauchamp, M.P. Harrigan, C.
Klein, J.M. Swails, C.X. Hernández, C.R. Schwantes, L.P.
Wang, T.J. Lane and V.S. Pande, Biophys. J. 109 (8),
1528–1532 (2015).

[107] Graphene-Pore Github Repository. <https://github.
com/rmatsum836/Pore-Builder> .

[108] H.J.C. Berendsen, J.R.Grigera andT.P. Straatsma, J. Phys.
Chem. 91 (24), 6269–6271 (1987).

[109] I.S. Joung and T.E. Cheatham, J. Phys. Chem. B 112 (30),
9020–9041 (2008).

[110] B. Hess, H. Bekker, H.J.C. Berendsen and J.G.E.M.
Fraaije, J. Comput. Chem. 1472, 1463–1472 (1997).

[111] true_graphene Github Repository. <https://github.
com/rmatsum836/true_graphene> .

[112] true_lipids Github Repository. <https://github.com/
uppittu11/true_lipids> .

[113] A. Weerheim and M. Ponec, Arch. Dermatol. Res. 293
(4), 191–199 (2001).

[114] K.C. Madison, J. Invest. Dermatol. 121 (2), 231–241
(2003).

[115] Bilayer Builder Github Repository. <https://github.
com/uppittu11/mbuild_bilayer> .

[116] S. Guo, T.C. Moore, C.R. Iacovella, L.A. Strickland and
C.McCabe, J. Chem. Theory Comput. 9 (11), 5116–5126
(2013).

[117] J.B. Klauda, R.M. Venable, J.A. Freites, J.W. O’Connor,
D.J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A.D.
MacKerell and R.W. Pastor, J. Phys. Chem. B 114 (23),
7830–7843 (2010).

[118] H.J.C. Berendsen, J.P.M. Postma,W.F. van Gunsteren, A.
DiNola and J.R. Haak, J. Chem. Phys. 81 (8), 3684–3690
(1984).

[119] W.G. Hoover, Phys. Rev. A 31, 1695–1697 (1985).
[120] M. Parrinello and A. Rahman, J. Appl. Phys. 52 (12),

7182–7190 (1981).
[121] S.G. Vilt, Z. Leng, B.D. Booth, C. McCabe and G.K. Jen-

nings, J. Phys. Chem. C 113 (33), 14972–14977 (2009).
[122] A.Z. Summers, C.R. Iacovella, M.R. Billingsley, S.T.

Arnold, P.T. Cummings and C. McCabe, Langmuir 32
(10), 2348–2359 (2016), PMID: 26885941.

[123] S. Plimpton, J. Comput. Phys. 117 (1), 1–19 (1995).
[124] T. Darden, D. York and L. Pedersen, J. Chem. Phys. 98

(12), 10089–10092 (1993).
[125] M. Tuckerman, B.J. Berne and G.J. Martyna, J. Chem.

Phys. 97 (3), 1990–2001 (1992).
[126] J.D. Chodera, J. Chem. Theory Comput. 12 (4),

1799–1805 (2016), PMID: 26771390.
[127] M.R. Shirts and J.D. Chodera, J. Chem. Phys. 129 (12),

124105 (2008).
[128] C.S. Adorf, V. Ramasubramani, B.D. Dice, M.M. Henry,

P.M. Dodd, and S.C. Glotzer, .glotzerlab/signac Zenodo
<https://doi.org/10.5281/zenodo.2581327>

[129] Tribology Example Github Repository. <https://github.
com/daico007/TRUE-nanotribology> .

https://github.com/rmatsum836/Pore-Builder
https://github.com/rmatsum836/true_graphene
https://github.com/uppittu11/true_lipids
https://github.com/uppittu11/mbuild_bilayer
https://doi.org/10.5281/zenodo.2581327
https://github.com/daico007/TRUE-nanotribology

	1. Introduction
	2. Overview of MoSDeF
	2.1. MoSDeF tools and capabilities
	2.1.1. mBuild
	2.1.2. Foyer

	2.2. Other community tools

	3. TRUE molecular simulations
	3.1. Ethane VLE using TraPPE
	3.2. Graphene slit pore
	3.3. Lipid bilayers
	3.4. Friction reduction via thin film coatings

	4. Conclusions
	Acknowledgements
	Disclosure statement
	Funding
	References

