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Abstract 

Knowledge of mathematical equivalence, the principle that two sides of an equation represent the 

same value, is a foundational concept in algebra, and this knowledge develops throughout 

elementary and middle school. We developed an assessment of equivalence knowledge using a 

construct modeling approach. Second through sixth graders (N = 175) completed the assessment 

on two occasions, two weeks apart.  Evidence supported the reliability and validity of the 

assessment along a number of dimensions, and the relative difficulty of items was consistent 

with the predictions from our construct map. By Grade 5, most students held a basic relational 

view of equivalence and were beginning to compare the two sides of an equation. This study 

provides insights into the order in which students typically learn different aspects of equivalence 

knowledge.  It also illustrates a powerful, but under-utilized, approach to measurement 

development that is particularly useful for developing measures meant to detect changes in 

knowledge over time or after intervention.   
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Assessing Knowledge of Mathematical Equivalence:  A Construct Modeling Approach 

The widespread goal of “algebra for all” underscores the importance of making algebra 

accessible to all students, not just those who aspire to careers in math and science. For example, 

high-school students who completed Algebra II were five times more likely to graduate from 

college than those who only completed Algebra I (Adelman, 2006). To increase students’ 

success in algebra, there is an emerging consensus that educators must re-conceptualize the 

nature of algebra as a continuous strand of reasoning throughout school rather than a course 

saved for middle or high school (National Council of Teachers of Mathematics, 2000).  Part of 

this effort entails assessing children’s early algebraic thinking. 

In the current paper, we describe development of an assessment of one component of 

early algebraic thinking – knowledge of mathematical equivalence. Mathematical equivalence, 

typically represented by the ‘=’ symbol, is the principle that two sides of an equation represent 

the same value. We employed a construct modeling approach (Wilson, 2003, 2005) and 

developed a construct map (i.e., a proposed continuum of knowledge progression) for students’ 

knowledge of mathematical equivalence.  We used the construct map to develop a 

comprehensive assessment, administered the assessment to students in Grades 2 to 6, and then 

used the data to evaluate and revise the construct map and the assessment. The findings provide 

insights into the typical sequence in which learners acquire equivalence knowledge. The study 

also illustrates an approach to developing measures that are particularly useful for detecting 

changes in knowledge over time or after intervention.   

Need for Reliable and Valid Measures 

Too often, researchers in education and psychology use measures that have not gone 

through a rigorous measurement development process, a process that is needed to provide 
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evidence for the validity of the measures (AERA/APA/NCME, 1999). For example, Hill and 

Shih (2009) found that less than 20% of studies published in the Journal for Research in 

Mathematics Education over the past 10 years had reported on the validity of the measures. As 

noted by Hill and Shih (2009): 

 Without conducting and reporting validation work on key independent and dependent 

variables, we cannot know the extent to which our instruments tap what they claim to.  

And without this knowledge, we cannot assess the validity of inferences drawn from 

studies.  The AERA/APA/NCME (testing) standards heavily emphasize the collection 

and reporting of such information in research studies (p. 248). 

The lack of evidence for the reliability and validity of measures applies to previous 

measures of mathematical equivalence knowledge.  First, there is no standard measure of 

equivalence knowledge; rather, researchers use their own self-designed measures (e.g., Baroody 

& Ginsburg, 1983; Jacobs, Franke, Carpenter, Levi, & Battey, 2007; Kieran, 1981; Li, Ding, 

Capraro, & Capraro, 2008; Rittle-Johnson, 2006).  Second, we could not find a study that 

reported evidence for the validity of a particular measure.  Third, only two studies reported 

information on the reliability of a measure, and this was restricted to reporting Cronbach’s alpha 

on scales containing about four items (Jacobs et al., 2007; Li et al., 2008). 

These measurement issues may help to explain some discrepancies in past findings.  For 

example, Knuth and colleagues (Knuth, Stephens, McNeil, & Alibali, 2006) reported that a 

majority of middle-school students in their study did not understand equivalence, whereas 

Matthews and Rittle-Johnson (2009) found that a majority of 5th graders in their sample did. 

Knuth and colleagues relied on students’ written definition of the equal sign; Matthews and 

Rittle-Johnson relied on students’ ability to solve equations with mathematical operations on 
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both sides of the equation (e.g., 3 + 7 + 5 = 3 + ).  Although both measure equivalence 

knowledge, providing a verbal definition is likely more difficult than solving problems, and 

differences in how knowledge of equivalence is assessed can lead to seemingly contradictory 

claims that may be resolved with closer attention to measurement. 

Knowledge of Mathematical Equivalence 

Although few previous studies have paid careful attention to measurement issues, a large 

number of studies have assessed children’s knowledge of mathematical equivalence (sometimes 

called mathematical equality). It is a fundamental algebraic concept that is accessible in the 

elementary grades (e.g., Jacobs et al., 2007; McNeil, 2007). Understanding mathematical 

equivalence requires understanding that the values on either side of the equal sign are the same.  

This specific knowledge about mathematical equations is distinct from knowledge of numerical 

equivalence. By four years of age, children can match sets of objects based on their quantity, 

��ð�esting that they have knowledge of numerical equivalence (e.g., Gelman & Gallistel, 

Mix, 1999).  Unfortunately, students do not seem to link their knowledge of numerical 

equivalence for sets of objects to interpreting and solving written equations like 8 + 4 =  + 5 

(Falkner, Levi, & Carpenter, 1999; Sherman & Bisanz, 2009).  

Knowledge of mathematical equivalence is a critical prerequisite for understanding 

higher-level algebra (MacGregor & Stacey, 1997). In particular, it is necessary for competently 

performing the same operation on both sides of an equation and for understanding equivalent 

expressions (Kieran, 1992; Steinberg, Sleeman, & Ktorza, 1990). For example, middle-school 

students who correctly define the equal sign are much more likely to solve equations correctly 

than those who do not (Knuth et al., 2006).   
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 Given the importance of mathematical equivalence, it is concerning that students often 

fail to understand it.  Many view the equal sign operationally, as a command to carry out 

arithmetic operations, rather than relationally, as an indicator of equivalence (e.g., Jacobs et al., 

2007; Kieran, 1981; McNeil & Alibali, 2005b). Evidence for this has primarily come from three 

different classes of equivalence tasks: (1) equation-solving items, such as 8 + 4 =  + 5, (2) 

equation-structure items, such as deciding if 3 + 5 = 5 + 3 is true or false, and (3) equal-sign-

definition items. To solve equations such as 8 + 4 =  + 5, most elementary-school students 

either add the numbers before the equal sign or add all the given numbers (e.g., respond that the 

answer is 12 or 17; Falkner et al., 1999).  Indeed, in a broad range of studies spanning 35 years 

of research, a majority of first through sixth graders treated the equal sign operationally when 

solving equations with operations on the right side or both sides of an equation, sometimes with 

as few as 10% of students solving the equations correctly (e.g., Alibali, 1999; Behr, Erlwanger, 

& Nichols, 1980; Falkner et al., 1999; Jacobs et al., 2007; Li et al., 2008; McNeil, 2007; Perry, 

1991; Powell & Fuchs, 2010; Rittle-Johnson, 2006; Rittle-Johnson & Alibali, 1999; Weaver, 

1973).  

 Similarly, students tend to not be comfortable with equation structures without a standard 

“a + b = c” structure (e.g., operations-equals-answer structure).  When asked to evaluate whether 

equations are true or false, most elementary-school children indicate that only equations with an 

operations-equals-answer structure are true (Baroody & Ginsburg, 1983; Behr et al., 1980; 

Falkner et al., 1999; Freiman & Lee, 2004; Li et al., 2008; Molina & Ambrose, 2006; Rittle-

Johnson & Alibali, 1999; Seo & Ginsburg, 2003). For example, in informal interviews, six- and 

seven-year-olds rejected non-standard equation structures and re-wrote them into an operations-

equals-answer structure, such as re-writing 3 = 3 as 0 + 3 = 3 (Behr et al., 1980).   



Assessing knowledge of mathematical equivalence p. 7 

 Finally, when defining the equal sign, first and second graders typically define it 

operationally as “what it adds up to” or “when two numbers are added, that’s what it turns out to 

be” (Behr et al., 1980; Ginsburg, 1977; Seo & Ginsburg, 2003). Students’ responses are not 

much more sophisticated in the later grades, with almost half of middle-school students in two 

recent studies giving operational definitions of the equal sign (Alibali, Knuth, Hattikudur, 

McNeil, & Stephens, 2007; Knuth et al., 2006).  

 Performance on all three classes of items for tapping children’s developing knowledge of 

equivalence suggests that an operational understanding of equivalence develops as the default 

knowledge representation and is not easy to overcome. However, difficulty understanding 

equivalence is not universal, as it is not prevalent in elementary-school students educated in 

some other countries such as China and Taiwan (Li et al., 2008; Watchorn, Lai, & Bisanz, 2009).   

The primary source of U.S. children’s difficulty understanding mathematical equivalence 

is thought to be their prior experiences with the equal sign (e.g., Baroody & Ginsburg, 1983; 

Carpenter, Franke, & Levi, 2003; Falkner et al., 1999; McNeil, 2007, 2008). Elementary-school 

children are thought to receive little direct, explicit instruction on the meaning of the equal sign. 

Rather, students may infer an incorrect meaning of the equal sign from repeated experience with 

limited equation structures (e.g., Baroody & Ginsburg, 1983; Carpenter et al., 2003; Falkner et 

al., 1999; McNeil, 2007, 2008). An analysis of two second-grade textbooks identified very few 

instances in which the equal sign was not presented in an operations-equals-answer structure 

(Seo & Ginsburg, 2003).  Falkner, et al., (1999) speculated that: 

Not much variety is evident in how the equals sign is typically used in the elementary 

school. Usually, the equals sign comes at the end of an equation and only one number 
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comes after it. With number sentences, such as 4 + 6 = 10 or 67 - 13 = 54, the children 

are correct to think of the equals sign as a signal to compute (p. 232).   

This operational understanding of equivalence is difficult to overcome.  For example, second- 

and third-grade children received direct instruction that the equal sign meant “the same as” 

during an experimental intervention. If this instruction was presented in the context of equations 

with an operations-equals-answer structure, they continued to solve equations with operations on 

both sides incorrectly (McNeil, 2008). 

What is less clear is how a correct understanding of mathematical equivalence develops. 

Recent research has shown that a substantial minority (often around 30%) of students in 

elementary school can solve equations with operations on both sides of the equal sign correctly, 

particularly fourth and fifth graders (e.g., Freiman & Lee, 2004; Matthews & Rittle-Johnson, 

2009; McNeil, 2007; McNeil & Alibali, 2004, 2005b; Oksuz, 2007; Rittle-Johnson, 2006).  By 

the end of middle school, a majority gave a relational definition of the equal sign (e.g., 60% of 

students in Alibali et al., 2007).  McNeil (2007) proposed that topics that contradict an 

operational view of the equal sign, such as equivalent fractions, inequalities and pre-algebra, are 

discussed in later elementary grades, and should help weaken an operational view and strengthen 

a relational view of the equal sign.  By sixth grade, students are being exposed to equations in a 

variety of formats in their textbooks (e.g., with no operations, such as “12 inches = 1 foot” “2/4 = 

1/2" and “x = 4”) (McNeil, et al., 2006). Analyses of how the equal sign is presented in third- to 

fifth-grade textbooks have not been reported, making it unclear when such variability in problem 

structures is introduced in textbooks.  Overall, correct understanding of equivalence may develop 

through implicit processes and may take many years to develop.  
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Construct Map for Mathematical Equivalence  

 The primary goal of the current study was to develop an assessment that could detect 

systematic changes in children’s knowledge of equivalence across elementary-school grades 

(2nd through 6th). To accomplish this, we utilized Mark Wilson’s Construct Modeling approach 

to measurement development (Wilson, 2003, 2005). The core idea is to develop and test a 

construct map, which is a representation of the continuum of knowledge through which people 

are thought to progress for the target construct. This continuum is often broken into different 

levels to help conceptualize the knowledge progression, but it is important to note that the 

continuous nature of the model means that the levels should not be interpreted as discrete stages. 

Our construct map for mathematical equivalence is presented in Table 1, with less 

sophisticated knowledge represented at the bottom and more advanced knowledge represented at 

the top.  The four knowledge levels differ primarily in the types of equations with which students 

are successful, starting with equations in an operations-equals-answer structure, then 

incorporating equations with operations on the right or no operations, and finally incorporating 

equations with operations on both sides (initially with single-digit numbers and eventually with 

multi-digit numbers that increase the value of using more sophisticated strategies).  Past research 

suggests the structure of the equation should be a primary influence on performance, regardless 

of item class (e.g., solving an equation vs. evaluating an equation as true or false), although this 

prediction has not been explicitly tested.  Prior research also indicates that knowing a relational 

definition of the equal sign is related to success on equations with operations on both sides of the 

equal sign (Alibali et al., 2007; Rittle-Johnson & Alibali, 1999).  

Past research has focused on two levels – a rigid operational view (Level 1) and a basic 

relational view (Level 3; see Table 1). We hypothesized that there would be a transition phase 
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between these two views, labeled Level 2: Flexible operational view.  In particular, we predicted 

that students would become less rigid and successfully solve equations and evaluate and encode 

equation structures that are atypical but remain compatible with an operational view of the equal 

sign, such as equations that are “backwards” (e.g., __ = 2 + 5; Behr et al., 1980) or that contain 

no operations (e.g., 3 = 3). By second grade, students have moderate levels of success solving 

these types of equations (Freiman & Lee, 2004; Weaver, 1973) and accepting statements with no 

operations as true (Seo & Ginsburg, 2003).  In addition, Carpenter, Franke and Levi (2003) 

proposed using equations in these formats to help transition students to understanding equations 

with operations on both sides. We did not expect children at this level to define the equal sign 

relationally. 

 We also hypothesized that some elementary-schools students would be developing 

knowledge of equivalence that went beyond a basic relational understanding.  This Level 4: 

Comparative Relational thinking captures success solving equations and evaluating equation 

structures by comparing the expressions on the two sides of the equal sign.  As a result, their 

reasoning need not be tied to specific computations. For example, students with a comparative 

understanding know that doing the same things to both sides of an equation maintains its 

equivalence, without needing to verify the equivalence relation with full computation (e.g., “If 

56 + 85 = 141, does 56 + 85 – 7 = 141 - 7?”) (Alibali et al., 2007; Steinberg et al., 1990). They 

also use compensatory strategies to ease calculations with large numbers, such as quickly solving 

28 + 32 = 27 +   by recognizing that 27 is one less than 28, so the unknown must be one more 

than 32 (Carpenter et al., 2003). We also expected that a relational definition of the equal sign 

would be dominant at this level, with students considering a relational definition of the equal 



Assessing knowledge of mathematical equivalence p. 11 

sign to be the best definition, and that students would have an explicit awareness that the equal 

sign divides the equation into two sides (Rittle-Johnson & Alibali, 1999). 

Although the construct map is presented as having four levels for descriptive purposes, 

our conception of the construct, as well as our statistical model, is continuous.  Knowledge 

change is expected to follow a gradual and dynamic progression, with less sophisticated 

knowledge sometimes coexisting and competing with more advanced knowledge (Siegler, 1996). 

For example, an operational view of equivalence can even be elicited from adults in certain 

circumstances (McNeil & Alibali, 2005a, 2005b). 

Current Study 

We used our construct map to guide creation of an assessment of mathematical 

equivalence knowledge, with items chosen to tap knowledge at each level of the construct map 

using a variety of item classes. We administered an initial long version of the assessment to 

children in grades 2 through 6, and two weeks later we administered a revised, shorter version of 

the assessment. We used an item response model to evaluate our construct map in addition to 

using classical test theory methods to provide additional evidence for the reliability and validity 

of the assessment (e.g., internal consistency, test-retest reliability). To provide some insights into 

a potential source of knowledge change, we also analyzed the textbooks used at the participating 

school for frequency of presentation of different equation structures.  

Method 

Participants 

Second- through sixth-grade students from ten classrooms at an urban parochial school 

participated. There were 184 participants with parental consent who completed the initial 

assessment, but 9 of these students were absent when we administered the revised assessment.  
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Of the 175 students who completed the revised assessment, 37 were in second grade (17 girls, 

mean age = 7.7 years), 43 were in third grade (27 girls, mean age = 8.9 years), 33 were in fourth 

grade (14 girls, mean age = 9.8 years), 34 were in fifth grade (17 girls, mean age = 10.7 years), 

and 28 were in sixth grade (13 girls, mean age = 11.7). The students were from a working to 

middle class community, and approximately 20% of students in the participating grades were 

from minority groups (approximately 8% African-American and 5% Hispanic).   

The school used the Iowa Tests of Basic Skills (ITBS; see http://www.education.uiowa. 

edu/itp/itbs/) as a standardized measure of educational progress. Students’ percentile ranks and 

grade equivalent scores in math and reading on the ITBS were obtained from student records. On 

average, students scored in the 60th percentile in math (range: 4th to 99th percentile) and the 

67th percentile in reading (range: 14th to 99th percentile). 

Each teacher completed a brief survey on how much time her students had spent on 5 

activities related to equivalence during the current school year, using a four-point scale ranging 

from none to a week or more. The most common activity was comparing numbers, and many 

students had also spent a week or more solving or seeing equations without an operations-equals-

answer structure (see Table 2).  The second graders had spent a fair amount of time discussing 

the meaning of the equal sign, but the older students had not. Finally, some second and third 

graders had solved equations with literal variables, and all the 4th - 6th students had. 

Test Development Procedure 

Overview. We developed a pool of possible assessment items from past research on 

mathematical equivalence. Items were selected and modified so that each level of the construct 

map was covered by at least two items in each of the three common item classes identified in the 

literature review - solving equations, evaluating the structure of equations, and defining the equal 
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sign. We piloted potential items with 24 2nd – 4th grade students at a local afterschool program 

(servicing a different school) to screen-out inappropriate items.  We worked with these pilot 

students one-on-one, and based on their responses and input, we eliminated or re-worded 

confusing items and created an initial assessment instrument that could be administered within a 

single 45-minute class period. This initial assessment was administered to ten classes of 2nd – 6th 

grade students. Analyses of these results and input of a domain expert informed the creation of 

two shorter, comparable forms of a revised assessment, which were administered to the same 

students two weeks later. All versions of the assessment had three sections based on the three 

item classes.  

Equation-solving items. These items tapped students’ abilities to solve equations at the 

four knowledge levels and were taken from four previous studies (Carpenter et al., 2003; Jacobs 

et al., 2007; Matthews & Rittle-Johnson, 2009; Weaver, 1973). The Level 4 items were adapted 

from the work of Carpenter and colleagues. For example, to solve 67 + 84 =  + 83, students 

can compare the expressions and know they need to add one to 67 since 83 is one less than 84, 

and answer 68, and students were encouraged to “try to find a shortcut so you don’t have to do 

all the adding” and some time pressure was used to discourage full computation. At this level, 

they can also compare sides to simplify and solve equations with multiple instances of a variable. 

For instance, given the equation “n + n + n + 2 = 17” they can solve it by first recognizing that “n 

+ n + n” must equal 15 and then using the fact that 3 fives are 15 to solve the problem (Jacobs et 

al., 2007). The initial assessment had 28 equation-solving items, and the revised assessment had 

11. 

Equation-structure items. These items were designed to probe students’ knowledge of 

valid equation structures, and the equations varied according to the criteria outlined in Table 1. A 
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majority of items asked students to evaluate equations as true or false, sometimes with follow-up 

prompts to explain their evaluations, and were taken from four previous studies (Baroody & 

Ginsburg, 1983; Behr et al., 1980; Carpenter et al., 2003; Warren, 2003). Other items asked 

students to reconstruct equations from memory (to measure encoding of the equation structure) 

or to identify the two sides of an equation (Matthews & Rittle-Johnson, 2009; McNeil & Alibali, 

2004; Rittle-Johnson & Alibali, 1999). The most advanced items assessed whether (a) students 

would compare the expressions on either side of the equal sign to determine whether an equation 

such as 89 + 44 = 87 + 46 was true (e.g., explain “true, because 89 is 2 more than 87, but 44 is 2 

less than 46”) or (b) accept doing the same thing to both sides of an equation, based on items 

from three studies (Alibali et al., 2007; Carpenter et al., 2003; Steinberg et al., 1990). The initial 

assessment had 31 equation-structure items; the revised assessment had 18.   

Equal-sign items.  These items were designed to probe students’ explicit knowledge of 

the equal sign. A core item asked students to define the equal sign (e.g., Behr et al., 1980; Rittle-

Johnson & Alibali, 1999; Seo & Ginsburg, 2003). Students were also asked to rate definitions of 

the equal sign (McNeil & Alibali, 2005a; Rittle-Johnson & Alibali, 1999) and to select the best 

definition of the equal sign, inspired by methods used in the psychology literature to assess 

people’s knowledge of concepts (Murphy, 2002).  Two easier items probed if students could 

recognize that the equal sign can be used to indicate equivalent values when no operators were 

involved (Sherman & Bisanz, 2009) and could recognize the equivalence of symbolic 

expressions (e.g., “5 + 5 is equal to 6 + 4”) (Rittle-Johnson & Alibali, 1999). The initial 

assessment had 13 equal sign items; the revised assessment had 8. 

Scoring. Each item was scored dichotomously (i.e., 0 for incorrect or 1 for correct).  For 

computation items, students received a point for answers within one of the correct answer to 
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allow for minor calculation errors.  For the 5 explanation items, students received a point if they 

mentioned the equivalent relation between values on the two sides of the equation; see Appendix 

A for scoring details for individual items.  

Revised Assessment. We revised the initial assessment in order to have two shorter, 

comparable forms of the assessment. Items on the initial assessment were eliminated if 1) they 

had poor psychometric properties on more than one of three key indices described in the item 

screening section and a domain expert had identified them as inappropriate (5 items), or if 2) the 

items were redundant with other items that had stronger psychometric properties (7 items).  In 

addition, we revised two items that had been flagged on multiple indices in an effort to improve 

them.  Based on accuracy data and the suggestion of the domain expert, the two pairs of items 

with the equation structure “  + b = c” or “a +  = c” were reclassified from Level 2 to Level 1 

(2SOL and 4STR in Table 3). 

Two comparable, short versions of the assessment (37 items each) were created based 

upon these revisions. Items from the initial assessment were paired based on three criteria: level 

of equivalence tapped, question stem, and proportion correct on the initial assessment.  

Whenever possible, we used one item from each pair on Form 1 and the other item on Form 2.   

However, sometimes we needed to create a new, similar version of an item (5 items) or use the 

same item on both assessments (4 items). We used this step-by-step item matching procedure to 

ensure that content would be comparable across forms, as content similarity is a prerequisite for 

meaningful score equating procedures (Kolen & Brennan, 2004). The number of items of each 

class was based on the number of available items in the literature and the time requirements for 

completion of the different item classes.  The items from one form of the revised assessment are 

presented in Appendix A. 
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Test administration. Assessments were administered on a whole-class basis. At Time 2, 

both forms were randomly distributed in each classroom using a spiraling procedure to ensure 

random equivalence of the groups responding to each form (i.e. Form 1 was given to the first 

student, Form 2 to the next, and alternated thereafter).  A member of the research team read the 

directions for each section aloud and used a preplanned script to help answer any questions 

participants raised. The team member also enforced a time limit for each section (see Appendix 

A) in order to ensure that students had time to get to all 3 sections.  For 2nd and 3rd graders, a 

member of the research team also read the directions for each new subset of items aloud to 

reduce the reading demands of the assessment.   

Expert ratings. Expert screening of items on one form of the revised assessment was 

obtained from 4 mathematics education researchers who each had over 10 years of experience 

conducting research on elementary-school children’s knowledge of algebra.  Each expert rated 

every item on a scale from 1 to 5 (1 = not essential, 3 = important, but not essential, 5 = 

essential) based on its perceived importance for knowledge of mathematical equivalence.  

Gathering expert ratings is common practice in measurement development to support the face 

validity of the items within a target community (AERA/APA/NCME, 1999). 

Measurement Model 

We used a Rasch model to evaluate the assessment, in addition to using methods from 

Classical Test Theory. Rasch modeling is a one-parameter member of the item response theory 

(IRT) family (Bond & Fox, 2007). The Rasch model considers both respondent ability and item 

difficulty simultaneously, estimating the probability that a particular respondent will answer a 

particular item correctly (Rasch, 1980). A graphical display of the results known as a Wright 

map allowed us to interpret the parameters estimated by our Rasch model in terms of our 
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construct map (Wilson, 2005). We used Winsteps software version 3.68.0.2 to perform all IRT 

estimation procedures (www.winsteps.com). 

The Rasch model estimation procedure also provides information on the goodness of fit 

between empirical parameter estimates and the measurement model, thus providing indicators of 

potentially problematic items. In particular, infit statistics measure unexpected responses to items 

with difficulty levels close to respondents’ ability estimates. Outfit, on the other hand, measures 

unexpected responses to items with difficulty levels markedly different from respondents’ ability 

estimates.  Ideal infit and outfit mean square values are near 1. Values substantially above 1 

indicate items that contribute less toward the overall estimate of the latent variable and are most 

problematic; and values substantially below 1 indicate items that have less variance than 

expected.  Popular criteria favor infit/outfit mean square (MSQ) values that lie between 0.5 to 1.5 

(Linacre, 2010). 

Item Screening 

 We screened the 37 items on each form of the revised assessment for sound psychometric 

properties. Three of the 37 items on each form were Level 1 items meant to check that students 

were paying attention (e.g., “3 + 4 = ”). Accuracy for these items was near 100%, so they were 

not included in the analyses because they were not diagnostic.  We excluded 3 additional items 

on each form from further analysis (one equation-structure item and two equal-sign items per 

form), because they had multiple indicators that they were not good items (i.e., both item-total 

correlations below .2 and infit and/or outfit mean square values above 1.5). This screening 

resulted in 31 items on each form with acceptable psychometric properties  – 16 equation-

structure items, 5 equal-sign items and 10 equation-solving items.  The complete list of items is 

presented in Table 3. 
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Results 

In presenting our results, we focus on the revised forms of the assessment, with data from 

the initial assessment used as supporting evidence when appropriate. 

Evidence for Reliability  

At the most basic level, assessments must be able to yield reliable measurements.  

Internal consistency, as assessed by Cronbach’s α, was high for both of the revised assessments 

(Form 1 = .94; Form 2 = .95).  Performance on the assessment was also very stable between 

testing times. Test-retest reliability was calculated by computing the correlation between 

performance on the subset of 28 items that had been given in both the initial and revised 

assessments (3 of the items from the revised assessment were not on the initial assessment). 

There was a high test-retest correlation overall for both Form 1, r(26) = .94, and for Form 2, r 

(26) = .95.  Finally, the 5 explanation items on the revised assessments were analyzed for 

interrater reliability. An independent coder coded responses for 20% of the sample, with a mean 

exact agreement of 0.99 for Form 1 (range .96 to 1.00) and .97 for Form 2 (range .87 to 1.00). 

Overall, both forms of the assessment appeared to yield reliable measures of student 

performance. 

Equating of Scoring across Forms 

We sought to equate scores across forms for two reasons. First, we wanted to establish 

comparable alternate forms for future intervention or longitudinal research in which it is helpful 

to have multiple forms of an assessment. Second, we wanted to be able to evaluate the validity of 

our construct across all items, instead of separately by form. We used a random groups design 

within IRT to calibrate the scores from the two forms (Kolen & Brennan, 2004). Item difficulty 

estimates for both forms of an assessment are calibrated so that the item difficulty of each form 
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is mean centered around zero.  As long as groups are equivalent, the ability estimates of 

participants taking both versions are placed on the same scale, requiring no further 

transformation or additional equating procedures.   

Several indicators confirmed the equivalence of students who completed the two forms. 

Because of the spiraling technique used to distribute the assessments, each form was 

administered to similar numbers of students (nform1 = 88, nform2 = 87), and the distribution of 

forms was even within each grade level.  Groups were also equivalent in age (mean age for both 

forms was 9.6 years) and on average ITBS reading grade equivalent scores (Form 1 = 5.75, Form 

2 = 5.82) and math grade equivalent scores (Form 1 = 5.45, Form 2 = 5.27). 

We also checked to ensure that the two test forms demonstrated similar statistical 

properties according to classical test theory measures. First, both had virtually identical mean 

accuracy scores (57% on each form). Second, each had similar mean item discrimination scores 

(Form 1 = 63%, Form 2 = 69%).  Item discrimination scores are an indicator of how well each 

item discriminates between the top and bottom performers on the assessment, and are calculated 

by finding the difference in percent correct on each item for the top 27% and bottom 27% of 

students in terms of total score (Rodriguez, 2005). Third, the correlation between mean accuracy 

on the paired items across the two forms was very high, r (29) = .94, p < .01.  

As a final check on our equating procedure, we compared the estimated item difficulties 

from the IRT model of paired items across the two forms. Twenty-five of the 31 matched pairs 

received equivalent item difficulty estimates as indicated by between-sample t-tests (see Table 

3). Differences in accuracy on the remaining six pairs may reflect knowledge and skills not 

included in our equivalence construct, such as computational fluency.  For instance, 1DEF.L1 

asks students to evaluate which pair of numbers is equal to the pair in the question stem.  The 
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correct answer to the problem on Form 1 is 2 + 7, and the correct answer on Form 2 is 5 + 5. 

Compared to 2 + 7, problems like 5 + 5 are more often solved by direct retrieval and more rarely 

solved incorrectly (Ashcraft, 1992). Nevertheless, these six problems still clustered in the 

appropriate range of item difficulty scores, as predicted by our construct map. 

In sum, we confirmed that our forms were administered to equivalent groups, 

demonstrated similar statistical properties, and received similar difficulty estimates for most 

paired items. Having met these criteria, it was reasonable to use a random groups design in IRT 

to calibrate the scores from the two forms, placing all item difficulties and student abilities on the 

same scale. Hence, the following discussion of validity will consider all items simultaneously 

placed on the same scale. 

Evidence for Validity  

Multiple measures provided evidence for the validity of our measure of mathematical 

equivalence, using four of the validity categories specified by AERA/APA/NCME (1999).  

Evidence based on test content. Experts’ ratings of items provided evidence in support of 

the face validity of the test content. The four experts rated most of the test items to be important 

(rating of 3) to essential (rating of 5) items for tapping knowledge of equivalence, with a mean 

rating of 4.1 (see Table 3 for their average rating on each item).   

Evidence based on internal structure - dimensionality. We conducted several analyses to 

evaluate whether our construct was reasonably characterized as tapping a single dimension. 

Within an IRT framework, the unidimensionality of a measure is often checked by using a 

principle components analysis of the residuals (PCA) after fitting the data to the Rasch model 

(Linacre, 2010). This analysis attempts to partition unexplained variance into coherent factors 

that may indicate other dimensions.  
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The Rasch model accounted for 57.2% of the variance in the present data set. A PCA on 

the residuals indicated that the largest secondary factor accounted for 2.2% of the total variance 

(eigenvalue of 3.2), corresponding to 5.2% of the unexplained variance.  The secondary factor 

was sufficiently dominated by the Rasch dimension to justify the assumption of 

unidimensionality (Linacre, 2010).  

As an additional check on dimensionality, we conducted a series of confirmatory factor 

analyses (CFA).  We explored three possible factor structures: 1) a one-factor model for all 

items, 2) a two-factor model, grouping items that have been said to tap knowledge of procedures 

in past intervention research (equation-solving items) and items that have been said to tap 

knowledge of concepts (equation-structure and equal-sign definition items) (Matthews & Rittle-

Johnson, 2009; Rittle-Johnson, 2006; Rittle-Johnson & Alibali, 1999), and 3) a three-factor 

model, grouping items by the three item classes.  We performed the CFAs using Muthen’s M-

Plus 4.2. Because the items were scored dichotomously (wrong-right), the CFA was computed 

using tetrachoric correlations, and because scores on dichotomous items did not follow a normal 

distribution, we used the “WLSMV” estimator, which uses weighted least square estimates with 

robust standard errors, as recommended by Muthen (2004). The models had minor problems 

with some empty cells in between-item correlations, but model estimation terminated normally 

(see Appendix B for the correlation matrix for the one factor model). To evaluate the models, we 

examined the fit indices suggested by Hu and Bentler (1999), namely the χ2-based Bentler CFI 

(comparative fit index) and the residual-based SRMR (standardized root mean square residual) 

using standards recommended by Tabachnick and Fidell (2007).  All models had a very good 

CFI estimate (CFI = 0.980, 0.980, 0.981for the 1-, 2- and 3-factor models, respectively), 

indicating acceptable fit for the model. According to the residual-based SRMR, however, none of 
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the models showed very good fit (SRMR = 0.121, 0.119, 0.118 for the 1-, 2- and 3-factor 

models, respectively; target value < 0.08). Yu (2002) has reported that SRMR does not perform 

well with binary variables, so we are not as confident in the results of this index. Clearly, the fit 

of the three different models were very similar, so the increased complexity of a two- or three-

factor model did not seem justified. 

Overall, a single factor captured a majority of the variance and performance on individual 

items suggesting that our construct was unidimensional.  The extremely small improvements in 

fit when additional factors were added, combined with little theoretical justification for 

additional factors, suggested that including additional factors was not warranted. 

Evidence based on internal structure - Wright map. As a second check on internal 

structure, we evaluated whether our a priori predictions about the relative difficulty of items 

were correct (Wilson, 2005).  Recall that when creating the assessment, we selected items to tap 

knowledge at one of four levels on our construct map. An item-respondent map (i.e., a Wright 

map) generated by the Rasch model was used to evaluate our construct map. In brief, a Wright 

map displays participants and items on the same scale. In the left column, respondents (i.e., 

participants) with the highest estimated ability on the construct are located near the top of the 

map. In the right column, the items of greatest difficulty are located near the top of the map.  The 

vertical line between the two columns indicates the scale for parameter estimates measured in 

logits (i.e., log-odds units), which are the natural logarithm of the estimated probability of 

success divided by the estimated probability of failure on an item.  The advantage of using the 

logit scale is that it results in an equal interval linear scale that is not dependent on the particular 

items or participants used to estimate the scores. The average of the item distribution was set to 0 

logits; negative scores indicate items that were easier than average and positive scores indicate 
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items that were harder than average. 

The Wright map seen in Figure 1 allows for quick visual inspection of whether our 

construct map correctly predicted relative item difficulties (see Table 3 for specific item 

difficulty scores). As can be seen in Figure 1, the items we had categorized as Level 4 items were 

indeed the most difficult items (clustered near the top with difficulty scores greater than 1), the 

items we had categorized as Levels 1 and 2 items were indeed fairly easy items (clustered near 

the bottom with difficulty scores less than -1), and Level 3 items fell in between. Overall, the 

Wright map supports our hypothesized levels of knowledge, progressing in difficulty from a 

rigid operational view at Level 1 to a comparative relational view at Level 4. This was confirmed 

by Spearman’s rank order correlation between hypothesized difficulty level and empirically 

derived item difficulty, ρ(62) = .84 p < .01.  

To evaluate whether individual items were at the expected level of difficulty, we used 

standard errors to construct confidence intervals around item difficulty estimates.  We flagged 

items that failed to cluster within the empirically derived boundaries of their respective difficulty 

levels (i.e. Level 4 items with difficulty above 1, Level 3 items with difficulty between 1 and -1, 

Level 2 items with difficulties between -1 and -3 and Level 1 items with difficulties below -3, 

see Figure 1). Seven of the 62 items across the two forms of the assessment failed to cluster as 

expected: 1DEF.L1.1, 3STR.L1.1, 3STR.L1.2, 10DEF.L3.2, 11DEF.L3.1, 21STR.L3.1, and 

21STR.L3.2. We will briefly consider each of these items in turn. 

1DEF.L1.1, 3STR.L1.1, and 3STR.L1.2 were all expected to be Level 1 items, but 

proved more difficult than expected.  On the latter two, students needed to identify false 

equations as false.  The equations were in non-standard formats, and we expected students to 

easily identify them as false, even if for the wrong reason.  The poorer than expected accuracy 
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may indicate general uncertainty elicited by being asked to evaluate a variety of unfamiliar 

equation structures as true or false.  These items were not critical to our construct map and 

perhaps should be dropped in future iterations.  1DEF.L1.1 may reflect unexpected 

computational difficulty discussed above, as the parallel item on Form 2 was at the expected 

level of difficulty.  

The remaining mismatched items were all expected to be at Level 3 and suggest that the 

construct map may need to be refined.  10DEF.L3.2 asked students to provide a definition of the 

equal sign, and was somewhat more difficult than expected.  Its twin (10DEF.L3.1) was also 

difficult, so generating a relational definition may be better classified as a Level 4 item.  

11DEF.L3.1 asked students whether or not “The equal sign means two amounts are the same” is 

a good definition of the equal sign, and it was easier than expected. Its paired instead asked 

whether or not “The equal sign means the same as” is a good definition and was at the predicted 

level of difficulty.  It may be that the phrasing “two amounts” provides easier access to the 

concept of equality. Finally, 21STR.L3.1, and 21STR.L3.2 were identical items on the two 

forms, asked students to reproduce the equation 5 + 2 =  + 3 from memory and were 

considerably easier than expected. This result might be explained by the fact that encoding a 

problem correctly is necessary for solving it correctly (Siegler, 1976), so successful encoding of 

a particular structure may precede successful solving of problems with that structure in some 

circumstances. We will carefully monitor the performance of these items in the future as we 

continue to validate our assessment and refine the construct map. 

The range in difficulty of the items was appropriate for the target population. As shown 

in Figure 1, the range of item difficulties matched the spread of participant locations quite well 

(i.e., there were sufficiently easy items for the lowest-performing participants and sufficiently 
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difficult items for the highest-performing participants). In addition, ability estimates increased 

with grade level (see Figure 2). As expected, mean ability estimates progressively increased as 

grade level increased, ρ(173) = .76, p < .01.  

Evidence based on relation to other variables. We examined the correlation between 

students’ standardized math scores on the ITBS and their estimated ability on our equivalence 

assessment (two students were excluded because we did not have ITBS scores for them). As 

expected, there was a significant positive correlation between students’ scores on the equivalence 

assessment and their grade equivalent scores on the ITBS for mathematics, even after partialing 

out their reading score on the ITBS (r (86) = .79 and r (83) = .80, p’s < .01, for Forms 1 and 2 

respectively).  This was true within each grade level as well. This positive correlation between 

our assessment and a general standardized math assessment provides some evidence of 

convergent validity. 

Evidence based on response processes.  Thus far, our analyses have focused on the 

accuracy of students’ answers.  However, past research and our construct map indicate that 

students’ errors should not be random.  Rather, an operational understanding of the equal sign as 

an indicator to “add up the numbers” should lead students either (a) think the terms before the 

equal sign should add up to the term immediately after the equal sign (add-to-equal e.g., 

answering 7 to 3 + 4 =  + 5 or answering 4 to  + 2 = 6 + 4), or (b) think you should add all 

the numbers in the equation (add-all, e.g., answering 12 for either equation).  To explore this, we 

coded children’s errors on the six Level 2 and Level 3 equation-solving items based on their 

answers and their written work. Of the incorrect responses, 37% were non-responses.  Of the 

remaining errors, 63% were “add up the numbers” errors (52% add-to-equal errors and 11% add-

all errors). The frequency with which children made “add up the numbers” errors was correlated 
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with their estimated abilities on the assessment r(173) = -.57, p < .01. Overall, students’ errors 

often reflected an operational view of equivalence. 

Characterizing Students’ Knowledge Levels 

Much of the power of IRT results from the fact that it models participants’ responses at 

the item level. For example, we can calculate the probability of any participant’s success on any 

given item using the equation Pr(success) =
1

1+ e−(θ −d )  where θ is a participant’s ability estimate 

and d is the item difficulty estimate. This is a powerful tool, because it allows us to take a single 

measure (a student’s ability score) and use it to predict the types of items with which a student is 

likely to struggle – without the usual need for resource intense item-by-item error analysis.  

Consider a student with the mean ability score of .71. This student would be expected to 

solve the Level 3 item 3 + 4 =  + 5 (13SOL.L3.2) accurately 68% of the time and would be 

expected to solve few Level 4 items correctly.  In contrast, a student with an ability score of -1.6 

(one standard deviation below the mean) would be expected to solve this Level 3 item accurately 

only 17% of the time, although would be expected to solve the easier Level 2 item 8 = 6 +  

(6SOL.L2.2) correctly 77% of the time.  As we develop our measure over time, adding more and 

more items to the bank of known difficulty levels, this predictive power will grow in precision 

and generality.   

Textbook Analysis 

To help shed insight on the role of experience in the development of equivalence 

knowledge, we performed a textbook analysis of the textbook series used at the school - 

Houghton Mifflin Math (Greenes, et al., 2005).   
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Method. Following the method used by McNeil and colleagues (McNeil et al., 2006), we 

coded the equation structure surrounding each instance of the equal sign on every other page of 

the Grade 1 – 6 textbooks, as defined in Table 4.  

 Findings. Across grade levels, there was a steady increase in the number of instances of 

the equal sign per page (see bottom of Table 4). In 1st grade, the operations-equals-answer 

structure dominated, accounting for 97% of all occurrences of the equal sign.  There was a steady 

decrease in the frequency of this structure, with it eventually accounting for just 31% of 

occurrences in the 6th grade text.  In contrast, equations with no explicit operation such as “1 foot 

= 12 inches” steadily increased from 1st to 6th grade, with this structure accounting for almost one 

half of the occurrences of the equal sign in 6th grade text.  The other structures were relatively 

rare, accounting for less than 15% of instances of the equal sign across the grades.  Equations 

with operations on both sides were particularly rare, accounting for only 4% of instances overall. 

We also inspected the textbooks for explicit definitions of the equal sign either embedded 

in a lesson or in the glossary.  We found no explicit definitions.  In the first grade textbook, 

“equal sign” was included in the glossary, but the definition was simply an arrow pointing to the 

equal sign in the equation 2 + 3 = 5.  In the second grade textbook, there was an entry for “equal 

to (=)” with an example “4 + 4 = 8, 4 plus 4 is equal to 8.” There was no entry in the third-grade 

or fifth-grade texts; the fourth grade text did include an entry for “equal” in the glossary with the 

definition “having the same value”, but no link to the = was made. In the sixth-grade text, the 

definition of equation in the glossary was “A mathematical sentence that uses an equal sign to 

show that two expressions are equal.  3 + 1 = 4 and 2x + 5 = 9.”  This was the only definition 

that might support a relational definition of the equal sign. 
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Discussion 

  Numerous past studies have pointed to the difficulties elementary-school children have 

understanding mathematical equivalence (e.g., Behr et al., 1980; Falkner et al., 1999; McNeil, 

2007; Perry, 1991; Rittle-Johnson & Alibali, 1999; Weaver, 1973), underscoring the need for 

systematic study of elementary-school students’ developing knowledge of the topic. We used a 

construct modeling approach to develop an assessment of mathematical equivalence knowledge.  

Our construct map specified a continuum of knowledge progression from a rigid operational 

view to a comparative relational view (see Table 1). We created an assessment targeted at 

measuring this latent construct and used performance data from an initial round of data collection 

to screen-out weak items and to create two alternate forms of the assessment. The two forms of 

the revised assessment were shown to be reliable and valid along a number of dimensions, 

including good internal consistency, test-retest reliability, test content, and internal structure. In 

addition, our construct map was largely supported. Below, we discuss the strengths and 

weaknesses of our construct map, possible sources of increasing equivalence knowledge, 

benefits of a construct modeling approach to measurement development, and future directions.  

Construct Map For Equivalence  

Describing children as having an operational or relational view of equivalence is overly 

simplistic.  Rather, items of a broader range of difficulty can be used to capture students in 

transition between the two views (Level 2: Flexible operational) and to capture comparative 

reasoning based on equivalence ideas (Level 4: Comparative relational). As predicted by the 

construct map, children became increasingly flexible in the equation structures they were 

successful with, and the structure of the equation had a large influence on performance. In 

contrast, the item class had limited influence on performance.  For example, success evaluating 
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vs. solving a particular equation structure was often similar, and one class of items was not 

consistently easier than another.  Our construct map for increasingly sophisticated abilities to 

deal with different equation structures across several item classes allows for a higher-resolution 

description of children’s knowledge of equivalence than was possible in previous studies. 

Another benefit of a construct modeling approach is that it encourages iterative 

refinement of the theoretical construct map in response to empirical findings.  Indeed, the current 

findings suggest several potential refinements of the construct map.  First, more attention needs 

to be paid to how the equal-sign definition items relate to performance on equation-structure and 

equation-solving items, as they were less likely to be at the expected level of difficulty than the 

other items. Of most note, generating a relational definition of the equal sign was much harder 

than solving or evaluating equations with operations on both sides.  Rather, generating a 

relational definition was as hard as recognizing that a relational definition is the best definition of 

the equal sign (a Level 4 item). Past research has also found that explicit, verbalized knowledge 

of a relational definition of the equal sign takes longer to develop than the ability to solve or 

evaluate equations with operations on both sides (Denmark, Barco, & Voran, 1976; Kieran, 

1981; Rittle-Johnson & Alibali, 1999).  Likely, this definition item should be considered a Level 

4 item. Further, Level 3 and 4 may be more appropriately labeled as an implicit relational view 

vs. an explicit relational view.   

In addition to adjusting the construct map to better reflect the difficulty of a few equal-

sign definition items, it may make sense to make finer-grain distinction at Level 4. 

Compensation items were easier than items requiring more explicit thinking about the properties 

of equality linking the two sides of the equation. That is, children were more adept at employing 

the properties of equality (e.g., judging “89 + 44 = 87 + 46” to be true without computing) than 
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they were at explicitly recognizing or explaining those properties (e.g., Recognizing and 

justifying that if 56  + 85 = 141 is true, 56 + 85 - 7 = 141 – 7 is also true).  If the relative 

difficulty of these items persists in future studies, it may be worth distinguishing two sublevels to 

a comparative relational view. 

Developing Knowledge of Equivalence 

What causes children to develop increasingly sophisticated knowledge of equivalence?  

This study did not address this issues directly as we did not manipulate children’s experiences 

with equivalence ideas or directly observe their classroom instruction.  Teacher reports and a 

textbook analysis, however, provide some information that is informative.  First, consider the 

potential role of exposure to different equation structures in textbooks. Textbooks heavily 

influence what children are exposed to in classrooms (Reys, Reys, & Chavez, 2004; Weiss, 

Banilower, McMahon, & Smith, 2001).  Analysis of the participating students’ textbooks 

indicated that exposure to non-standard equation structures did increase dramatically with grade, 

accounting for 3% of instances of the equal sign in the first-grade textbook and 68% of instances 

in the sixth-grade text.  A vast majority of these instances had no explicit operations (e.g., 1 foot 

= 12 inches, 1/2 = 2/4), and the frequency of equations with operations on both sides was low 

across grades.  Note that these non-standard equation structures were much more prevalent in the 

sixth-grade textbook that we analyzed than in the four sixth-grade textbooks analyzed by McNeil 

and colleagues (30% - 51% of instances) (McNeil et al., 2006). There appears to be large 

variability in presentation of non-standard equation structures across textbook series.  

Students’ knowledge was developing earlier than would be predicted by mere exposure.  

For example, many children in Grade 2 were successful on items with operations on the right or 

no operations even though they were rarely exposed to these equation structures in their 
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textbooks. Similarly, many older children were successful on items with operations on both 

sides, although these items were rare in their textbooks. A recent textbook analysis of a sixth 

grade textbook from each of four countries (China, Korea, Turkey & the U.S.) also suggests that 

simple exposure to non-standard equation structures is not the primary sources of improving 

equivalence knowledge.  The frequency of non-standard equation structures was comparable in 

the textbooks from the four countries, even though students in China and Korea were much more 

likely to solve equations with operations on both sides correctly (Capraro, Yetkiner, Ozel, & 

Capraro, 2009).   

Rather than simple textbook exposure, it may be that explicit attention to ideas of 

equivalence in classroom discussion, with attention to the equal sign as a relational symbol, is 

what promotes knowledge growth in this domain. Second-grade teachers in the current study 

reported discussing the meaning of the equal sign for about a week, in addition to exposing 

students to non-standard equation structures. Such explicit attention to the meaning of the equal 

sign in 2nd grade was not directly supported by the textbook, but may reflect awareness by the 

second grade teachers about the difficulty of this topic.  These classroom discussions may have 

helped children gain a more flexible, albeit operational, view of equivalence.  Teachers in fourth 

through sixth grade reported spending at least 3-5 days on solving equations with variables, and 

it is possible that attention to equation solving aided growth of a relational view of equivalence.  

We did not observe these classroom activities and discussions, but they are in line with teaching 

experiments on the effectiveness of classroom discussions of non-standard equation structures 

and what the equal sign means (e.g., Baroody & Ginsburg, 1983; Jacobs et al., 2007).  

It is also possible that cognitive differences, not just instructional ones, influence growth 

of equivalence knowledge across grades.  For example, according to Case, older elementary-
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school children develop the ability to integrate two dimensions of a problem (Case & Okamoto, 

1996), perhaps helping them coordinate the information on both sides of the equal sign. Children 

also become better able to inhibit task-irrelevant information through elementary school (e.g., 

Dempster, 1992), perhaps helping them inhibit operational views of equivalence. These cognitive 

changes may, in part, explain improvements in equivalence knowledge with age. However, 

limitations in cognitive capacity do not prevent younger children from understanding 

equivalence when given extensive, well-structured instruction (Baroody & Ginsburg, 1983; 

Jacobs et al., 2007; Saenz-Ludlow & Walgamuth, 1998). 

Benefits of a Construct Modeling Approach to Measurement Development 

 A construct modeling approach to measurement development is a particularly powerful 

one for researchers interested in understanding knowledge progression, as opposed to ranking 

students according to performance. Although Mark Wilson has written an authoritative text on 

the topic (Wilson, 2005), there are only a handful of examples of using a construct modeling 

approach in the empirical research literature (see Acton, Kunz, Wilson, & Hall, 2005; Masse, 

Heesch, Eason, & Wilson, 2006; Wilson, 2008), with only a few focused on academic 

knowledge (see Claesgens, Scalise, Wilson, & Stacy, 2009; Dawson-Tunik, Commons, Wilson, 

& Fischer, 2005; Wilson & Sloane, 2000). We found construct modeling to be very insightful 

and hope this article will inspire other educational and developmental psychologists to use the 

approach. This measurement development process incorporates four phases that occur 

iteratively: 1) proposal of a construct map based on the existing literature and a task analysis, 2) 

generation of potential test items that correspond to the construct map and systematic creation of 

an assessment designed to tap each knowledge level in the construct map, 3) creation of a 

scoring guide that links responses to items to the construct map, and 4) after administering the 
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assessment, use of the measurement model, in particular Rasch analysis and Wright maps, to 

evaluate and revise the construct map and assessment (Wilson, 2005).  The assessment is then 

progressively refined by iteratively looping through these phases. 

Another benefit of a construct modeling approach is that it produces a criterion-

referenced measure that is particularly appropriate for assessing the effects of an intervention on 

individuals (Wilson, 2005). We developed two versions of our equivalence assessment so that 

different versions could be used at different assessment points in future intervention or 

longitudinal research.  

Our equivalence assessment could also help educators modify and differentiate their 

instruction to meet individual student needs.  Using IRT, students are assigned an ability score, 

which can be used to classify children at different levels of equivalence knowledge. We found 

wide variability in performance within grades, and diagnostic information for individual students 

should help teachers differentiate their instruction to focus on items at the appropriate level of 

difficulty for a particular child. Differentiated instruction has been shown to improve student 

achievement (e.g., Mastropieri, et al., 2006), but teachers often lack the tools for identifying 

students’ knowledge levels and customizing their instruction (e.g., Houtveen & Van de Grift, 

2001). Our measure of equivalence knowledge and the accompanying construct map could help 

facilitate this differentiation.  

Future Directions and Conclusions  

Although we have taken an important first step in validating a measure of equivalence 

knowledge, much still needs to be done.  A critical next step is to provide evidence for the 

validity of the measure with a larger and more diverse sample.  Such an effort will reveal 

whether items on the assessment function the same for different groups (e.g., grade levels or 
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socio-economic groups).  It may be that our measure appears to be more cohesive than it actually 

is because we sampled students from a wide range of grades but were unable to test for the effect 

of grade on item functioning or dimensionality given the limited number of students per grade 

level.  We also need to know the predictive validity of the measure – for example, does the 

measure help predict which students need additional math resources or who are ready for algebra 

in middle school?  Having a common assessment tool should also facilitate future efforts to 

better understand sources of changes in equivalence knowledge as well as to evaluate the 

effectiveness of different educational interventions. 
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Appendix A 
Revised Assessment (Form 2) with Scoring Criteria for Select Items 

 
Equation Structure items (10 minutes) 
1. “I’ll show a problem for a few seconds.  After I take the problem away, I want you to write the 
problem exactly as you saw it.” 

a)    + 2 = 5   b) 5 + 2 =  + 4    
c)   + 5 = 8 + 7 + 5     d) 74 +  =  79 + 45 (dropped item) 
 
Scoring criteria: Correct if all numerals, operators, equal sign and unknown are in correct 
places.  OK if numerals are incorrect. 

 
2. For each example, decide if the number sentence is true. In other words, does it make sense?
 After each problem, circle True,  False, or  Don’t Know.  
a) 5 + 3 = 8  True   False   Don’t Know (at ceiling) 
b) 3 = 3   True   False   Don’t Know 
c) 31 + 16 = 16 + 31 True   False   Don’t Know  
d) 7 + 6 = 6 + 6 + 1 True   False   Don’t Know  
e) 5 + 5 = 5 + 6 True   False   Don’t Know  
 
3. For each example, decide if the number sentence is true. Then, explain how you know.  
a) 7= 3 + 4  True   False   Don’t Know  
b) 6 + 4 = 5 + 5 True   False   Don’t Know  
 

Scoring criteria for explanations: Correct if mentions the word ‘same’, that the inverse is 
true, or solves and shows both sides to be the same. 

 
4. This problem has two sides. Circle the choice that correctly breaks the problem into its two 
sides.                                                   
                       8 + 2 + 3 = 4 +  
 
  
 
 
 
 
 
 
 
5. Without adding 67 + 86, can you tell if the statement below is true or false? 
67 + 86 = 68 + 85.  How do you know?  
 

Scoring criteria for explanation: Correct if mention relations between values on the two sides 
(e.g.,“67 is one less then 68, same with 85 and 86”) 
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6. Without subtracting the 7, can you tell if the statement below is true or false?  
56 + 85 = 141 is true.  
 

Is 56 + 85 – 7 = 141 – 7 true or false? 
How do you know? 
 

Scoring criteria for explanation: Correct if mention doing the same thing to both sides (e.g., 
“They subtracted nine from both sides”) 

 
Equal Sign Items (5 minutes) 
7. What does the equal sign (=) mean? 
    Can it mean anything else? 
 

Scoring criteria: Correct if they give a relational definition, which mentions both sides being 
the same or equivalent (note: 30% of student who gave a relational definition only did so 
when prompted “Can it mean anything else?”  They provided an operational or ambiguous 
definition on the first prompt). 

 
8. Which of these pairs of numbers is equal to 6 + 4?  Circle your answer. 

a) 5 + 5 
b) 4 + 10 
c) 1 + 2 
d) none of the above 

 
9. Which answer choice below would you put in the empty box to show that five pennies are the 
same amount of money as one nickel? Circle your answer. 
 

 
            a)  5¢ 
 b)  = 
 c)  + 
 d) don’t know  
10. Is this a good definition of the equal sign?   Circle good or not good. 

a. The equal sign means add. (at ceiling, not included) Good Not good 
b. The equal sign means get the answer. (dropped item) Good   Not good   
c. The equal sign means the same as. Good   Not good 
 

11. Which of the definitions above is the best definition of the equal sign?  
 
12. The equal sign (=) is more like: (dropped item) 

a) 8 and 4 
b) <  and  > 
c) + and – 
d) don’t know 
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Equation-solving items (10 minutes) 
DIRECTIONS: Find the number that goes in each box.   
13.  3 + 4 =         (at ceiling, not included) 
14.            4 +          = 8 
15.            8  =  6 +  
16.              3 + 4 =         + 5 
17.                   + 2 = 6 + 4  
18.           7 + 6 + 4 =  7 + 
19.                  8 +         = 8  + 6  + 4 
20.                  6 – 4 + 3 =         + 3 
 
DIRECTIONS: Find the number that goes in each box.  You can try to find a shortcut so you 
don’t have to do all the adding. Show your work and write your answer in the box. 
21. 898 +  13  =  896  +  
22. 43 +         = 48 + 76 
 
23. Find the value of n.  Explain your answer. 
  n + n + n + 2 = 17  
 

Scoring criteria:  For items 13 – 23, answers within one of the correct answer were considered 
correct to allow for minor computation errors. 
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Appendix B 
Tetrachoric Correlation Matrix for 1 factor CFA 
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Table 1  

Construct Map for Mathematical Equivalence Knowledge 

Level Description Core Equation 

Structure(s) 

Level 4: 

Comparative 

Relational 

Successfully solve and evaluate equations by comparing the 

expressions on the two sides of the equal sign, including 

using compensatory strategies and recognizing that 

performing the same operations on both sides maintains 

equivalence. Recognize relational definition of equal sign as 

the best definition. 

Operations on both 

sides with multi-digit 

numbers or multiple 

instances of a variable 

Level 3: 

Basic 

Relational  

Successfully solve, evaluate and encode equation structures 

with operations on both sides of the equal sign. Recognize 

and generate a relational definition of the equal sign. 

Operations 

on both sides:  

a + b = c + d 

a + b - c = d + e 

Level 2: 

Flexible 

Operational 

Successfully solve, evaluate and encode atypical equation 

structures that remain compatible with an operational view of 

the equal sign.  

Operations on right:  

c = a + b 

No operations: a = a 

Level 1: 

Rigid 

Operational  

Only successful with equations with an operations-equals-

answer structure, including solving, evaluating and encoding 

equations with this structure. Define the equal sign 

operationally. 

Operations on left:  

a + b = c  (including 

when blank is before 

the equal sign) 

Note:  Italics indicate ideas that may need to be revised, based on the current data
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Table 2 

Teacher responses to “How much time have students spent on the following activities this school year?” by grade 

 Grade 2 

Teacher A

Grade 2 

Teacher B

Grade 3 

Teacher A 

Grade 3 

Teacher B Grade 4 Grade 5 Grade 6 

Solving problems in which the equal sign is 

not at the end (e.g. 4 + _ = 9; 3 + 6 = _ + 8) 
Week + 3-5 days None 3-5 days 1-2 days 3-5 days 3-5 days 

Seeing problems in which the equal sign is 

not at the end (e.g. 8 = 8; 5 + 2 = 2 + 5) 
3-5 days 3-5 days None Week + Week + 3-5 days Week + 

Discuss meaning of the equal sign Week + 3-5 days 1-2 days 1-2 days 1-2 days 1-2 days 1-2 days 

Solving equations with variables (e.g. 4 + 7 = 

t and t + 8 = 14) 
None 3-5 days 3-5 days None Week + 3-5 days Week + 

Comparing numbers using >, < , = Week + Week + Week + Week + Week + 3-5 days Week + 

Note: For Grades 4 – 6, one teacher at each grade level taught math. 
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Table 3 

Item Statistics for Mathematical Equivalence Assessment 

Level Form Item Namea Item Summary Expert 
Rating Accuracy Item Total 

Correlation 
Item 

Difficulty 
SE of 

Difficulty 

T-test 
between 

Pairs 

Infit 
MSQ 

Outfit 
MSQ 

1 

1 1DEF.L1.1 Identify pair that is equal to 3 + 6 2.75 0.76 0.56 -1.43 0.31 2.81* 0.93 0.99 
2 1DEF.L1.2 Identify pair that is equal to 6 + 4 0.87 0.52 -2.83 0.39 0.80 0.30 
1 2SOL.L1.1  + 5 = 9 2.75 0.98 0.20 -4.66 0.74 N/A# 1.00 0.31 
2 2SOL.L1.2 4 +  = 8 1.00 NA N/A 0.00 1.00 1.00 
1 3STR.L1.1 Judge “8 = 5 + 10” as false 3.50 0.82 0.52 -1.95 0.33 0.63 0.96 0.52 
2 3STR.L1.2 Judge “5 + 5 = 5 + 6” as false 0.77 0.69 -1.65 0.34 0.75 0.35 
1 4STR.L1.1 Recall  + 2 = 5 2.50 0.94 0.08 -3.61 0.49 0.15 1.22 2.49 
2 4STR.L1.2 Recall  + 2 = 5 0.92 0.27 -3.51 0.44 1.31 1.17 

2 

1 5DEF.L2.1 2 nickels <> 1 dime. Select choice that 
shows they are the same. 2.50 

0.75 0.27 -1.34 0.31 
0.98 

1.55 3.81 

2 5DEF.L2.2 5 pennies <> 1 nickel. Select choice that 
shows they are the same. 0.78 0.58 -1.79 0.34 1.00 0.74 

1 6SOL.L2.1 7 =    + 3 3.75 0.92 0.37 -3.18 0.43 0.60 0.92 0.39 
2 6SOL.L2.2 8 = 6 +  0.87 0.42 -2.83 0.39 0.95 2.34 
1 7STR.L2.1 Judge “8 = 8” as true or false 4.25 0.80 0.50 -1.73 0.32 1.91* 1.01 0.84 
2 7STR.L2.2 Judge “3 = 3” as true or false 0.69 0.63 -0.85 0.33 1.11 1.73 
1 8STR.L2.1 Judge “8 = 5 + 3” as true or false 4.75 0.84 0.57 -2.17 0.34 0.53 0.69 0.32 
2 8STR.L2.2 Judge “7 = 3 + 4” as true or false 0.79 0.63 -1.91 0.35 0.78 0.71 
1 9STR.L2.1 Explain the judgment of 8STR.L2.1 4.75 0.72 0.56 -1.05 0.31 0.85 0.95 1.29 
2 9STR.L2.2 Explain the judgment of 8STR.L2.2 0.75 0.56 -1.44 0.34 1.14 1.04 

3 

1 10DEF.L3.1 What does the equal sign mean? 4.25 0.43 0.63 1.18 0.30 1.60 1.04 0.95 
2 10DEF.L3.2 What does the equal sign mean? 0.37 0.61 1.86 0.30 0.94 1.50 

1 11DEF.L3.1 
“The equal sign means two amounts are 
the same.” Is this a good or not good 

definition? 3.75 
0.84 0.50 -2.17 0.34 

4.13* 
0.85 0.42 

2 11DEF.L3.2 “The equal sign means the same as.” Is 
this a good or not good definition? 0.62 0.59 -0.24 0.32 1.34 1.98 

1 12SOL.L3.1 5 +  = 6 + 2 4.33 0.61 0.79 -0.24 0.30 0.46 0.58 0.46 
2 12SOL.L3.2  + 2 = 6 + 4 0.62 0.83 -0.24 0.32 0.61 0.38 
1 13SOL.L3.1 3 + 6 = 8 +  5.00 0.60 0.83 -0.15 0.30 0.21 0.50 0.37 
`2 13SOL.L3.2 3 + 4 =  + 5 0.60 0.75 -0.04 0.32 0.83 0.75 
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Level Form Item Name Item Summary Expert 
Rating Accuracy Item Total 

Correlation 
Item 

Difficulty 
SE of 

Difficulty 

T-test 
between 

Pairs 

Infit 
MSQ 

Outfit 
MSQ 

3 

1 14SOL.L3.1  + 9 = 8 + 5 + 9 4.50 0.44 0.76 1.10 0.30 1.72 0.73 0.51 
2 14SOL.L3.2 8 +  = 8 + 6 + 4 0.55 0.87 0.36 0.31 0.53 0.37 
1 15SOL.L3.1 4 + 5 + 8 =  + 8 5.00 0.52 0.78 0.48 0.30 2.09* 0.66 0.69 
2 15SOL.L3.2 7 + 6 + 4 = 7 +  0.64 0.79 -0.45 0.33 0.77 0.59 
1 16SOL.L3.1 8 + 5 – 3 = 8 +  4.75 0.51 0.67 0.57 0.30 0.71 0.95 0.95 
2 16SOL.L3.2 6 - 4 + 3 =  + 3 0.56 0.72 0.26 0.32 0.88 0.97 
1 17STR.L3.1 Judge “4 + 1 = 2 + 3” as true or false 4.75 0.63 0.80 -0.32 0.30 0.54 0.54 0.41 
2 17STR.L3.2 Judge “6 + 4 = 5 + 5” as true or false 0.66 0.85 -0.56 0.33 0.49 0.29 
1 18STR.L3.1 Judge “3 + 1 = 1 + 1 + 2” as true / false 4.50 0.60 0.55 -0.15 0.30 0.13 1.20 1.36 
2 18STR.L3.2 Judge “7 + 6 = 6 + 6 + 1” as true / false 0.60 0.72 -0.09 0.33 0.91 2.62 
1 19STR.L3.1 Explain the judgment of 17STR.L3.1 5.00 0.57 0.82 0.12 0.30 0.82 0.54 0.51 
2 19STR.L3.2 Explain the judgment of 17STR.L3.2 0.62 0.82 -0.24 0.32 0.64 0.39 
1 20STR.L3.1 Judge “5 + 3 = 3 + 5” as true / false 4.50 0.69 0.72 -0.87 0.30 0.54 0.67 0.39 
2 20STR.L3.2 Judge “31 + 16 = 16 + 31” as true / false 0.66 0.76 -0.63 0.33 0.78 0.59 
1 21STR.L3.1 Recall 5 + 2 =  + 3 2.50 0.86 0.16 -2.42 0.36 0.78 1.50 3.62 
2 21STR.L3.2 Recall 5 + 2 =  + 3 0.80 0.43 -2.03 0.35 1.33 1.47 
1 22STR.L3.1 Recall  + 5 = 8 + 7 + 5 2.50 0.48 0.38 0.83 0.30 0.46 1.70 1.81 
2 22STR.L3.2 Recall  + 5 = 8 + 7 + 5 0.47 0.46 1.03 0.31 1.61 1.89 

4 

1 23DEF.L4.1 Which definition of the equal sign is the 
best? 4.25 

0.50 0.35 0.65 0.30 
3.06* 

1.82 2.07 

2 23DEF.L4.2 Which definition of the equal sign is the 
best? 0.36 0.37 1.95 0.30 1.46 4.52 

1 24SOL.L4.1  + 55 = 37 + 54 Try to find a shortcut. 4.50 0.34 0.68 1.90 0.30 1.18 0.81 0.55 
2 24SOL.L4.2 43 +  = 48 + 76  Try to find a shortcut. 0.43 0.71 1.40 0.30 0.83 0.75 
1 25SOL.L4.1 67 + 84 =  + 83 Try to find a shortcut. 

4.75 
0.40 0.76 1.45 0.30 

1.39 
0.65 0.42 

2 25SOL.L4.2 898 + 13 = 896 +  Try to find a 
shortcut. 0.49 0.74 0.85 0.31 0.82 0.63 

1 26SOL.L4.1 c + c + 4 = 16.  Find the value of c. 4.25 0.32 0.47 2.08 0.30 2.43* 1.27 1.65 
2 26SOL.L4.2 n + n + n + 2 = 17. Find the value of n. 0.47 0.54 1.03 0.31 1.35 1.95 
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Level Form Item Name Item Summary Expert 
Rating Accuracy Item Total 

Correlation 
Item 

Difficulty 
SE of 

Difficulty 

T-test 
between 

Pairs 

Infit 
MSQ 

Outfit 
MSQ 

4 

1 27STR.L4.1 Judge “89 + 44 = 87 + 46” as True or 
False without computing 4.75 

0.42 0.65 1.27 0.30 
0.12 

0.94 0.84 

2 27STR.L4.2 Judge “67 + 86 = 68 + 85” as True or 
False without computing 0.45 0.62 1.22 0.30 1.09 1.35 

1 28STR.L4.1 Explain the judgment of 27STR.L4.1 5.00 0.17 0.52 3.43 0.35 1.06 0.69 0.38 
2 28STR.L4.2 Explain the judgment of 27STR.L4.2 0.24 0.53 2.92 0.33 0.84 0.65 
1 29STR.L4.1 Identify two sides in 4 + 3 + 6 = 2 +  2.25 0.24 0.53 2.76 0.32 0.80 0.95 1.22 
2 29STR.L4.2 Identify two sides in 8 + 2 + 3 = 4 +  0.22 0.41 3.13 0.33 1.16 2.41 

1 30STR.L4.1 If 76 + 45 = 121, does  
76 + 45 - 9 = 121 - 9? 5.00 

0.24 0.28 2.76 0.32 
0.75 

1.36 4.16 

2 30STR.L4.2 If 56  + 85 = 141, does  
56 + 85 - 7 = 141 – 7? 0.22 0.48 3.11 0.34 0.86 0.83 

1 31STR.L4.1 Explain the judgment of 30STR.L4.1 5.00 0.09 0.37 4.50 0.44 0.10 0.90 0.40 
2 31STR.L4.2 Explain the judgment of 30STR.L4.2 0.10 0.38 4.56 0.45 0.88 0.58 

a Labeling convention for item names:  Sequential numbering of items, followed by abbreviation for the item class (DEF designates equal-sign-

definition items, SOL designates equation-solving items, and STR designates equation-structure items), followed by the Level (L1 for Level 1, 

etc.), followed by whether it was presented on Form 1 or Form 2.  For example, 1DEF.L1.1, is an equal-sign definition item at Level 1 presented 

on Form 1.   

*p < .05, # A test of equivalence could not be calculated for this pairs because all students taking Form 2 completed the item correctly.  
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Table 4 

Textbook Analysis Results: Percentage of Instances of the Equal Sign in Each Equation Structure for Grades 1 through 6 

 Grade Average 

 1 2 3 4 5 6  

Operations-Equals-Answer Structure 97 82 70 52 38 31 62 

 Unknown at end or 

no unknown 

Operation(s) on left side of the equal sign and unknown 

quantity or answer on the right side (e.g., 5 + 2 = ) 

91 75 48 35 18 11 46 

 Unknown on left 

side  

Operation(s) and an unknown quantity on the left side 

(e.g., 4 +  = 7) 

6 7 22 17 20 20 15 

Non-Standard Equation Structures 0 10 24 41 59 68 34 

 Operations on right 

side of equal sign 

Operation(s) on right side of the equal sign and answer or 

an unknown quantity on the left side (e.g., 7 = 5 + 2) 

0 4 3 2 18 11 6 

 No explicit 

operations 

No explicit operation on either side of the equal sign  

(e.g., 12 in. = 1 ft., x = 4, 2/4 = 1/2, 3 = 3)  

0 5 15 33 38 49 23 

 Operations on both 

sides of equal sign 

Operations appear on both sides of the equal sign  

(e.g., 3 + 4 = 5 + 2) 

0 1 6 6 3 8 4 

No Equation Equal sign appears outside the context of an equation, such 

as in the directions (e.g. “Write <, >, or = to complete each 

statement”) 

3 7 6 6 3 1 4 

Total Instances of Equal Sign 492 363 696 671 859 1267  



 

 

54

Pages Examined 320 310 314 314 311 309  

Instances per Page 1.5 1.1 2.2 2.0 2.7 4.0  
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Figure Captions 
 

Figure 1. Wright Map for the Mathematical Equivalence Assessment. In the left column, each X 

represents one person, with least knowledgeable people at the bottom.  In the right column, each 

entry represents an item with the easiest items at the bottom. The vertical line between the two 

columns indicates the scale for parameter estimates measured in logits (i.e., log-odds units).  

Along the verticle line, M indicates the mean, S indicates one standard deviation above or below 

the mean, and T indicates 2 standard deviations above or below the mean.  These statistics are 

included for the participants (i.e., persons - left of center) and for the items (right of center). 

Refer to Table 3 for details on each item. 

Figure 2. Distribution of ability estimates by grade level. 
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Figure 1 

     PERSONS - LOGITS - ITEMS 
               
               XXX  6 
                    | 
                    | 
                    | 
                    | 
              XXXX T5  
                    | 
                    |  31STR.L4.2 
                    |  31STR.L4.1 
               XXX  | 
             XXXXX  4T 
                    | 
                    | 
          XXXXXXXX  |  28STR.L4.1 
                    |  29STR.L4.2  30STR.L4.2 
        XXXXXXXXXX  3  28STR.L4.2 
                   S|  29STR.L4.1  30STR.L4.1 
      XXXXXXXXXXXX  | 
                    | 
        XXXXXXXXXX  | 
          XXXXXXXX  2S 23DEF.L4.2  26SOL.L4.1 
               XXX  |  10DEF.L3.2  24SOL.L4.1 
              XXXX  | 
              XXXX  |  24SOL.L4.2  25SOL.L4.1 
      XXXXXXXXXXXX  |  10DEF.L3.1  27STR.L4.1  27STR.L4.2 
            XXXXXX  1  14SOL.L3.1  22STR.L3.2  26SOL.L4.2 
               XXX  |  22STR.L3.1  25SOL.L4.2 
                 X M|  16SOL.L3.1  23DEF.L4.1 
             XXXXX  |  14SOL.L3.2  15SOL.L3.1 
                    |  16SOL.L3.2  19STR.L3.1 
            XXXXXX  0M 13SOL.L3.2  18STR.L3.2 
                XX  |  11DEF.L3.2  12SOL.L3.1  12SOL.L3.2  13SOL.L3.1  18STR.L3.1  19STR.L3.2 
                 X  |  15SOL.L3.2  17STR.L3.1 
             XXXXX  |  17STR.L3.2  20STR.L3.2 
               XXX  |  20STR.L3.1  7STR.L2.2 
        XXXXXXXXXX -1  9STR.L2.1 
                    | 
          XXXXXXXX  |  1DEF.L1.1   5DEF.L2.1   9STR.L2.2 
            XXXXXX S|  3STR.L1.2 
        XXXXXXXXXX  |  5DEF.L2.2   7STR.L2.1 
                   -2S 21STR.L3.2  3STR.L1.1   8STR.L2.2 
             XXXXX  |  11DEF.L3.1  8STR.L2.1 
            XXXXXX  |  21STR.L3.1 
                    | 
             XXXXX  |  1DEF.L1.2   6SOL.L2.2 
                   -3 
            XXXXXX  |  6SOL.L2.1 
                    | 
                    |  4STR.L1.1   4STR.L1.2 
                 X T| 
                   -4T 
                    | 
                    | 
                    |  2SOL.L1.1 
                    | 
                   -5 
 

 

Level 4 

Level 3 

Level 2 

Level 1 
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Figure 2 
 

 
 

  
 

 


