Appendix

Formulas for Variance Component Estimates from Mean Squares and g Coefficients

Table A1 displays the formulas for estimating variance components from the ANOVA mean squares for each main effect and interaction in the model (adapted from Shavelson & Webb, 2006). These variance components are used to calculate the absolute error variance ($\sigma_{abs,e}^2$) using the following equation:

$$\sigma_{abs,e}^{2} = \frac{\sigma_{po}^{2}}{n_{o}} + \frac{\sigma_{ps}^{2}}{n_{s}} + \frac{\sigma_{pso}^{2}}{n_{o}n_{s}} + \frac{\sigma_{o}^{2}}{n_{o}} + \frac{\sigma_{s}^{2}}{n_{s}} + \frac{\sigma_{so}^{2}}{n_{s}n_{o}}$$

where n_o is the number of observers and n_s is the number of sessions. The *g* coefficient is the proportion of the total variance explained by person, and is calculated using the following equation:

$$g = \frac{\sigma_p^2}{\sigma_p^2 + \sigma_{abs,e}^2}$$

In an optimization study, several hypothetical absolute error variances are calculated by changing the n terms in the equation above to represent different numbers of sessions and/or observers. These absolute error variances are then used to calculate g coefficients that reflect the proportion of total variance explained by person under these hypothetical conditions.

Table A1

Variance Component	Formula
Person x Session x Observer, residual (σ_{pso}^2)	$\sigma_{pso}^2 = MS_{pso}$
Session x Observer (σ_{so}^2)	$\sigma_{so}^2 = \frac{MS_{so} - \sigma_{pso}^2}{n_p}$
Person x Observer (σ_{po}^2)	$\sigma_{po}^2 = \frac{MS_{po} - \sigma_{pso}^2}{n_s}$
Person x Session (σ_{ps}^2)	$\sigma_{ps}^2 = \frac{MS_{ps} - \sigma_{pso}^2}{n_o}$
Observer (σ_o^2)	$\sigma_o^2 = \frac{MS_o - \sigma_{pso}^2 - n_p \sigma_{so}^2 - n_s \sigma_{po}^2}{n_p n_s}$
Session (σ_s^2)	$\sigma_s^2 = \frac{MS_s - \sigma_{pso}^2 - n_p \sigma_{so}^2 - n_o \sigma_{ps}^2}{n_p n_o}$
Person (σ_p^2)	$\sigma_p^2 = \frac{MS_p - \sigma_{pso}^2 - n_o \sigma_{ps}^2 - n_s \sigma_{po}^2}{n_o n_s}$

Formulas for Estimating Variance Components from Mean Squares

Note. MS_{pso} = Mean square for person x session x observer interaction; MS_{so} = Mean square for session x observer interaction; MS_{po} = Mean square for person x observer interaction; MS_{ps} = Mean square for person x session interaction; MS_o = Mean square for observer; MS_s = Mean square for session; MS_p = Mean square for person; n_p = number of persons; n_s = number of sessions; n_o = number of observers.