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Iterative Online Optimal Feedback Control
Yuqing Chen and David J. Braun∗ Member, IEEE

Abstract—This paper proposes a data-driven iterative feed-
back control method to efficiently solve finite time horizon,
nonlinear, input constrained optimal control problems. The
proposed method introduces a novel approach to combine
an inexact system model with measured state information
to reduce the cost and provide near-optimal control by ap-
proximately solving the optimal control problem along the
trajectory of the real system, as opposed to solving it along
the trajectory predicted by the inexact model. We present
a new algorithm that implements the proposed method,
establish the convergence and optimality properties of the
proposed algorithm, and compare it to optimal feedback con-
trol and model-predictive control that solve the same optimal
control problem along the trajectory predicted by the inexact
model. Finally, we illustrate the generality of the proposed
algorithm by approximately solving a challenging optimal
control problem with unknown and changing dynamics.

Index Terms—Optimal control; Optimization algorithms;
Nonlinear systems; Uncertain systems.

I. INTRODUCTION

Optimal control theory provides a mathematical formal-
ism to control dynamical systems; find the control inputs
that minimize a user defined cost, assuming that the exact
model of the system is known [1]–[3]. However, models
are inexact, regardless of whether obtained from first
principles, offline system identification, or online learning,
and it is the inexactness of the model that leads to sub-
optimality, increased cost and reduced robustness to model
uncertainty, compared to the optimal controller that is
based on the exact model.

Model predictive control (MPC) [4], [5] is an industry-
standard online optimal control approach [6]; it provides
one way to combine an inexact model with measured state
information. MPC methods repetitively solve finite time
horizon optimal control problems to approximate a com-
putationally intractable optimal feedback controller [1].
Nominal MPC methods assume no knowledge about the
model uncertainty. These methods, include quasi-infinite
horizon MPC [7] which can be used to efficiently solve
control constrained problems while possessing inherent
robustness to model uncertainty [8]. Robust MPC methods
presume some knowledge about the uncertainty. For ex-
ample, min-max MPC [9], [10] minimizes the cost under
worst-case uncertainty, while tube-based MPC [11]–[14]
uses feedback to minimize the error between the measured
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trajectory and the predicted optimal trajectory, assuming
a known worst-case uncertainty. Iterative MPC combines
the idea of iterative learning control (ILC) [15], [16] with
MPC to control repetitive tasks or iteratively executed non-
repetitive tasks. The basic idea of ILC methods is to use
the measured state information from the previous iteration
to improve the controller for the next iteration. Classical
ILC methods may be used without model information
to solve tracking problems with a-priori known reference
trajectory, but cannot be used to solve nonlinear optimal
control problems where no reference trajectory is defined
[17]. The combination of ILC and MPC was first proposed
in [18], where the task was to track a reference trajectory,
the measured state from the previous iteration was used to
reduce the tracking error in the next iteration, and nominal
linear [19], robust [20], and nonlinear [21] MPC was
used to implement the online feedback controller in every
iteration. More recently, iterative learning MPC has also
been extended to solve a more general class of reference
free infinite horizon online optimal control problems [22].
Common to all aforementioned approaches is that they
solve the optimal control problem along the trajectory
predicted by an inexact model which leads to increased
cost and reduced robustness to model uncertainty.

In this paper, we propose a data-driven optimal feedback
control method to solve finite time horizon, nonlinear,
input constrained optimal control problems. The main
contribution of the proposed method is the novel way it
combines the inexact model with measured state infor-
mation, which enables efficient online implementation of
a near-optimal feedback controller such that the inexact
model is never used to make a future prediction.

We present the first algorithmic implementation of the
proposed method where the model uncertainty is assumed
unknown (Section III, Algorithm 1). We show that, under
common hypotheses on the system dynamics and the cost,
the proposed algorithm: (i) converges with monotonically
decreasing cost, and (ii) provides a locally optimal feed-
back controller that satisfies the necessary conditions of
optimality along the measured trajectory of the controlled
system as opposed to satisfying the same conditions along
the trajectory predicted by the inexact model (Section IV,
Theorems 1, 2, and 3).

The proposed algorithm can be used to implement
control constrained online feedback controllers which re-
duce the user defined cost through repetitive execution of
the task. Through repetition of the task, the controllers
converge to a locally optimal feedback controller if the
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model is exact, or terminate with a near-optimal controller
that reduces the cost along the measured trajectory if the
model is inexact (Section V).

It has been recently shown [23] that a number of rein-
forcement learning methods [24]–[28] can approximately
solve control constrained optimal control problems when
the value function (optimal future cost) and the control
policy (optimal feedback control law) are continuous. The
key idea of the aforementioned infinite horizon methods
is to learn the value function and the control policy
online along the trajectory of the real system [28]. These
methods use a non-quadratic control cost to replace hard
control constraints with soft constraints, and consider
infinite horizon stabilization problems, because the infinite
horizon assumption, together with the assumption of a
time-invariant dynamics, time-invariant running cost, and
no terminal cost, ensure that the value function and the
control policy are time-invariant, and require less data
to learn compared to a time-varying value function and
a time-varying control policy in finite horizon optimal
control. Extensions of this idea to efficiently solve finite
horizon unconstrained or control constrained stabilization
problems remains challenging [29]–[34], because this ex-
tension requires considerable amount of measured data
to approximate the optimal value function, co-state, and
control policy [34]. Although the proposed online optimal
control method is not a reinforcement learning method that
attempts to learn the complex time and state dependent
value function, co-state, or control policy from data, it
extends the key idea of the aforementioned infinite horizon
reinforcement learning methods to finite horizon control
constrained problems, as it calculates the time-varying
optimal control policy under hard control constraints along
the measured trajectory of the controlled system.

The paper is structured as follows: In Section II, we
present the optimal control problem. In Section III, we
provide the optimal control algorithm. In Section IV, we
establish the convergence and optimality properties of the
proposed algorithm, first assuming that the model of the
controlled system is exact, and then assuming that the
model is inexact. In Section V, we solve three examples
to demonstrate the reduced cost, the increased robustness
to parametric model uncertainty, and the applicability of
the proposed algorithm to online solve a complex optimal
control problem with an unknown and changing dynamics.
In Section VI we conclude with a brief summary of the
results. Finally, in Section VII Appendix, we present the
proofs supporting the results of this paper.

We use the following notation: Let N denote the
natural numbers, R+ denote positive real numbers, Rn

and Rn×m represent the sets of n dimensional vectors
and n × m dimensional matrices, <λ(·) denote the real
part of the eigenvalue of a matrix. Let f(·) represent a
function, fx = ∂f(x, ·)/∂x denote the partial derivative
of a function, and I[·] represent a functional. Let ‖x‖

be the 2-norm of x ∈ Rn, ‖x(·)‖Lp be the p-norm
of a Lebesgue integrable function x(·) ∈ Lp, and let
Br(u) = {u+δu ∈ Rm : ‖δu‖≤ r, r > 0} denote a closed
ball centered at u with radius r. Function arguments will
be suppressed at places to simplify the presentation.

II. PROBLEM STATEMENT

We consider the Lagrange problem of optimal control1

in continuous time

min
u(·)∈U

I[u(·)] =

∫ T

0

L(x(t),u(t), t)dt

subject to : ẋ(t) = f(x(t),u(t), t) and x(0) = x0

(1)

where t ∈ T = [0, T ] is the time interval, T ∈ R+ is
the terminal time, x(t) = [x1(t), ..., xn(t)]> ∈ Rn is the
state and u(t) = [u1(t), ..., um(t)]> ∈ Rm is the control
input at time t, u(·) is the control function, U is the
set of admissible control functions, I[u(·)] is the total
cost, L(x(t),u(t), t) is the running cost, f(x(t),u(t), t)
represents the dynamics of the controlled system while x0

is the initial state. The set of admissible control functions
U , is the set of measurable functions u(·) : T → U that
satisfy

∀t ∈ T : u(t) ∈ U = {u ∈ Rm : Au � b} (2)

where A ∈ Rp×m and b ∈ Rm such that U is a compact,
convex, and nonempty set [36].

We make the following standing assumptions:

Assumption 1 (Dynamics). (i) For any u(·) ∈ U ,
there exists a uniformly bounded solution of ẋ(t) =
f(x(t),u(t), t); there exists X ∈ (0,∞) such that:

∀t ∈ T : x(t) ∈ X = {x ∈ Rn : ‖x‖≤ X}.

(ii) f , fx and fu are continuous in t and locally Lipschitz
continuous in (x,u) for all (x,u, t) ∈ X× U× T.

Assumption 2 (Cost). (i) L, Lx, Lu, Lxx, Lxu, Luu are
continuous for all (x,u, t) ∈ X× U× T.

(ii) The running cost is convex with respect to u:

∀(x,u, t) ∈ X× U× T : Luu(x,u, t) � 0.

Assumption 3 (Inexact dynamics). (i) The state x(t) of
the system is measurable.

(ii) The exact model of the system f is not known.
(iii) The inexact model of the system is defined by

ẋ(t) = f̂(x(t),u(t), t). (3)

(iv) Assumption 1 is valid for the inexact model.
(v) The error between fx, fu and f̂x, f̂u is bounded

‖f̂x − fx‖≤ εx, ‖f̂u − fu‖≤ εu
1The Bolza problem of optimal control with nonzero terminal cost, or

the Mayer problem of optimal control with only terminal cost, can be
transformed into a Lagrange problem under suitable regularity assump-
tions, see [35] (Chapter 1.9).
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where for all (x,u, t) ∈ X× U× T : εx, εu ∈ [0,∞).

Assumption 4 (Existence of the solution). The optimal
control problem (1) has at least one solution.

Assumptions 1–2 guarantee that there exist at least one
feasible control function and state trajectory, and that the
cost is bounded for all feasible control functions and state
trajectories. These assumptions restrict the dynamics and
the cost [37]; for example, dynamics with finite escape
time, and running costs which are not convex with respect
to controls, do not satisfy these assumptions. Nevertheless,
Assumptions 1–2 do not guarantee existence of the optimal
control. Existence of the optimal control, Assumptions 4,
can be guaranteed by imposing extra conditions on the
dynamics and the cost, see [38], [39] (Chapter 4) and [35]
(Chapters 9 and 11-16).

III. ITERATIVE OPTIMAL FEEDBACK CONTROL

We propose a novel Iterative Online Optimal Feedback
Control (IOOFC) algorithm to approximately solve the
optimal control problem (1), using the inexact model of the
system (3). Algorithm 1 belongs to the class of successive
approximation methods [40], [41], which include differ-
ential dynamic programing [42]–[45], the iterative linear
quadratic regulator [46], in addition to a number of strong-
variation methods based on the maximum principle [17],
[36], [47]–[50].

Similar to [17], [36], [40]–[50], Algorithm 1 iteratively
solves an approximation of the original optimal control
problem to calculate the control inputs that reduce the cost
in every iteration, but different from the aforementioned
methods, Algorithm 1 calculates the control inputs online,
along the measured trajectory of the system, instead of cal-
culating the control inputs using the trajectory predicted by
the inexact model. Consequently, Algorithm 1 terminates
with control that satisfies the local necessary conditions of
optimality along the measured trajectory, instead of termi-
nating with a controller that satisfies the same condition
along the trajectory predicted by the inexact model.

The algorithm is described below in Step 0–Step 4.
At every iteration denoted with superscript i, and every
time step denoted with subscript j, the algorithm updates
the control input from the previous iteration to obtain
the control input in the next iteration uij = ui−1j +
δuij ∈ U. The control update is a feedback control
input δuij = δui(xi(tj), tj) calculated by minimizing a
local approximation of the Hamiltonian (6) (quadratic with
respect to control and linear with respect to the state)
evaluated at the measured state of the system xi(tj). The
approximation of the Hamiltonian with respect to the state
is calculated using two linear differential equations (4),
(5), solved between subsequent iterations. The algorithm
relies on a convergence control method which ensures
decreasing cost in every iteration and termination only if
the necessary conditions of local optimality are satisfied

along the measured trajectory of the controlled system (or
if the initial control input cannot be improved).

Step 0 (Initialization):
Set i = 0. Choose a feasible initial control function

u0(·) ∈ U . Execute this control on the system ẋ =
f(x,u0(t), t). Measure the corresponding state trajectory
x0(·) and compute the cost I0 = I[u0(·)] (1).

Step 1 (Offline computation):
Set i = i+ 1 and αi = 1.
Compute Ri−1(·), ri−1(·) by backward integration of

Ṙi−1 + Ri−1f̂x + f̂>x Ri−1 + Lxx = 0, (4)

ṙi−1 + Lx + f̂>x ri−1 = 0, (5)

with terminal condition Ri−1(T ) = 0 and ri−1(T ) = 0.
In (4) and (5), the partial derivatives Lx, Lxx, f̂x are
evaluated along the control function ui−1(·) applied in
previous iteration, and the state trajectory xi−1(·) mea-
sured in previous iteration.

Step 2a (Online computation at t = tj):
At the current ith iteration, and jth time point t = tj =

j TnT
∈ [t0 = 0, t1, t2, ..., tnT

= T ], measure the state xij =

xi(tj), and calculate the corresponding feedback control
update by solving the constrained quadratic program (cQP)

δuij = δu(xij , tj) (6)

= argmin
δu∈δUi

j

1

2
δu>LR

uuδu + αiδu>b(xij , tj),

b(xij , tj) = (Lux + f̂>u Ri−1
j )(xij − xi−1j ) + Lu + f̂>u ri−1j

where xi−1j = xi−1(tj) is the state at the previous iteration
and current time point tj , LR

uu is a strictly positive definite
Hessian calculated by regularized Cholesky factorization
of Luu [51] (Chapter 3.4)

LR
uu = rCholesky(Luu) � Iλimin where λimin > 0, (7)

δUij is the admissible set of control updates

δUij = {δu ∈ Rm : Aδu ≤ b−Aui−1j },

and αi ∈ (0, 1] is a convergence control parameter. (The
convergence control parameter is set to αi = 1 in Step 1,
and is modified αi ∈ (0, 1] in Step 4, if such modification
is required to decrease the cost.)

Step 2b (Online control of the system at t = tj):
Update the control input

uij = ui−1j + δuij = ui−1(tj) + δu(xi(tj), tj),

and use the updated input to control the system ẋ =
f(x,uij , tj). Proceed to the next time point t = tj+1.
Repeat Step 2a and Step 2b until t = T .

Step 3 (Convergence control):
Calculate the reduction of the cost in the current itera-

tion
∆Ii = I[ui(·)]− I[ui−1(·)] (8)
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and check if the following condition is satisfied

∆Ii ≤ −c‖δui(·)‖2L2 (9)

where c ∈ (0,∞) is a user defined positive number.
If (9) is satisfied then store the control ui(·), the state

xi(·), and the cost Ii, and proceed to Step 4.
If (9) is not satisfied then use backtracking [51] (Chapter

3.1) to decrease the convergence control parameter αi =
γαi ∈ (0, 1] where γ ∈ (0, 1) is a pre-defined constant,
and go to Step 2a.

Step 4 (Stopping criterion): Terminate the algorithm if
there exist i∗ such that for all i ≥ i∗ : ‖δui(·)‖2L2< ε.
Otherwise set i = i+ 1 and go to Step 1.

The pseudo-code is given in Algorithm 1.

Algorithm 1: Iterative Online Optimal Feedback
Control
Input: Feasible u0(·) ∈ U, system, model

f̂(x,u, t)
Output: u∗(·)
Initialize: cnvg = false, i = 1, c ∈ (0,∞),
γ ∈ (0, 1), 0 < ε� 1, ∆i ∈ N,
x0 ←

(
system,u0(·)

)
, I0 ← I[u0(·)]

while conv = false do
for j = nT : −1 : 2 do

Evaluate: f̂x, Lx, Lxx ← (xi−1j ,ui−1j , tj)

Offline compute: Ri−1
j−1, ri−1j−1 ← (4), (5)

end
αi = 1, iter = true
while iter = true do

for j = 1 : nT do
Measure: xij ← system
Evaluate: f̂u, Lu, Lux,Luu ←
(xi−1j ,ui−1j , tj)

Regularize: LR
uu = rCholesky(Luu)

Online compute: δuij ←(6)
Online control:
system← uij = ui−1j + δuij

end
Convergence control: ∆Ii ← (8)
if ∆Ii ≤ −c‖δui(·)‖2L2 then

iter = false
else

Backtrack: αi = γαi

end
end
if ∀i ∈ {i∗, i∗ + ∆i} : ‖δui(·)‖2L2< ε then

u∗ = ui(·), cnvg = true
end
i = i+ 1

end

The following three remarks summarize the main fea-
tures of Algorithm 1.

Remark 1 (Online optimal control using measured states).
The feedback control input is obtained by using the mea-
sured state in the current iteration when solving cQP (6)
while the time dependent parameters R, r in cQP (6)
are obtained by solving the linear ordinary differential
equations (4) and (5) along the measured trajectory in
the previous iteration. The key advantage of this approach
is that the inexact model (3) is never used to make a future
prediction; only the parameters of the inexact model are
used: f̂u is used as a parameter in the cQP (6) while f̂x
is used as a parameter in the linear differential equations
(4) and (5).

According to Remark 1, the proposed algorithm by-
passes the inevitable error accumulation seen in model
predictive control that uses inexact model-based predicted
trajectories to calculate the control inputs. Recent tube-
based robust model predictive control methods promote
the use of feedback to mitigate this limitation [11]–
[14]. In our formulation, feedback is reserved to address
unforeseen perturbations, while online optimization along
the measured trajectory of the system is used to mitigate
the detrimental effect of inexact model-based future pre-
diction.

Remark 2 (Terminal solution). Unless the initial user
defined control input u0(·) cannot be improved, the exit
criterion (9) and the adaptation of the convergence control
parameter α ∈ (0, 1] in Step 3 ensure that the cost de-
creases in every iteration until the necessary conditions of
local optimality are satisfied along the measured trajectory
of the controlled system. When the algorithm terminates,
the measured trajectory does not change anymore, and the
parameters of the cQP obtained in the previous iteration
R, r, are the optimal parameters for the next iteration.
Consequently, Algorithm 1 provides an online computed
locally optimal constrained feedback controller when the
model is exact, and an approximately optimal constrained
feedback controller when the model is inexact. In both
cases, the control constraints are rigorously taken into
account.

The convergence and optimality properties of the algo-
rithm are detailed in Section IV.

Remark 3 (Computational cost). The proposed algorithm
has both online and offline computational costs which
depend on the number of states n, number of control inputs
m, and the number of discrete time points nT used to
discretize the time horizon (see Step 2a and Algorithm 1).

(i) The online computational cost comes from solving
the cQP (6) forward in time. The worst-case computational
cost per time step in solving (6) is [51]

Online cost
Time step

∝ O(m3). (10)

(ii) The offline computational cost comes from solving
the linear differential equations (4) and (5) between itera-
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tions. The worst-case computational cost of solving these
equations is

Offline cost
Iteration

∝ O(nTn
2). (11)

Remark 3 shows that the online computational cost (10)
does not depend on the time horizon. This means lower
online computational cost compared to nonlinear model
predictive control, where the online computational cost at
least linearly scales with the reduced time horizon optimal
control problem solved at each time step [48], [52]–[54]:
Online cost/Time step ∝ O(ntm

3) where 1 � nt ≤ nT .
We further note that similar to offline successive approxi-
mation methods [36], [49], the proposed online algorithm
is not subject to the “curse of dimensionality” becasue
the offline computational cost (11) of solving two linear
differential equations (4) and (5) quadratically scales with
the number of states, as opposed to the exponentially
scaling in dynamic programming. Due to both (10) and
(11), Algorithm 1 is suitable for iterative online control of
high-dimensional systems using large number of control
inputs (see Sections V-B and V-C).

Finally, we note that Algorithm 1 presents a discrete
time computation of the control inputs implementable
on sample time digital control systems. Although, this
discrete time controller does not provide the exact solution
of the original continuous time optimal control problem
(1), it can provide an approximate implementation of the
continuous time controller under fast enough sampling,
and sufficient regularity of the closed-loop dynamics [55].
Discretization of continuous time controllers is known as
controller emulation [56] which is a standard approach in
MPC setting, see [8] (Remark 22).

IV. CONVERGENCE AND LOCAL OPTIMALITY

Proving convergence of successive approximation meth-
ods [17], [36], [40]–[49] has been nontrivial. One of
the first convergence proofs was given in [57] for linear
quadratic optimal control problems. Convergence proofs
for methods applicable to more general classes of con-
strained nonlinear optimal control problems are given for
dynamic programing based methods [43], [45], [58] and
also for methods based on the maximum principle [36],
[49].

In this section, we prove the convergence of Algorithm
1 when the model is exact, and we provide a sufficient con-
ditions for Algorithm 1 to terminate with a near-optimal
controller, that satisfies the local necessary conditions of
optimality along the measured trajectory of the controlled
system, when the model is inexact. We will characterize
the local optimality of the control inputs in both cases.
The main results are summarized in Theorems 1–3. The
following two propositions will be used to prove these
Theorems. We will use ui = ui(·) and xi = xi(·) to
simplify the notation.

Proposition 1 (Relation between the cost variation and the
control update). At every iteration i ∈ N of Algorithm 1,
there exist cu ∈ (0,∞) and cε ∈ [0,∞), independent of
i ∈ N, such that the variation of the cost satisfies

∆Ii =I[ui]− I[ui−1]

≤− (
λimin

αi
− cu)‖δui‖2L2+cε‖δui‖L1

(12)

where δui = ui−ui−1 is the control update, αi ∈ (0, 1] is
the convergence control parameter in (6) while λimin > 0
is the smallest eigenvalue of the regularized Hessian of the
running cost LR

uu in (7).

Proof. See Appendix VII-B. �

Proposition 2 (Relation between the cost variation and
the model error). The constants cu(εx, εu) ∈ (0,∞) and
cε(εx, εu) ∈ [0,∞) in (12) are monotonically increasing
with respect to the model error εx and εu defined in
Assumption 3.

Proof. See Appendix VII-C. �

Remark 4. When the model is exact, cε = 0, (12) reduces
to a quadratic inequality between the cost variation and
the control update, which is similar to (27) in [36]. Such
quadratic inequality relation was used to prove the con-
vergence of the successive approximation based optimal
control algorithm presented in [36].

A. Exact model

The following Theorem proves the convergence of Al-
gorithm 1 when the model is exact.

Theorem 1 (Convergence). When the model is exact εx =
εu = 0, there exist a sequence of convergence control
parameters {αi} ∈ (0, 1] such that:

(i) The sequence of state trajectories and control func-
tions {xi}, {ui} converge to x∞, u∞ in L2:

lim
i→∞
‖ui − u∞‖L2= 0, lim

i→∞
‖xi − x∞‖L2= 0.

(ii) The cost {Ii} decreases monotonically and con-
verges:

∀i ∈ N : Ii > Ii+1 and I0 ≥ lim
i→∞

Ii → I∞ > −∞.

Proof. According to Proposition 2, cu and cε assume their
minimum values when the model is exact

εx = εu = 0 : cu = cumin > 0 and cε = 0.

Consequently, (12) in Proposition 1 reduces to

∆Ii ≤ −(
λimin

αi
− cumin)‖δui‖2L2 .

(i) Given a small enough convergence control parameter

∀i ∈ N : αi ∈
(

0,
λimin

cumin + c

]
∩ (0, 1],
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the cost in (1) will decrease because

∀i ∈ N : ∆Ii ≤ −c‖δui‖2L2 (13)

where ∆Ii = 0 only if

‖δui‖L2= ‖ui − ui−1‖L2= 0.

Summing up the cost decrements in (13), we obtain
∞∑
i=0

‖δui‖2L2≤ c−1
∞∑
i=0

−∆Ii ≤ c−1
(
I0 − inf

u(·)∈U
I
)
.

Assumptions 1 and 2 together with c > 0 guarantee that
the cost is bounded

−∞ < inf
u(·)∈U

I ≤ I0 <∞. (14)

Consequently,
∞∑
i=0

‖δui‖2L2<∞⇒ lim
i→∞
‖δui‖2L2= 0. (15)

Based on (15), the control update converges to zero in
L2. Furthermore, according to Proposition 8 in Appendix
VII-A,

‖δxi‖2L2≤
1

2
c21T

2e2c1T ‖δui‖2L2

where c1 ∈ (0,∞) is a constant independent of i ∈ N.
Consequently,

lim
i→∞
‖δui‖L2= 0, lim

i→∞
‖δxi‖L2= 0.

We conclude that {xi}, {ui} converge to x∞, u∞ in L2.
This proves the first part of the theorem.

(ii) The second part of the theorem follows from (13)
and (14); the cost sequence {Ii} is monotonically decreas-
ing and is bounded from below, thereby it converges. �

The next Theorem proves local optimality of the con-
strained feedback controller provided by Algorithm 1.

Theorem 2 (Optimality). When the model is exact εx =
εu = 0, Algorithm 1 converges to x∞ and u∞ that satisfy
the first order necessary conditions of local optimality of
the optimal control problem (1).

Proof. When the model is exact f = f̂ , the Hamiltonian
of the optimal control problem (1) is given by

H(x,u,λ, t) = L(x,u, t) + λ>f(x,u, t)

where λ denotes the co-state. The first order necessary
conditions of local optimality for (1) are given by [2]:

λ̇
opt

= −Hx(xopt,uopt,λopt, t), λopt(T ) = 0 (16)

and

∃r > 0,∀u ∈ Br(uopt) ∩ U :

Hu(xopt,uopt,λopt, t)(u− uopt) ≥ 0.
(17)

When Algorithm 1 converges i → ∞, equation (5)

becomes

ṙ∞ = −Hx(x∞,u∞, r∞, t), r∞(T ) = 0 (18)

while the constrained quadratic program (6) implies [59]:

∀u ∈ Br(u∞) ∩ U : (19)

∂[ 12δu
>LR

uuδu + α∞δu>b(x∞, t)]

∂δu

∣∣∣∣
δu=0

(u− u∞) ≥ 0.

Because α∞ ∈ (0, 1], and Hu(x∞,u∞, r∞, t) = Lu +
f>u r∞ = b(x∞, t), (19) is equivalent to

Hu(x∞,u∞, r∞, t)(u− u∞) ≥ 0. (20)

Comparing (16), (17) with (18), (20), we conclude

‖λopt − r∞‖L2= 0,

‖uopt − u∞‖L2= 0, ‖xopt − x∞‖L2= 0.

Consequently, x∞ and u∞ satisfy the local necessary
conditions of optimality for (1) in L2. �

B. Inexact model

The following Proposition provides the relation between
the control update δu and the convergence control param-
eter α, as α→ 0+. This relation will be used to investigate
the properties of Algorithm 1 when the model is inexact.

Proposition 3 (Relation between the control update and
the convergence control parameter). When αi → 0+, there
is a linear relation between the control update δui defined
by the cQP (6) and the convergence control parameter

‖δui‖L1= ciδuα
i (21)

where ciδu ∈ [0,∞) is a constant that may change in each
iteration. (ii) If ∆Ii 6= 0 then ciδu 6= 0.

Proof. See Appendix VII-D. �

The following Theorem characterizes the termination
and sub-optimality of Algorithm 1.

Theorem 3 (Termination and sub-optimality). If the model
is inexact εx 6= 0, εu 6= 0, and the model error is
bounded by 0 < cε(εx, εu) ≤ ciεmax = λiminc

i
δuT

−1 then
there exists a sequence of convergence control parameters
{αi} ∈ (0, αimax] ∩ (0, 1] where αimax > 0, such that:

(i) Algorithm 1 terminates with a feasible control after
finitely many iterations:

lim
i→i∗+1

‖ui − u∗‖2L2= 0, u∗ ∈ U .

(ii) The cost {Ii} decreases monotonically and ter-
minates at a cost I∗ smaller or equal to the cost at
initialization:

∀i ≤ i∗ : Ii > Ii+1 and I0 ≥ lim
i→i∗+1

Ii → I∗ > −∞.

(iii) When Algorithm 1 terminates, x∗ and u∗ satisfy
the first order conditions of optimality defined using the

PREPRINT : “© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, 
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

DOI: 10.1109/TAC.2020.2986211



7

inexact model f̂ (3) and evaluated along the measured
trajectory x∗ of the controlled system f (1).

Proof. According to Proposition 2, cu and cε are monoton-
ically increasing functions of the model error. Therefore,
these parameters do not assume their minimum values and
are both nonzero in (12):

εx 6= 0, εu 6= 0 : cu > cumin > 0 and cε > 0.

We use Schwarz’s inequality to obtain

‖δui‖2L1≤T‖δui‖2L2 . (22)

Using (22) in (12), and assuming a sufficiently small
convergence control parameter 0 < (c + cu)αi < λimin,
we obtain

∆Ii + c‖δui‖2L2≤ −(
λimin

αi
− cu − c)‖δui‖2L2+cε‖δui‖L1

≤ − 1

T
(
λimin

αi
− cu − c)‖δui‖2L1+cε‖δui‖L1≤ 0. (23)

(i) According to (23), if there exists

αi ∈ (0, αimax] ∩ (0, 1], (24)

where

αimax =
λimax‖δui‖L1

(cu + c)‖δui‖L1+cεT
> 0, (25)

the cost will decrease

∆Ii ≤ −c‖δui‖2L2 (26)

and ∆Ii = 0 only holds if

‖δui‖2L2= ‖ui − ui−1‖2L2= 0.

The sufficient condition for (24), (25) and (26) to hold is

0 < cε(εu, εx) ≤ ciεmax =
1

T

(
λimin

αi
− cu − c

)
‖δui‖L1 .

(27)
According to Proposition 3, when αi → 0+, the model
error (27) is limited by

0 < cε(εu, εx) ≤ lim
α→0+

ciεmax =
1

T
λiminc

i
δu.

Finally, according to Proposition 2, cε(εu, εx) is a mono-
tonically increasing function of the model error. Conse-
quently, (27) defines a limit to εx and εu that guarantees
decrease of the cost in the ith iteration. This proves the
first part of the theorem.

(ii) The second part of the theorem follows from (26).
(iii) When Algorithm 1 terminates at i > i∗, the

measured trajectory x∗ and the corresponding feedback
control function u∗ satisfy the following conditions

ẋ∗ = f(x∗,u∗, t), (28)

ṙ∗ = −Ĥx(x∗,u∗, r∗, t), r∗(T ) = 0,

∃r > 0,∀u ∈ Br(u∗) ∩ U : Ĥu(x∗,u∗, r∗, t)(u− u∗) ≥ 0

where

Ĥ(x,u, r, t) = L(x,u, t) + r>f̂(x,u, t)

is the Hamiltonian, f̂ is the inexact model (3), and r
is defined by (5). We note that (28) provides the first
order necessary conditions of optimality derived using
the inexact model (3) but evaluated along the measured
trajectory x∗ of the controlled system f . �

Theorem 3 (iii) implies that the control input at termina-
tion u∗ differs from the offline computed inexact model-
based optimal control input, becasue u∗ satisfies the co-
state equation in (28) along the measured trajectory of the
system f as opposed to satisfying the co-state equation
along the trajectory predicted by the inexact model f̂ . The
implication of this feature is shown by three examples in
Section V.

V. EVALUATION

We solve three examples using Algorithm 1.
(1) In Section V-A, we solve a scalar linear quadratic

regulator (LQR) with an inexact model. We use this
example to analytically show that the online computed
feedback controller reduces the cost and improves ro-
bustness to parametric model uncertainty compared to the
offline computed optimal feedback controller, when both
controllers use the same inexact model.

(2) In Section V-B, we solve fifty large scale, finite time
horizon, constrained linear quadratic regulators (cLQR)
using inexact (open-loop unstable) models. In these exam-
ples, Algorithm 1 simultaneously reduces the cost, and has
lower online computationally requirement than an MPC
method developed to solve cLQR problems.

(3) In Section V-C, we solve a complex optimal control
problem with unknown and changing dynamics. We use
this example to demonstrate the usefulness of the proposed
online optimal control method in a challenging application.

In all three examples we compare the solution provided
by Algorithm 1 to the ideal benchmark, which is the
optimal solution obtained using the exact model.

A. Linear Quadratic Regulator

Consider a scalar unconstrained linear quadratic regula-
tor [60]–[62]

min
u(·)
I[u(·)] = min

u

1

2

∫ ∞
0

(qx2 + u2)dt (29)

subject to: ẋ = f(x, u) = ax+ bu, x(0) = x0 (30)

where x ∈ R is the state, u ∈ R is the control input,
q ≥ 0 is the weight of the state in the running cost while
a, b 6= 0 ∈ R are the model parameters.

Assumption 5 (Inexact model). The exact model of the
system (30) is not known. The inexact model is given by

ẋ = f̂(x, u) = âx+ b̂u (31)
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where â, b̂ 6= 0 ∈ R.

Next, we analytically derive the controller which can
be online computed using Algorithm 1. We define the
Hamiltonian function using the inexact model

Ĥ =
1

2
qx2 +

1

2
u2 + r(âx+ b̂u)

and derive the co-state equation and the control input

ṙ = −Ĥx = −qx− âr, lim
t→∞

r(t) = 0,

u∗ = argmin
u
Ĥ = argmin

u

[
1

2
u2 + rb̂u

]
where the state x is measured from the system (30). The
analytical solution of this problem is given by

u∗(x) = −k∗x = −k(a, b, q; â, b̂)x (32)

where

k(a, b, q; â, b̂) =
1

b

(
a+ â

2
+

√(
a+ â

2

)2

+ b̂bq

)
. (33)

The exact model-based controller is given by

uopt(x) = −koptx = −k(a, b, q; a, b)x. (34)

The inexact model-based optimal controller is given by

û(x) = −k̂x = −k(â, b̂, q; â, b̂)x. (35)

Remark 5. Controller (32) requires the exact parameters
of the system a and b, and as such, it cannot be directly
implemented in practice. However, controller (32) can be
online computed using Algorithm 1 which requires the
measured state of the system x and the inexact model (31)
but does not require the exact parameters a and b, or the
exact model of the system (30). This makes (32) online
computable and implementable in practice.

Figure 1 shows the aforementioned three controllers
together with the solution computed using Algorithm 1
(black line) and the solution computed using the MPC
method [63] (gray line). Figure 1 shows that the MPC
method recovers the inexact model-based optimal con-
troller (35), as ideally expected. According to Fig. 1,
Algorithm 1 is more advantageous than the inexact model-
based optimal controller (35) in this example.

Figure 2 shows the cost of the three controllers (32),
(34) and (35), together with the cost obtained using Algo-
rithm 1 (black dots) and the MPC method [63] (gray dots).
The MPC method behaves as ideally expected; it recovers
the cost of the offline computed inexact model-based
optimal controller (35). We also observe that Algorithm
1 significantly improves the robustness of the closed-loop
system to model parameter uncertainty compared to the
inexact model-based optimal controller (35).

The following two Lemmas substantiate the aforemen-
tioned observations for scalar LQR problems.
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Fig. 1: (a) State. (b) Control. The model parameters are given
by: q = 1, a = 0.5, â = −1, b = b̂ = 1 and T = 15.
The model predictive controller uses a ∆t = 0.01 time step
and a TMPC = 6 (nt = 600) time horizon. With this setting,
the MPC 600 solution (gray lines) is nearly identical to the
offline computed inexact model-based optimal controller û(x)
(35) (red lines). Algorithm 1 recovers u∗(x) given by (32) (black
lines). The optimal controller uopt(x) (34) that uses the exact but
practically unattainable model is shown for reference (blue line).
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2
(a + q

a
). The model parameters are given by: q = 1,

a = 0.5, b = b̂ = 1, and T = 15. The model predictive controller
uses a ∆t = 0.01 time step and a TMPC = 6 (nt = 600) time
horizon. With this setting, the MPC solution is nearly identical
to the offline computed inexact model-based optimal controller
û(x) (35). On the other hand, Algorithm 1 recovers u∗(x) in
(32).

Lemma 1 (Improved robustness). The online computable
controller (32) is more robust to model parameter un-
certainty than the inexact model-based optimal controller
(35), when both controllers are computed using the same
inexact model (31) and are applied to the system (30):

(â, b̂) ∈ Aλ̂=a−bk̂<0 ⊂ Aλ∗=a−bk∗<0 ⊂ R2 (36)

where Aλ<0 defines the set of model parameters which
lead to negative closed-loop eigenvalue λ < 0.

Proof. For a system (30) with stable open-loop dynamics
a < 0, b > 0, q ≥ 0, the closed-loop stability is guaranteed
by both controllers (32), (35) for any â ∈ R and b̂ > 0.

For a system (30) with zero open-loop dynamics a =
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0, b > 0, q > 0, the closed-loop stability is guaranteed by
both controllers (32), (35) for any â ∈ R and b̂ > 0.

For a system (30) with unstable open-loop dynamics
a > 0, b > 0, q > 0, the closed-loop stability of the system
controlled with (35) is guaranteed under the following
conditions

Aλ̂<0 =

{
â ∈ R, b̂ > 0 : (37)

â > 0, (a2 ≤ b2q) ∨
(
a2 > b2q, â

b̂
> a

2b −
bq
2a

)
â ≤ 0,

(
a2 < b2q, â

b̂
> a

2b −
bq
2a

) }
while the closed-loop stability of the system controlled
with (32) is guaranteed by

Aλ∗<0 =

{
â ∈ R, b̂ > 0 :â > 0 ∨ â ≤ 0,

â

b̂
> −bq

a

}
.

(38)

Based on (37) and (38), (36) holds if

a

2b
− bq

2a
> −bq

a
⇔ a2 + b2q > 0.

This completes the proof. �

Lemma 2 (Reduced cost). Within the set of inexact models
that lead to finite cost (â, b̂) ∈ Aλ̂<0, for any inexact open-
loop dynamics â there exists a subset of inexact control
dynamics |b − b̂| < ε such that the proposed feedback
controller (32) has lower cost compared to the model-
based feedback controller (35):

∃ε > 0 such that ∀(â, |b̂− b| < ε) ∈ Aλ̂<0 :

I[uopt(·)] ≤ I[u∗(·)] ≤ I[û(·)].
(39)

The equalities hold with â = a and b̂ = b.

Proof. According to (32)–(35), for all a, b > 0, q ≥ 0 and
(â, b̂ = b) ∧ (â = a, b̂) ∈ Aλ̂<0, the following relations
hold

(â < a, b̂ = b) ∨ (â = a, b̂ > b) : k̂ < k∗ < kopt,

(â > a, b̂ = b) ∨ (â = a, b̂ < b) : kopt < k∗ < k̂.
(40)

Due to the continuity of k in (33) with respect to b̂,

∃ε > 0 such that ∀(â, |b̂− b| < ε) ∈ Aλ̂<0, (40) holds.
(41)

Also, for any controller u(x) = −kx that assures closed-
loop stability bk − a > 0, the cost (29) is given by:

∀(â, b̂) ∈ Aλ̂<0 : I[u(x)] =
x20
4

k2 + q

bk − a
<∞. (42)

This cost is strictly convex with respect to k and has a
unique global minimum for k = kopt. Consequently, (40)–
(42) imply (39) for the inexact parameters in (41). �

Remark 6. There are partially model-free RL algorithms
that do not require the open-loop dynamics of the system
[62], and model-free RL algorithms that work without
any information about the system model [64]. Both of

these algorithms are developed for unconstrained linear
quadratic optimal control problems, and can be used to
recover the exact optimal solution of (29)-(30) shown in
Figs. 1 and 2 (blue lines). This is possible because for
unconstrained linear quadratic optimal control problems
the exact analytical form of the value function (quadratic
with respect to the state) and the exact analytical form
of the optimal controller (linear with respect to the state)
are known, and this information is used in [62], [64] to
replace the system model. The same is achievable if one
can learn the exact system model. Extending this idea to
high-dimensional, multiple-input, control constrained and
nonlinear optimal control problems remains challenging.

The simple case study problem considered in this sec-
tion was analytically solvable, and had a purpose to exem-
plify the benefits of Algorithm 1. Although the analytical
derivation presented in this section is not afforded for more
complex problems, Algorithm 1 may still be advantageous,
as it provides an online computed near-optimal feedback
controller that does not rely on inexact model-based future
prediction. In what follows, we support this point with
two general numerical examples. The formal extension of
Lemma 1 and 2 to more complex systems remains the
topic of future research.

B. Large-scale constrained LQR example

We consider a finite time horizon control constrained
linear quadratic regulator

min
u(·)∈U

I[u(·)] =
1

2

∫ T

0

(x>Qx + u>Ru)dt (43)

subject to : ẋ = Ax + Bu and x(0) = x0 (44)

where x ∈ Rn, u ∈ Rm, Q ∈ Rn×n, R ∈ Rm×m, A ∈
Rn×n, B ∈ Rn×m, and

∀t ∈ T : u(t) ∈ U = {u ∈ Rm : −umax � u � umax}.
(45)

We make the following assumption:

Assumption 6 (LQR with inexact model). (i) Q is positive
semi-definite, R is positive definite.

(ii) The system is unknown and open-loop unstable

max<λ(A) > 0.

(iii) The inexact model of the system is given by

ẋ = Âεx + B̂εu

where Âε = A − εI ∈ Rn×n, B̂ε = (1 − ε)B ∈ Rn×m

and ε ∈ [0, 1).
(iv) For ∀ε ∈ [0, 1): (Âε, B̂ε) are stabilizable, and

(Âε,Q
1
2 ) are detectable.

Assumptions 6 (i,iv) ensure that there exist nonzero
initial conditions for which the system can be stabilized
with control inputs that satisfy (45), see [65]. Assumptions
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Fig. 3: (a) Normalized cost error = (I − Iopt)/Iopt × 100% for
the online optimization (black circles), the MPC method (gray
squares nt = 10 and dark gray triangles nt = 20) and the
model-based optimal feedback controller (light gray diamonds).
(b,c) Norm of the state trajectories and control functions. (d,e)
State and control for ε = 0.35. The cLQR problem has n = 10
states and m = 10 control inputs. The eigenvalues of the open-
loop system are λ(A) = {− 1

4
+ i−1

n−1
1
2
}i∈{1,...,n} ∈ [− 1

4
, 1
4
],

the control matrix is B = I10, the control constraints are U =
[− 1

2
, 1
2
]10, the time step is ∆t = 0.1, the time horizon is T = 5,

the initial conditions are x0 = {−1+2 i−1
n−1
}i∈{1,...,n} ∈ [−1, 1]

while the weights in the running cost are Q = I10 and R = I10.
We solve this cLQR optimization problem for fifty uniformly
distributed grid points in ε ∈ [0, 1

2
].

6 (ii,iii) make the open-loop unstable system (44) more
difficult to stabilize as ε becomes larger.

Figure 3 shows the cost when the optimal control
problem (43) is solved using Algorithm 1 (black), the MPC
method [63] with a shorter prediction horizon (gray) and a
longer prediction horizon (dark gray), and the model-based
optimal feedback controller [46], [48] (light gray).

According to Fig. 3, Algorithm 1 provides lower cost
compared to all three alternative methods in this example.
Furthermore, Algorithm 1 provides slower online com-
putation compared to the pre-computed optimal feedback
controller (light gray lines), but faster online computation
compared to the MPC methods (gray and dark gray lines).
The following remark substantiates the latter assertion
independent of the considered problem, and the details of
the implementation used for the numerical calculation.

Remark 7 (Computational complexity). The worst-case
online computational complexity of the MPC method [63]
is O(ntm

3); it linearly scales with the time horizon used

to calculate the control inputs 1 ≤ nt ≤ nT . This
linear scaling is what can be achieved with most efficient
nonlinear MPC methods [5] (Section 2.6.1). Shorter time
horizon (smaller nt) leads to faster computation, but it
also leads to larger cost (see Fig. 3 gray and dark gray)
and reduced robustness to parametric model uncertainty.
For example, the shortest time horizon nt = 1 does not
render the closed-loop response stable in this example.
The worst-case online computational complexity of Al-
gorithm 1 is O(m3) (10) which corresponds to nt = 1
when compared to MPC methods. The online computa-
tional cost comes from the point-wise minimization of
the Hamiltonian asserted by the Maximum Principle [2].
Consequently, Algorithm 1 does not trade off optimality to
reduce the online computational cost.

Remark 8 (Alternative RL methods). The RL methods
[62], [64] recalled in Remark 6 are not applicable to (43)-
(44), as they are developed for unconstrained problems.
Alternative partially model-free RL formulations [23],
[66], or completely model-free formulations [67], [68]
are developed to solve infinite horizon optimal stabiliza-
tion problems where the feedback control law is time-
invariant. In finite horizon optimal control, the control
law is time-varying, even if the dynamics and the cost
are time-invariant (43)-(44). There are number of recently
developed RL methods to solve finite time horizon optimal
control problems that do not treat constraints [29], [32],
[69], or use a non-quadratic control cost [30], [31], [33],
[70] to relax the hard constraints (45) into soft constraints.
As noted in [23], the constrained LQR problem (43)–(45)
does not fit into the setting of these methods. Nevertheless,
model-free finite horizon RL methods may be used to
approximately solve (43)–(45), and could, in principle,
reduce the model bias compared to our proposed method,
provided they can learn the time and state dependent
relation between the control policy, value function, or the
co-state. However, learning these functions for finite time
horizon, nonlinear, input constrained, and high dimen-
sional optimal control problems (the cLQR problem here
has n = 10 states and m = 10 control inputs) requires
complex function approximators, a large amount of data,
and a means to ensure persistent excitation [34].

Remark 9 (Alternative ILC methods). Iterative learning
control methods [15], [16] are developed to solve tracking
problems, where the desired trajectory at convergence is
known a’priory, while our proposed method is developed
to solve optimal control problems (1), with no notion of
a desired trajectory. Some ILC methods formulate the
tracking problem as an iterative optimization [18]–[20]
or optimal control problem [71], [72], and consequently,
these methods may appear similar to our proposed method
when applied to an LQR problem with zero desired tra-
jectory. This is mainly because, ILC methods minimize an
LQR-type quadratic cost; the tracking error within each
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Fig. 4: (a) Normalized cost for the exact dynamics (black) and three different inexact dynamics (red, blue, and green). (b-e) Frame
sequence of the motion. The robot is composed of three links with point masses at the end of the links. The physical parameters of
the robot are: link lengths l1 = l2 = l3 = 1 m; masses m1 = m2 = 1 kg and m3+∆m where m3 = 2 kg and ∆m ∈ {0, 1, 2, 3} kg
(the mass of the system is m0 = 4 kg while the masses used in the inexact models are mε ∈ [4, 5, 6, 7] kg); stiffness and damping
parameters K = diag(12, 6, 3) Nm/rad, B = diag(0.5, 0.5, 0.5) Nms/rad; control constraints umax = π × [1, 1, 1]>; bandwidth of
the closed-loop motor dynamics β = 5. The optimization problem has the following parameters: terminal time T = 4 s; terminal
state xd = [π

2
, π
2
, π
2
, 0, 0, 0, 0, 0, 0, 0, 0, 0]; terminal weight S = diag(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0); weight of the running cost

w = 2× 10−6. The initial state is: x0 = [−π
2
,−π

2
,−π

2
, 0, 0, 0,−π

2
,−π

2
,−π

2
, 0, 0, 0]. The optimization problem is solved online.

The control input is initialized with zero u0(·) = 0.

iteration and the change of the control inputs between
iterations. However, by iteratively minimizing such LQR-
type cost, ILC methods actually solves a singular optimal
control problem where only the tracking error is mini-
mized at convergence [71]. This singular optimal control
problem formulation is limited compared to our proposed
formulation (1) even in the simplest linear quadratic
setting; for example, it does not recover the solution of
the regular LQR problem (43) unless the desired trajectory
coincides with the optimal trajectory of the LQR problem.

C. Unknown and Changing Dynamics
In this section, we consider a challenging optimal

control problem where the unknown dynamics of the
system changes. One way to solve such problem is to
learn the changing model of the system. Such approach
is limited when the dynamics significantly changes on
a short timescale. Here, we consider a scenario where
the unknown dynamics abruptly changes at a time scale
short to learn the new model but long enough for the
online iterative optimal control to converge. We show that
Algorithm 1 is robust enough to deal with such scenario;
it finds the improved control under large model error.

The system we consider is a three-link robot driven by
three visco-elastic actuators. The model of the robot and
the actuators is given by [17]

ẋ = f(x,u) =


q̇

−M(q)−1[F(q, q̇) + FA(q, q̇,qm)]
q̇m

−2βq̇m − β2qm + β2u


(46)

where x = [q, q̇,qm, q̇m]> ∈ R12 are the states, q =
[q1, q2, q3]> are the link angles, qm = [qm1, qm2, qm3]>

are the motor positions, M ∈ R3×3 is a positive definite
mass matrix, F ∈ R3 denotes the inertial and gravitational
forces, FA = −K(q−qm)−Bq̇ are the forces produced
by the actuators, while K ∈ R3×3 and B ∈ R3×3 are
positive definite matrices. The motors are driven by range
limited control inputs

∀t ∈ T : u(t) ∈ U = {u ∈ Rm : −umax � u � umax}.

The closed-loop dynamics of the motors is defined by β ∈
(0,∞) where larger β means faster change in qm.

We assume that the inexact model of the system (46)
is known, and we consider a problem where the dynamics
of the system changes. The change of the exact dynamics
is achieved by attaching a mass to the end of the robot,
see Fig. 4(b-e). The added mass makes the total mass of
the robot change 25% three times

ε =
mε −m0

m0
× 100% ∈ {0, 25, 50, 75}%

where m0 is the total mass of the system while mε is the
total mass used in the inexact model of the system.

The optimal control problem is defined by

min
u(·)∈U

(x(T )− xd)
>S(x(T )− xd) + w

∫ T

0

u(t)>u(t)dt

subject to: ẋ = f(x,u) and x(0) = x0 (47)

where xd ∈ R12 is the desired terminal state, S ∈ R12×12

is the positive semi-definite terminal weight, while w ∈
R+ is the weight of the running cost.
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Figure 4 summarizes the results obtained by Algorithm
1. When the model is exact ε = 0%, the cost (black
dots) converges to the optimal cost (black star) within less
than 30 iterations, see Figs. 4a,b. The rapid convergence
is achieved with zero control at initialization.

When the model error is moderate ε ∈ {25, 50}%,
the cost decreases and terminates in approximately 40
iterations, see Fig. 4a (red and blue dots). The frame
sequences show that the robot reach the target position,
see Fig. 4c,d due to the minimization of the terminal cost
in (47). The final solution in these cases differs from the
exact optimal solution, see Fig. 4a (red and blue stars).

Finally, when the model error is large ε = 75%, the cost
decreases slowly, and the solution obtained after 60 itera-
tions does not make the robot reach the target position, see
Fig. 4a,d (green dots). In this case, the terminal solution
significantly differs from the exact optimal solution, see
Fig. 4a (green star) and Fig. 4b,e.

This example shows that Algorithm 1 can be used to
robustly implement a near optimal feedback controller
online, given imperfect model information for systems
with both unknown and changing dynamics.

Remark 10. Assuming exact dynamics, efficient MPC
methods may be used to approximately solve (47) [37],
[73], but the online computational cost of these methods
cannot be reduce down to point-wise minimization of the
Hamiltonian (see Remark 3), unless the optimal value
function is known. The optimal control problem (47) does
not fit into ILC formulations that solve tracking problems
[15], [16] or assume linear [18]–[20] and exact dynamics
[22]. Model-free RL algorithms mentioned in Remark
9 that could solve finite horizon constrained nonlinear
optimal control problems use neural networks to approx-
imate the control policy, value function, and the co-state
[30]–[32], [70]. However, to reasonably well approximate
the control policy, value function, and the co-state for
input constrained, nonlinear, high-dimensional, and open-
loop unstable systems, for example (46), neural network
approximation requires large number of basis functions
and large amount of training data [29], [32], [34], [67].
These factors limit the applicability of neural network
based methods in tasks where the dynamics changes in
a short timescale, see Fig. 4(a).

VI. CONCLUSION

In this paper we presented an iterative online feedback
control algorithm to efficiently solve finite-time horizon
control constrained nonlinear optimal control problems. It
is proved that the proposed algorithm converges to a lo-
cally optimal feedback controller when the model is exact
(Section IV Theorems 1 and 2), and that the controller
satisfies the local necessary conditions of optimality along
the measured trajectory of the system when the model is
inexact (Section IV Theorem 3).

VII. APPENDIX

Here we present the propositions and proofs that support
the material in Section IV.

A. Propositions

Proposition 4 (Bounded derivatives). There exist con-
stants cf , cL ∈ (0,∞) such that

∀(x,u, t) ∈ X× U× T :

cf = max{‖fx‖, ‖fu‖},
cL = max{‖Lx‖, ‖Lu‖, ‖Lxx‖, ‖Lxu‖}.

Proof. The proposition follows from the boundedness
theorem [74] and Assumptions 1(ii) and 2(i); continuous
functions on a compact set X× U× T are bounded. �

Proposition 5 (Bounded inexact derivatives). Based on
Proposition 4 and Assumption 3, the derivatives of the
inexact dynamics are bounded.

Proof. Using the triangle inequality, we obtain

‖f̂x‖≤ ‖fx‖+‖f̂x − fx‖≤ cf + εx,

‖f̂u‖≤ ‖fu‖+‖f̂u − fu‖≤ cf + εu

where cf , εx, εu ∈ [0,∞). �

Proposition 6 (Local Lipschitz continuity). ∀x,x +
δx ∈ X and ∀u,u + δu ∈ U there exist constants
c1, c2, c3, c4, c5 ∈ (0,∞) independent of t ∈ T, such that

‖f(x + δx,u + δu, t)− f(x,u, t)‖≤ c1(‖δx‖+‖δu‖),
‖fx(x + δx,u + δu, t)− fx(x,u, t)‖≤ c2(‖δx‖+‖δu‖),
‖fu(x + δx,u + δu, t)− fx(x,u, t)‖≤ c3(‖δx‖+‖δu‖),
‖Lx(x + δx,u + δu, t)− Lx(x,u, t)‖≤ c4(‖δx‖+‖δu‖),
‖Lu(x + δx,u + δu, t)− Lu(x,u, t)‖≤ c5(‖δx‖+‖δu‖).

Proof. The proof follows from Assumptions 1(ii) and 2(i).
�

Proposition 7 (Boundedness of R and r). The coefficients
R and r in the cQP (6), computed using (4) and (5), are
bounded.

For any admissible control function ∀t ∈ T : u(t) ∈ U
and corresponding state function ∀t ∈ T : x(t) ∈ X; there
exist constants cR, cr ∈ (0,∞) such that

∀t ∈ T : ‖R(t)‖≤ cR, ‖r(t)‖≤ cr.

Proof. First, we define τ = T − t and

R(τ) = ‖R(T − τ)‖= ‖R(t)‖.

Second, we derive

d

dτ
R(τ) = − d

dt
‖R(t)‖≤ ‖Ṙ(t)‖≤ 2‖f̂x‖R(τ) + ‖Lxx‖.

Third, using Proposition 4 and 5, we transform the above
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inequality into

d

dτ
R(τ) ≤ 2(cf + εx)R(τ) + cL, R(0) = 0.

Finally, using Gronwall’s inequality, we obtain

‖R(t)‖= R(τ) ≤ cL
2(cf + εx)

(e2(cf+εx)T − 1) = cR.

(48)
Similarly, we derive

‖r(t)‖≤ cL
cf + εx

(e(cf+εx)T − 1) = cr. (49)

In summary, cR, cr ∈ (0,∞) are constants expressible as
functions of cf , cL, εx and T . �

Proposition 8 (Boundedness of the state and control vari-
ations). The following inequality relations hold between
the state and control variations

‖δxi‖L1 ≤ ec1T ‖δui‖L1 , (50)

‖δxi‖2L2 ≤
1

2
c21T

2e2c1T ‖δui‖2L2 , (51)∫ T

0

‖δxi(t)‖‖δui(t)‖dt ≤
√

2

2
c1Te

c1T ‖δui‖2L2 . (52)

Proof. (i) Based on Proposition 6, we obtain

d

dt
‖δxi(t)‖≤ ‖δẋi(t)‖≤ c1(‖δxi(t)‖+‖δui(t)‖). (53)

Application of Gronwall’s inequality to (53) leads to

‖δxi(t)‖≤ c1ec1t‖δui‖L1 . (54)

By integrating (54) we further obtain

‖δxi‖L1≤ ‖δui‖L1

∫ T

0

c1e
c1tdt ≤ ec1T ‖δui‖L1 .

This relation proves (50).
(ii) Using Schwarz’s inequality, (54) leads to

‖δxi(t)‖2≤ c21e2c1t‖δui‖2L1≤ tc21e2c1T ‖δui‖2L2 . (55)

By integrating (55) we obtain

‖δxi‖2L2≤ c21e2c1T ‖δui‖2L2

∫ T

0

tdt ≤ c21T
2e2c1T

2
‖δui‖2L2 .

(56)

This relation proves (51).
(iii) Finally, we use Schwarz’s inequality and (56) to

obtain(∫ T

0

‖δxi(t)‖‖δui(t)‖dt
)2

≤‖δxi‖2L2‖δui‖2L2

≤c
2
1T

2e2c1T

2
‖δui‖4L2 .

(57)

The positive square root of (57) is (52). �

B. Proof of Proposition 1
Proof. We define the Hamiltonian

H(x,u, r, t) = L(x,u, t) + r>f(x,u, t) (58)

where f(x,u, t) is the dynamics in (1) while r is the co-
state defined in (5). Using (58), we define the change in
the cost between two subsequent iterations

∆Ii =

∫ T

0

[L(xi,ui, t)− L(xi−1,ui−1, t)]dt

=

∫ T

0

[
H(xi,ui, ri−1, t)−H(xi−1,ui, ri−1, t) (59)

+

∫ T

0

[
H(xi−1,ui, ri−1, t)−H(xi−1,ui−1, ri−1, t)

]
dt

−
∫ T

0

(ri−1)>δẋidt = ∆Ii1 + ∆Ii2 + ∆Ii3.

(i) The first integral in (59) can be transformed into

∆Ii1 =

∫ T

0

[ ∫ 1

0

Hx(xi−1 + τδxi,ui, ri−1, t)δxidτ

]
dt

=

∫ T

0

Hx(xi−1,ui−1, ri−1, t)δxidt (60)

+

∫ T

0

[ ∫ 1

0

[
Hx(xi−1 + τδxi,ui, ri−1, t)

−Hx(xi−1,ui−1, ri−1, t)
]
δxidτ

]
dt.

The last integral in (60) can be upper bounded using (58),
Propositions 6 and 7

∆Ii1 ≤
∫ T

0

Hx(xi−1,ui−1, ri−1, t)δxidt

+

∫ T

0

(crc2 + c4)(
1

2
‖δxi‖2+‖δxi‖‖δui‖)dt.

(61)

(ii) The second term in (59) can be similarly transformed

∆Ii2 ≤
∫ T

0

Hu(xi−1,ui−1, ri−1, t)δuidt

+

∫ T

0

(crc3 + c5)
1

2
‖δui‖2dt.

(62)

Also, the solution of the cQP (6) δui satisfies the following
inequality [59]:

∃r > 0,∀δu + ui−1 ∈ Br(ui−1) ∩ U :

∂[ 12δu
>LR

uuδu + αi(δu)>b(xi, t)]

∂δu

∣∣∣∣
δui

(δu− δui)

=[(δui)>LR
uu + αi(δxi)>(Lxu + Ri−1f̂u)

+ αi(Lu + (ri−1)>f̂u)](δu− δui) ≥ 0.

By setting δu = 0, the above relation implies

Hu(xi−1,ui−1, ri−1, t)δui = [Lu + (ri−1)>fu]δui

≤ − 1

αi
(δui)>LR

uuδu
i − (δxi)>(Lxu + Ri−1f̂u)δui

+ (ri−1)>(fu − f̂u)δui. (63)
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(iii) Finally, we use (58), (5), δxi(0) = 0 and ri−1(T ) = 0
to simplify the third term in (59)

∆Ii3 =

∫ T

0

[
Hx(xi−1,ui−1, ri−1, t)δxi − (ri−1)>δẋi

]
dt

−
∫ T

0

Hx(xi−1,ui−1, ri−1, t)δxidt

=

∫ T

0

[Lx + (ri−1)>fx + (ṙi−1)>]δxidt− (ri−1)>δxi
∣∣T
0

−
∫ T

0

Hx(xi−1,ui−1, ri−1, t)δxidt (64)

=

∫ T

0

[(ri−1)>(fx − f̂x)−Hx(xi−1,ui−1, ri−1, t)]δxidt.

(iv) Substituting (61)–(64) into (59), we obtain

∆Ii ≤
∫ T

0

[
(ri−1)>[(fx − f̂x)δxi + (fu − f̂u)δui]

− 1

αi
(δui)>LR

uuδu
i − (δxi)>(Lxu + Ri−1f̂u)δui

+(crc2 + c4)(
1

2
‖δxi‖2+‖δxi‖‖δui‖) (65)

+(crc3 + c5)
1

2
‖δui‖2

]
dt.

Next, we introduce cc = max{c1, c2, c3, c4, c5} ∈ (0,∞),
and transform (65) into the following inequality relation

∆Ii ≤
∫ T

0

[
−
(
λimin

αi
− 1

2
(cr + 1)cc

)
‖δui‖2 (66)

+
1

2
(cr + 1)cc‖δxi‖2

+
(
‖Lxu‖+‖Ri−1‖(‖fu‖+‖f̂u − fu‖)

)
‖δxi‖‖δui‖

+(cr + 1)cc‖δxi‖‖δui‖

+‖ri−1‖(‖fx − f̂x‖‖δxi‖+‖fu − f̂u‖‖δui‖)
]
dt.

Finally, we substitute (48)–(52) into (66), and obtain

∆Ii ≤ −
(
λimin

αi
− cu

)
‖δui‖2L2+cε‖δui‖L1 (67)

where

cu =

√
2

2
[cL + cR(cf + εu)]ccTe

ccT

+
1

2

(
1 +

√
2

2
ccTe

ccT

)2

(cr + 1)cc,

cε =cr(e
ccT εx + εu)

(68)

are constants independent of i ∈ N. �

C. Proof of Proposition 2

Proof. Substituting cR (48) and cr (49) into (68), we
obtain the following relations

cu =

√
2

2
cLccTe

ccT +
1

2

(
1 +

√
2

2
ccTe

ccT

)2

cc

+

√
2

4
cL
cf + εu
cf + εx

(e2(cf+εx)T − 1)ccTe
ccT

+
1

2

(
1 +

√
2

2
ccTe

ccT

)2
cLcc
cf + εx

(e(cf+εx)T − 1),

cε =
1

2
cL
eccT εx + εu
cf + εx

(e(cf+εx)T − 1).

Assuming no model error εx = εu = 0, we obtain

cu = cumin > 0 and cε = cεmin = 0.

Also, for any model error εx, εu ∈ [0,∞) and cL, cf ∈
(0,∞), we obtain

∂cu
∂εx

> 0,
∂cu
∂εu

> 0,
∂cε
∂εx

> 0 and
∂cε
∂εu

> 0.

Therefore, cu and cε are monotonically increasing func-
tions of εx and εu. �

D. Proof of Proposition 3

Proof. First, we find the solution of the cQP (6) as α →
0+. For this purpose, let us consider

δu(x+δx, t;α) = argmin
δu∈δU

1

2
δu>LR

uuδu+αδu>b(x+δx, t)

(69)
where

b(x + δx, t) = (Lux + f̂>u R)δx + Lu + f̂>u r. (70)

We note that LR
uu � Iλimin and ∀i : λimin > 0 imply

∀t ∈ T : lim
α→0+

δu(x, t;α) = 0 (71)

while (71) and (54) imply

∀t ∈ T : lim
α→0+

δx(t;α) = 0. (72)

Based on (71) and (72), the first term in (70) is negligible
compared to the second term

lim
α→0+

b(x + δx, t) = b(x, t).

This relation implies δu(x + δx, t;α) = δu(x, t;α) for
α → 0+. Furthermore, Theorem 5.4.1 in [75] asserts
that the solution of a strictly convex parametric quadratic
program (69)|δx=0 is continuous, and piecewise affine
with respect to α ∈ (0, 1]. Therefore, given the positive
definiteness of LR

uu in (69), we obtain

δu(x + δx, t;α) = δu(x, t;α) = c(t)α if α→ 0+. (73)

(i) Relation (73) implies

∀i ∈ N : δui(t) = ci(t)α if α→ 0+.
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Consequently,

∀i ∈ N : ‖δui‖L1= ‖ci‖L1α = ciδuα if α→ 0+. (74)

This proves the first part of the proposition.
(ii) In order to prove the second part of the proposition,

we assume that

∆Ii 6= 0 and ciδu = 0. (75)

Given ciδu = 0, (74) implies

‖δui‖L1= ciδuα = 0 if α→ 0+. (76)

Consequently, (76) and (50) imply

‖δxi‖L1= 0 if α→ 0+.

Becasue the control and state variations are zero in the
class of L1 functions, (8) implies that the variation of the
cost is also zero ∆Ii = 0. This contradicts the assumption
∆Ii 6= 0 in (75). �
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